1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
|
/*
* Created by Ian "Goober5000" Warfield for the FreeSpace2 Source Code Project.
* You may not sell or otherwise commercially exploit the source or things you
* create based on the source.
*/
#include "globalincs/pstypes.h"
#include "object/objectdock.h"
#include "object/object.h"
#include "math/bitarray.h"
#include "ship/ship.h"
#include "math/vecmat.h"
#include "mission/missionparse.h"
// helper prototypes
void dock_evaluate_tree(object *objp, dock_function_info *infop, void (*function)(object *, dock_function_info *), ubyte *visited_bitstring);
void dock_move_docked_children_tree(object *objp, object *parent_objp);
void dock_count_total_docked_objects_helper(object *objp, dock_function_info *infop);
void dock_check_find_docked_object_helper(object *objp, dock_function_info *infop);
void dock_calc_docked_center_helper(object *objp, dock_function_info *infop);
void dock_calc_docked_center_of_mass_helper(object *objp, dock_function_info *infop);
void dock_calc_total_docked_mass_helper(object *objp, dock_function_info *infop);
void dock_calc_max_cross_sectional_radius_squared_perpendicular_to_line_helper(object *objp, dock_function_info *infop);
void dock_calc_max_semilatus_rectum_squared_parallel_to_directrix_helper(object *objp, dock_function_info *infop);
void dock_find_max_speed_helper(object *objp, dock_function_info *infop);
void dock_find_max_fspeed_helper(object *objp, dock_function_info *infop);
// management prototypes
bool dock_check_assume_hub();
object *dock_get_hub(object *objp);
void dock_add_instance(object *objp, int dockpoint, object *other_objp);
void dock_remove_instance(object *objp, object *other_objp);
dock_instance *dock_find_instance(object *objp, object *other_objp);
dock_instance *dock_find_instance(object *objp, int dockpoint);
int dock_count_instances(object *objp);
object *dock_get_first_docked_object(object *objp)
{
// are we docked?
if (!object_is_docked(objp))
return NULL;
return objp->dock_list->docked_objp;
}
bool dock_check_docked_one_on_one(object *objp)
{
// we must be docked
if (!object_is_docked(objp))
return false;
// our dock list must contain only one object
if (objp->dock_list->next != NULL)
return false;
// the other guy's dock list must contain only one object
if (dock_get_first_docked_object(objp)->dock_list->next != NULL)
return false;
// debug check to make sure that we're docked to each other
Assert(objp == dock_get_first_docked_object(objp)->dock_list->docked_objp);
// success
return true;
}
int dock_count_direct_docked_objects(object *objp)
{
return dock_count_instances(objp);
}
int dock_count_total_docked_objects(object *objp)
{
dock_function_info dfi;
dock_evaluate_all_docked_objects(objp, &dfi, dock_count_total_docked_objects_helper);
return dfi.maintained_variables.int_value;
}
bool dock_check_find_direct_docked_object(object *objp, object *other_objp)
{
return (dock_find_instance(objp, other_objp) != NULL);
}
bool dock_check_find_docked_object(object *objp, object *other_objp)
{
dock_function_info dfi;
dfi.parameter_variables.objp_value = other_objp;
dock_evaluate_all_docked_objects(objp, &dfi, dock_check_find_docked_object_helper);
return dfi.maintained_variables.bool_value;
}
object *dock_find_object_at_dockpoint(object *objp, int dockpoint)
{
dock_instance *result = dock_find_instance(objp, dockpoint);
if (result == NULL)
return NULL;
else
return result->docked_objp;
}
int dock_find_dockpoint_used_by_object(object *objp, object *other_objp)
{
dock_instance *result = dock_find_instance(objp, other_objp);
if (result == NULL)
return -1;
else
return result->dockpoint_used;
}
void dock_calc_docked_center(vec3d *dest, object *objp)
{
vm_vec_zero(dest);
dock_function_info dfi;
dfi.maintained_variables.vecp_value = dest;
dock_evaluate_all_docked_objects(objp, &dfi, dock_calc_docked_center_helper);
// overall center = sum of centers divided by sum of objects
vm_vec_scale(dest, (1.0f / (float) dfi.maintained_variables.int_value));
}
void dock_calc_docked_center_of_mass(vec3d *dest, object *objp)
{
vm_vec_zero(dest);
dock_function_info dfi;
dfi.maintained_variables.vecp_value = dest;
dock_evaluate_all_docked_objects(objp, &dfi, dock_calc_docked_center_of_mass_helper);
// overall center of mass = weighted sum of centers of mass divided by total mass
vm_vec_scale(dest, (1.0f / dfi.maintained_variables.float_value));
}
float dock_calc_total_docked_mass(object *objp)
{
dock_function_info dfi;
dock_evaluate_all_docked_objects(objp, &dfi, dock_calc_total_docked_mass_helper);
return dfi.maintained_variables.float_value;
}
float dock_calc_max_cross_sectional_radius_perpendicular_to_axis(object *objp, axis_type axis)
{
vec3d local_line_end;
vec3d *world_line_start, world_line_end;
dock_function_info dfi;
// to calculate the cross-sectional radius, we need a line that will be perpendicular to the cross-section
// the first endpoint is simply the position of the object
world_line_start = &objp->pos;
// the second endpoint extends in the axis direction
vm_vec_zero(&local_line_end);
switch(axis)
{
case X_AXIS:
local_line_end.xyz.x = 1.0f;
break;
case Y_AXIS:
local_line_end.xyz.y = 1.0f;
break;
case Z_AXIS:
local_line_end.xyz.z = 1.0f;
break;
default:
Int3();
return 0.0f;
}
// rotate and move the endpoint to go through the axis of the actual object
vm_vec_rotate(&world_line_end, &local_line_end, &objp->orient);
vm_vec_add2(&world_line_end, &objp->pos);
// now we have a unit vector starting at the object's position and pointing along the chosen axis
// (although the length doesn't matter, as it's calculated as an endless line)
// now determine the cross-sectional radius
// set parameters and call function for the radius squared
dfi.parameter_variables.vecp_value = world_line_start;
dfi.parameter_variables.vecp_value2 = &world_line_end;
dock_evaluate_all_docked_objects(objp, &dfi, dock_calc_max_cross_sectional_radius_squared_perpendicular_to_line_helper);
// the radius is the square root of our result
return fl_sqrt(dfi.maintained_variables.float_value);
}
float dock_calc_max_semilatus_rectum_parallel_to_axis(object *objp, axis_type axis)
{
vec3d local_line_end;
vec3d *world_line_start, world_line_end;
dock_function_info dfi;
// to calculate the semilatus rectum, we need a directrix that will be parallel to the axis
// the first endpoint is simply the position of the object
world_line_start = &objp->pos;
// the second endpoint extends in the axis direction
vm_vec_zero(&local_line_end);
switch(axis)
{
case X_AXIS:
local_line_end.xyz.x = 1.0f;
break;
case Y_AXIS:
local_line_end.xyz.y = 1.0f;
break;
case Z_AXIS:
local_line_end.xyz.z = 1.0f;
break;
default:
Int3();
return 0.0f;
}
// rotate and move the endpoint to go through the axis of the actual object
vm_vec_rotate(&world_line_end, &local_line_end, &objp->orient);
vm_vec_add2(&world_line_end, &objp->pos);
// now we have a unit vector starting at the object's position and pointing along the chosen axis
// (although the length doesn't matter, as it's calculated as an endless line)
// now determine the semilatus rectum
// set parameters and call function for the semilatus rectum squared
dfi.parameter_variables.vecp_value = world_line_start;
dfi.parameter_variables.vecp_value2 = &world_line_end;
dock_evaluate_all_docked_objects(objp, &dfi, dock_calc_max_semilatus_rectum_squared_parallel_to_directrix_helper);
// the semilatus rectum is the square root of our result
return fl_sqrt(dfi.maintained_variables.float_value);
}
float dock_calc_docked_fspeed(object *objp)
{
// *sigh*... the docked fspeed is simply the max fspeed of all docked objects
dock_function_info dfi;
dock_evaluate_all_docked_objects(objp, &dfi, dock_find_max_fspeed_helper);
return dfi.maintained_variables.float_value;
}
float dock_calc_docked_speed(object *objp)
{
// ditto with speed
dock_function_info dfi;
dock_evaluate_all_docked_objects(objp, &dfi, dock_find_max_speed_helper);
return dfi.maintained_variables.float_value;
}
// functions to deal with all docked ships anywhere
// ---------------------------------------------------------------------------------------------------------------
// universal two functions
// -----------------------
// evaluate a certain function for all docked objects
void dock_evaluate_all_docked_objects(object *objp, dock_function_info *infop, void (*function)(object *, dock_function_info *))
{
Assert((objp != NULL) && (infop != NULL) && (function != NULL));
// not docked?
if (!object_is_docked(objp))
{
// call the function for just the one object
function(objp, infop);
return;
}
// we only have two objects docked
if (dock_check_docked_one_on_one(objp))
{
// call the function for the first object, and return if instructed
function(objp, infop);
if (infop->early_return_condition) return;
// call the function for the second object, and return if instructed
function(objp->dock_list->docked_objp, infop);
if (infop->early_return_condition) return;
}
// we have multiple objects docked and we're treating them as a hub
else if (dock_check_assume_hub())
{
// get the hub
object *hub_objp = dock_get_hub(objp);
// call the function for the hub, and return if instructed
function(hub_objp, infop);
if (infop->early_return_condition) return;
// iterate through all docked objects
for (dock_instance *ptr = hub_objp->dock_list; ptr != NULL; ptr = ptr->next)
{
// call the function for this object, and return if instructed
function(ptr->docked_objp, infop);
if (infop->early_return_condition) return;
}
}
// we have multiple objects docked and we must treat them as a tree
else
{
// create a bit array to mark the objects we check
ubyte *visited_bitstring = (ubyte *) vm_malloc(calculate_num_bytes(MAX_OBJECTS));
// clear it
memset(visited_bitstring, 0, calculate_num_bytes(MAX_OBJECTS));
// start evaluating the tree
dock_evaluate_tree(objp, infop, function, visited_bitstring);
// destroy the bit array
vm_free(visited_bitstring);
visited_bitstring = NULL;
}
}
void dock_evaluate_tree(object *objp, dock_function_info *infop, void (*function)(object *, dock_function_info *), ubyte *visited_bitstring)
{
// make sure we haven't visited this object already
if (get_bit(visited_bitstring, OBJ_INDEX(objp)))
return;
// mark as visited
set_bit(visited_bitstring, OBJ_INDEX(objp));
// call the function for this object, and return if instructed
function(objp, infop);
if (infop->early_return_condition) return;
// iterate through all docked objects
for (dock_instance *ptr = objp->dock_list; ptr != NULL; ptr = ptr->next)
{
// start another tree with the docked object as the root, and return if instructed
dock_evaluate_tree(ptr->docked_objp, infop, function, visited_bitstring);
if (infop->early_return_condition) return;
}
}
// special-case functions
// ----------------------
void dock_move_docked_objects(object *objp)
{
if ((objp->type != OBJ_SHIP) && (objp->type != OBJ_START))
return;
if (!object_is_docked(objp))
return;
// has this object (by extension, this group of docked objects) been handled already?
if (objp->flags & OF_DOCKED_ALREADY_HANDLED)
return;
Assert((objp->instance >= 0) && (objp->instance < MAX_SHIPS));
dock_function_info dfi;
object *fastest_objp;
// in FRED, objp is the object everyone moves with
if (Fred_running)
{
fastest_objp = objp;
}
else
{
// find the object with the highest max speed
dock_evaluate_all_docked_objects(objp, &dfi, dock_find_max_speed_helper);
fastest_objp = dfi.maintained_variables.objp_value;
// if we have no max speed, just use the first one
if (fastest_objp == NULL)
fastest_objp = objp;
}
// start a tree with that object as the parent... do NOT use the berfunction for this,
// because we must use a tree for the parent ancestry to work correctly
// we don't need a bit array because OF_DOCKED_ALREADY_HANDLED takes care of it
// and must persist for the entire game frame
// start evaluating the tree, starting with the fastest object having no parent
dock_move_docked_children_tree(fastest_objp, NULL);
}
void dock_move_docked_children_tree(object *objp, object *parent_objp)
{
// has this object been handled already?
if (objp->flags & OF_DOCKED_ALREADY_HANDLED)
return;
// mark as handled
objp->flags |= OF_DOCKED_ALREADY_HANDLED;
// if parent_objp exists
if (parent_objp != NULL)
{
// move this object to align with it
obj_move_one_docked_object(objp, parent_objp);
}
// iterate through all docked objects
for (dock_instance *ptr = objp->dock_list; ptr != NULL; ptr = ptr->next)
{
// start another tree with the docked object as the root and this object as the parent
dock_move_docked_children_tree(ptr->docked_objp, objp);
}
}
// helper functions
// ----------------
void dock_count_total_docked_objects_helper(object *objp, dock_function_info *infop)
{
// increment count
infop->maintained_variables.int_value++;
}
void dock_check_find_docked_object_helper(object *objp, dock_function_info *infop)
{
// if object found, set to true and break
if (infop->parameter_variables.objp_value == objp)
{
infop->maintained_variables.bool_value = true;
infop->early_return_condition = true;
}
}
void dock_calc_docked_center_helper(object *objp, dock_function_info *infop)
{
// add object position and increment count
vm_vec_add2(infop->maintained_variables.vecp_value, &objp->pos);
infop->maintained_variables.int_value++;
}
void dock_calc_docked_center_of_mass_helper(object *objp, dock_function_info *infop)
{
// add weighted object position and add mass
vm_vec_scale_add2(infop->maintained_variables.vecp_value, &objp->pos, objp->phys_info.mass);
infop->maintained_variables.float_value += objp->phys_info.mass;
}
void dock_calc_total_docked_mass_helper(object *objp, dock_function_info *infop)
{
// add mass
infop->maintained_variables.float_value += objp->phys_info.mass;
}
// What we're doing here is finding the distances between each extent of the object and the line, and then taking the
// maximum distance as the cross-sectional radius. We're actually maintaining the square of the distance rather than
// the actual distance, as it's faster to calculate and it gives the same result in a greater-than or less-than
// comparison. When we're done calculating everything for all objects (i.e. when we return to the parent function)
// we take the square root of the final value.
void dock_calc_max_cross_sectional_radius_squared_perpendicular_to_line_helper(object *objp, dock_function_info *infop)
{
vec3d world_point, local_point[6], nearest;
polymodel *pm;
int i;
float dist_squared;
// line parameters
vec3d *line_start = infop->parameter_variables.vecp_value;
vec3d *line_end = infop->parameter_variables.vecp_value2;
// We must find world coordinates for each of the six endpoints on the three axes of the object. I looked up
// which axis is front/back, left/right, and up/down, as well as which endpoint is which. It doesn't really
// matter, though, as all we need are the distances.
// grab our model
Assert(objp->type == OBJ_SHIP);
pm = model_get(Ship_info[Ships[objp->instance].ship_info_index].model_num);
// set up the points we want to check
memset(local_point, 0, sizeof(vec3d) * 6);
local_point[0].xyz.x = pm->maxs.xyz.x; // right point (max x)
local_point[1].xyz.x = pm->mins.xyz.x; // left point (min x)
local_point[2].xyz.y = pm->maxs.xyz.y; // top point (max y)
local_point[3].xyz.y = pm->mins.xyz.y; // bottom point (min y)
local_point[4].xyz.z = pm->maxs.xyz.z; // front point (max z)
local_point[5].xyz.z = pm->mins.xyz.z; // rear point (min z)
// check points
for (i = 0; i < 6; i++)
{
// calculate position of point
vm_vec_rotate(&world_point, &local_point[i], &objp->orient);
vm_vec_add2(&world_point, &objp->pos);
// calculate square of distance to line
vm_vec_dist_squared_to_line(&world_point, line_start, line_end, &nearest, &dist_squared);
// update with farthest distance squared
if (dist_squared > infop->maintained_variables.float_value)
infop->maintained_variables.float_value = dist_squared;
}
}
// What we're doing here is projecting each object extent onto the directrix, calculating the distance between the
// projected point and the origin, and then taking the maximum distance as the semilatus rectum. We're actually
// maintaining the square of the distance rather than the actual distance, as it's faster to calculate and it gives
// the same result in a greater-than or less-than comparison. When we're done calculating everything for all
// objects (i.e. when we return to the parent function) we take the square root of the final value.
void dock_calc_max_semilatus_rectum_squared_parallel_to_directrix_helper(object *objp, dock_function_info *infop)
{
vec3d world_point, local_point[6], nearest;
polymodel *pm;
int i;
float temp, dist_squared;
// line parameters
vec3d *line_start = infop->parameter_variables.vecp_value;
vec3d *line_end = infop->parameter_variables.vecp_value2;
// We must find world coordinates for each of the six endpoints on the three axes of the object. I looked up
// which axis is front/back, left/right, and up/down, as well as which endpoint is which. It doesn't really
// matter, though, as all we need are the distances.
// grab our model
Assert(objp->type == OBJ_SHIP);
pm = model_get(Ship_info[Ships[objp->instance].ship_info_index].model_num);
// set up the points we want to check
memset(local_point, 0, sizeof(vec3d) * 6);
local_point[0].xyz.x = pm->maxs.xyz.x; // right point (max x)
local_point[1].xyz.x = pm->mins.xyz.x; // left point (min x)
local_point[2].xyz.y = pm->maxs.xyz.y; // top point (max y)
local_point[3].xyz.y = pm->mins.xyz.y; // bottom point (min y)
local_point[4].xyz.z = pm->maxs.xyz.z; // front point (max z)
local_point[5].xyz.z = pm->mins.xyz.z; // rear point (min z)
// check points
for (i = 0; i < 6; i++)
{
// calculate position of point
vm_vec_rotate(&world_point, &local_point[i], &objp->orient);
vm_vec_add2(&world_point, &objp->pos);
// find the nearest point along the line
vm_vec_dist_squared_to_line(&world_point, line_start, line_end, &nearest, &temp);
// find the distance squared between the origin of the line and the point on the line
dist_squared = vm_vec_dist_squared(line_start, &nearest);
// update with farthest distance squared
if (dist_squared > infop->maintained_variables.float_value)
infop->maintained_variables.float_value = dist_squared;
}
}
void dock_find_max_fspeed_helper(object *objp, dock_function_info *infop)
{
// check our fspeed against the running maximum
if (objp->phys_info.fspeed > infop->maintained_variables.float_value)
{
infop->maintained_variables.float_value = objp->phys_info.fspeed;
infop->maintained_variables.objp_value = objp;
}
}
void dock_find_max_speed_helper(object *objp, dock_function_info *infop)
{
// check our speed against the running maximum
if (objp->phys_info.speed > infop->maintained_variables.float_value)
{
infop->maintained_variables.float_value = objp->phys_info.speed;
infop->maintained_variables.objp_value = objp;
}
}
// ---------------------------------------------------------------------------------------------------------------
// end of ber code block ----------------------------------------------------------------------------------------
// dock management functions -------------------------------------------------------------------------------------
void dock_dock_objects(object *objp1, int dockpoint1, object *objp2, int dockpoint2)
{
#ifndef NDEBUG
if ((dock_find_instance(objp1, objp2) != NULL) || (dock_find_instance(objp2, objp1) != NULL))
{
Error(LOCATION, "Trying to dock an object that's already docked!\n");
}
if ((dock_find_instance(objp1, dockpoint1) != NULL) || (dock_find_instance(objp2, dockpoint2) != NULL))
{
Error(LOCATION, "Trying to dock to a dockpoint that's in use!\n");
}
#endif
// put objects on each others' dock lists
dock_add_instance(objp1, dockpoint1, objp2);
dock_add_instance(objp2, dockpoint2, objp1);
}
void dock_undock_objects(object *objp1, object *objp2)
{
#ifndef NDEBUG
if ((dock_find_instance(objp1, objp2) == NULL) || (dock_find_instance(objp2, objp1) == NULL))
{
Error(LOCATION, "Trying to undock an object that isn't docked!\n");
}
#endif
// remove objects from each others' dock lists
dock_remove_instance(objp1, objp2);
dock_remove_instance(objp2, objp1);
}
// dock list functions -------------------------------------------------------------------------------------------
bool dock_check_assume_hub()
{
// There are several ways of handling ships docking to other ships. Level 1, the simplest, is the one-docker, one-dockee
// model used in retail FS2. Level 2 is the hub model, where we stipulate that any given set of docked ships
// includes one ship to which all other ships are docked. No ship except for the hub ship can be docked to more than
// one ship. Level 3 is the daisy-chain model, where you can string ships along and make a rooted tree.
//
// The new code can handle level 3 ship formations, but it requires more overhead than level 2 or level 1. (Whether
// the additional overhead is significant or not has not been determined.) In the vast majority of cases, level 3
// is not needed. So this function is provided to allow the code to optimize itself for level 2, should level 1
// evaluation fail.
// Assume level 2 optimization unless the mission specifies level 3.
return !(The_mission.flags & MISSION_FLAG_ALLOW_DOCK_TREES);
}
object *dock_get_hub(object *objp)
{
Assert(dock_check_assume_hub() && object_is_docked(objp));
// if our dock list contains only one object, it must be the hub
if (objp->dock_list->next == NULL)
{
return dock_get_first_docked_object(objp);
}
// otherwise we are the hub
else
{
return objp;
}
}
void dock_add_instance(object *objp, int dockpoint, object *other_objp)
{
dock_instance *item;
// create item
item = (dock_instance *) vm_malloc(sizeof(dock_instance));
item->dockpoint_used = dockpoint;
item->docked_objp = other_objp;
// prepend item to existing list
item->next = objp->dock_list;
objp->dock_list = item;
}
void dock_remove_instance(object *objp, object *other_objp)
{
int found = 0;
dock_instance *prev_ptr, *ptr;
prev_ptr = NULL;
ptr = objp->dock_list;
// iterate until item found
while (ptr != NULL)
{
// if found, exit loop
if (ptr->docked_objp == other_objp)
{
found = 1;
break;
}
// iterate
prev_ptr = ptr;
ptr = ptr->next;
}
// delete if found
if (found)
{
// special case... found at beginning of list
if (prev_ptr == NULL)
{
objp->dock_list = ptr->next;
}
// normal case
else
{
prev_ptr->next = ptr->next;
}
// delete it
vm_free(ptr);
}
}
dock_instance *dock_find_instance(object *objp, object *other_objp)
{
dock_instance *ptr = objp->dock_list;
// iterate until item found
while (ptr != NULL)
{
// if found, return it
if (ptr->docked_objp == other_objp)
return ptr;
// iterate
ptr = ptr->next;
}
// not found
return NULL;
}
dock_instance *dock_find_instance(object *objp, int dockpoint)
{
dock_instance *ptr = objp->dock_list;
// iterate until item found
while (ptr != NULL)
{
// if found, return it
if (ptr->dockpoint_used == dockpoint)
return ptr;
// iterate
ptr = ptr->next;
}
// not found
return NULL;
}
int dock_count_instances(object *objp)
{
int total_count = 0;
// count all instances in the list
dock_instance *ptr = objp->dock_list;
while (ptr != NULL)
{
// incrememnt for this object
total_count++;
// iterate
ptr = ptr->next;
}
// done
return total_count;
}
|