File: physics.cpp

package info (click to toggle)
freespace2 3.7.0%2Brepack-2
  • links: PTS, VCS
  • area: non-free
  • in suites: jessie, jessie-kfreebsd
  • size: 22,848 kB
  • ctags: 41,897
  • sloc: cpp: 369,931; makefile: 1,060; xml: 129; sh: 112
file content (1278 lines) | stat: -rw-r--r-- 47,681 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
/*
 * Copyright (C) Volition, Inc. 1999.  All rights reserved.
 *
 * All source code herein is the property of Volition, Inc. You may not sell 
 * or otherwise commercially exploit the source or things you created based on the 
 * source.
 *
*/



#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "physics/physics.h"
#include "freespace2/freespace.h"
#include "io/timer.h"
// for the damping issue
#include "ai/ai_profiles.h"
#include "mission/missionparse.h"



// defines for physics functions
#define	MAX_TURN_LIMIT	0.2618f		// about 15 degrees

#define ROTVEL_TOL		0.1			// Amount of rotvel is decreased if over cap
#define ROTVEL_CAP		14.0			// Rotational velocity cap for live objects
#define DEAD_ROTVEL_CAP	16.3			// Rotational velocity cap for dead objects

#define MAX_SHIP_SPEED		500		// Maximum speed allowed after whack or shockwave
#define RESET_SHIP_SPEED	440		// Speed that a ship is reset to after exceeding MAX_SHIP_SPEED

#define	SW_ROT_FACTOR			5		// increase in rotational time constant in shockwave
#define	SW_BLAST_DURATION		2000	// maximum duration of shockwave
#define	REDUCED_DAMP_FACTOR	10		// increase in side_slip and acceleration time constants (scaled according to reduced damp time)
#define	REDUCED_DAMP_VEL		30		// change in velocity at which reduced_damp_time is 2000 ms
#define	REDUCED_DAMP_TIME		2000	// ms (2.0 sec)
#define	WEAPON_SHAKE_TIME		500	//	ms (0.5 sec)	viewer shake time after hit by weapon (implemented via afterburner shake)
#define	SPECIAL_WARP_T_CONST	0.651	// special warp time constant (loose 99 % of excess speed in 3 sec)

void update_reduced_damp_timestamp( physics_info *pi, float impulse );
float velocity_ramp (float v_in, float v_goal, float time_const, float t);
float glide_ramp (float v_in, float v_goal, float ramp_time_const, float accel_mult, float t);

void physics_init( physics_info * pi )
{
	memset( pi, 0, sizeof(physics_info) );

	pi->mass = 10.0f;					// This ship weighs 10 units
	pi->side_slip_time_const = 0.05f;
	pi->rotdamp = 0.1f;

	pi->max_vel.xyz.x = 100.0f;		//sideways
	pi->max_vel.xyz.y = 100.0f;		//up/down
	pi->max_vel.xyz.z = 100.0f;		//forward
	pi->max_rear_vel = 100.0f;	//backward -- controlled seperately

	pi->max_rotvel.xyz.x = 2.0f;		//pitch
	pi->max_rotvel.xyz.y = 1.0f;		//heading
	pi->max_rotvel.xyz.z = 2.0f;		//bank

	pi->prev_ramp_vel.xyz.x = 0.0f;
	pi->prev_ramp_vel.xyz.y = 0.0f;
	pi->prev_ramp_vel.xyz.z = 0.0f;

	pi->desired_vel.xyz.x = 0.0f;
	pi->desired_vel.xyz.y = 0.0f;
	pi->desired_vel.xyz.z = 0.0f;

	pi->slide_accel_time_const=pi->side_slip_time_const;	// slide using max_vel.xyz.x & .xyz.y
	pi->slide_decel_time_const=pi->side_slip_time_const;	// slide using max_vel.xyz.x & .xyz.y

	pi->afterburner_decay = 1;
	pi->forward_thrust = 0.0f;
	pi->vert_thrust = 0.0f;	//added these two in order to get side and forward thrusters
	pi->side_thrust = 0.0f;	//to glow brighter when the ship is moving in the right direction -Bobboau

	pi->flags = 0;

	// default values for moment of inertia
	vm_vec_make( &pi->I_body_inv.vec.rvec, 1e-5f, 0.0f, 0.0f );
	vm_vec_make( &pi->I_body_inv.vec.uvec, 0.0f, 1e-5f, 0.0f );
	vm_vec_make( &pi->I_body_inv.vec.fvec, 0.0f, 0.0f, 1e-5f );

}


//==========================================================================
// apply_physics - This does correct physics independent of frame rate.
//
// Given:
//    damping = damping factor.  Setting this to zero make the object instantly
//              go to the target velocity.  Increasing it makes the object ramp
//              up or down to the target velocity.
//    desired_vel = the target velocity
//    initial_vel = velocity at last call
//    t = elapsed time since last call
//
// Returns:
//    new_vel = current velocity
//    delta_pos = delta position (framevec)
// You can extend this to 3d by calling it 3 times, once for each x,y,z component.

void apply_physics( float damping, float desired_vel, float initial_vel, float t, float * new_vel, float * delta_pos )
{
	if ( damping < 0.0001f )	{
		if ( delta_pos )
			*delta_pos = desired_vel*t;
		if ( new_vel )
			*new_vel = desired_vel;
	} else {
		float dv, e;
		dv = initial_vel - desired_vel;
		e = (float)exp( -t/damping );
		if ( delta_pos )
			*delta_pos = (1.0f - e)*dv*damping + desired_vel*t;
		if ( new_vel )
			*new_vel = dv*e + desired_vel;
	}
}



float Physics_viewer_bank = 0.0f;
int Physics_viewer_direction = PHYSICS_VIEWER_FRONT;
physics_info * Viewer_physics_info = NULL;

// If you would like Physics_viewer_bank to be tracked (Which is needed
// for rotating 3d bitmaps) call this and pass it a pointer to the
// viewer's physics info.
void physics_set_viewer( physics_info * p, int dir )
{
	if ( (Viewer_physics_info != p) || (Physics_viewer_direction != dir) )	{
		Viewer_physics_info = p;
		Physics_viewer_bank = 0.0f;
		Physics_viewer_direction = dir;
	}
}



//	-----------------------------------------------------------------------------------------------------------
// add rotational velocity & acceleration



void physics_sim_rot(matrix * orient, physics_info * pi, float sim_time )
{
	angles	tangles;
	vec3d	new_vel;
	matrix	tmp;
	float		shock_amplitude;
	float		rotdamp;
	float		shock_fraction_time_left;

	Assert(is_valid_matrix(orient));
	Assert(is_valid_vec(&pi->rotvel));
	Assert(is_valid_vec(&pi->desired_rotvel));

	// Handle special case of shockwave
	shock_amplitude = 0.0f;
	if ( pi->flags & PF_IN_SHOCKWAVE ) {
		if ( timestamp_elapsed(pi->shockwave_decay) ) {
			pi->flags &= ~PF_IN_SHOCKWAVE;
			rotdamp = pi->rotdamp;
		} else {
 			shock_fraction_time_left = timestamp_until( pi->shockwave_decay ) / (float) SW_BLAST_DURATION;
			rotdamp = pi->rotdamp + pi->rotdamp * (SW_ROT_FACTOR - 1) * shock_fraction_time_left;
			shock_amplitude = pi->shockwave_shake_amp * shock_fraction_time_left;
		}
	} else {
		rotdamp = pi->rotdamp;
	}

	// Do rotational physics with given damping
	apply_physics( rotdamp, pi->desired_rotvel.xyz.x, pi->rotvel.xyz.x, sim_time, &new_vel.xyz.x, NULL );
	apply_physics( rotdamp, pi->desired_rotvel.xyz.y, pi->rotvel.xyz.y, sim_time, &new_vel.xyz.y, NULL );
	apply_physics( rotdamp, pi->desired_rotvel.xyz.z, pi->rotvel.xyz.z, sim_time, &new_vel.xyz.z, NULL );

	Assert(is_valid_vec(&new_vel));

	pi->rotvel = new_vel;

	tangles.p = pi->rotvel.xyz.x*sim_time;
	tangles.h = pi->rotvel.xyz.y*sim_time;
	tangles.b = pi->rotvel.xyz.z*sim_time;

/*	//	Make ship shake due to afterburner.
	if (pi->flags & PF_AFTERBURNER_ON || !timestamp_elapsed(pi->afterburner_decay) ) {
		float	max_speed;

		max_speed = vm_vec_mag_quick(&pi->max_vel);
		tangles.p += (float) (rand()-RAND_MAX_2)/RAND_MAX * pi->speed/max_speed/64.0f;
		tangles.h += (float) (rand()-RAND_MAX_2)/RAND_MAX * pi->speed/max_speed/64.0f;
		if ( pi->flags & PF_AFTERBURNER_ON ) {
			pi->afterburner_decay = timestamp(ABURN_DECAY_TIME);
		}
	}
*/

	// Make ship shake due to shockwave, decreasing in amplitude at the end of the shockwave
	if ( pi->flags & PF_IN_SHOCKWAVE ) {
		tangles.p += (float) (myrand()-RAND_MAX_2)/RAND_MAX * shock_amplitude;
		tangles.h += (float) (myrand()-RAND_MAX_2)/RAND_MAX * shock_amplitude;
	}


	vm_angles_2_matrix(&pi->last_rotmat, &tangles );
	vm_matrix_x_matrix( &tmp, orient, &pi->last_rotmat );
	*orient = tmp;

	vm_orthogonalize_matrix(orient);

}

//	-----------------------------------------------------------------------------------------------------------
// add rotational velocity & acceleration

void physics_sim_rot_editor(matrix * orient, physics_info * pi, float sim_time)
{
	angles	tangles;
	vec3d	new_vel;
	matrix	tmp;
	angles	t1, t2;

	apply_physics( pi->rotdamp, pi->desired_rotvel.xyz.x, pi->rotvel.xyz.x, sim_time,
								 &new_vel.xyz.x, NULL );

	apply_physics( pi->rotdamp, pi->desired_rotvel.xyz.y, pi->rotvel.xyz.y, sim_time,
								 &new_vel.xyz.y, NULL );

	apply_physics( pi->rotdamp, pi->desired_rotvel.xyz.z, pi->rotvel.xyz.z, sim_time,
								 &new_vel.xyz.z, NULL );

	pi->rotvel = new_vel;

	tangles.p = pi->rotvel.xyz.x*sim_time;
	tangles.h = pi->rotvel.xyz.y*sim_time;
	tangles.b = pi->rotvel.xyz.z*sim_time;

	t1 = t2 = tangles;
	t1.h = 0.0f;  t1.b = 0.0f;
	t2.p = 0.0f; t2.b = 0.0f;

	// put in p & b like normal
	vm_angles_2_matrix(&pi->last_rotmat, &t1 );
	vm_matrix_x_matrix( &tmp, orient, &pi->last_rotmat );

	// Put in heading separately
	vm_angles_2_matrix(&pi->last_rotmat, &t2 );
	vm_matrix_x_matrix( orient, &pi->last_rotmat, &tmp );

	vm_orthogonalize_matrix(orient);

}

// Adds velocity to position
// finds velocity and displacement in local coords
void physics_sim_vel(vec3d * position, physics_info * pi, float sim_time, matrix *orient)
{
	vec3d local_disp;		// displacement in this frame
	vec3d local_v_in;		// velocity in local coords at the start of this frame
	vec3d local_desired_vel;	// desired velocity in local coords
	vec3d local_v_out;		// velocity in local coords following this frame
	vec3d damp;

	//	Maybe clear the reduced_damp flag.
	//	This fixes the problem of the player getting near-instantaneous acceleration under unknown circumstances.
	//	The larger problem is probably that PF_USE_VEL is getting stuck set.
	if ((pi->flags & PF_REDUCED_DAMP) && (timestamp_elapsed(pi->reduced_damp_decay))) {
		pi->flags &= ~PF_REDUCED_DAMP;
	}

	// Set up damping constants based on special conditions
	// ie. shockwave, collision, weapon, dead
	if (pi->flags & PF_DEAD_DAMP) {
		// side_slip_time_const is already quite large and now needs to be applied in all directions
		vm_vec_make( &damp, pi->side_slip_time_const, pi->side_slip_time_const, pi->side_slip_time_const );

	} else if (pi->flags & PF_REDUCED_DAMP) {
		// case of shock, weapon, collide, etc.
		if ( timestamp_elapsed(pi->reduced_damp_decay) ) {
			vm_vec_make( &damp, pi->side_slip_time_const, pi->side_slip_time_const, 0.0f );
		} else {
			// damp is multiplied by fraction and not fraction^2, gives better collision separation
			float reduced_damp_fraction_time_left = timestamp_until( pi->reduced_damp_decay ) / (float) REDUCED_DAMP_TIME;
			damp.xyz.x = pi->side_slip_time_const * ( 1 + (REDUCED_DAMP_FACTOR-1) * reduced_damp_fraction_time_left );
			damp.xyz.y = pi->side_slip_time_const * ( 1 + (REDUCED_DAMP_FACTOR-1) * reduced_damp_fraction_time_left );
			damp.xyz.z = pi->side_slip_time_const * reduced_damp_fraction_time_left * REDUCED_DAMP_FACTOR;
		}
	} else {
		// regular damping
		if (pi->use_newtonian_damp) {
			vm_vec_make( &damp, pi->side_slip_time_const, pi->side_slip_time_const, pi->side_slip_time_const );
		} else {
			vm_vec_make( &damp, pi->side_slip_time_const, pi->side_slip_time_const, 0.0f );
		}
	}

	// Note: CANNOT maintain a *local velocity* since a rotation can occur in this frame.
	// thus the local velocity of in the next frame can be different (this would require rotate to change local vel
	// and this is not desired

	// get local components of current velocity
	vm_vec_rotate (&local_v_in, &pi->vel, orient);

	// get local components of desired velocity
	vm_vec_rotate (&local_desired_vel, &pi->desired_vel, orient);

	// find updated LOCAL velocity and position in the local x direction
	apply_physics (damp.xyz.x, local_desired_vel.xyz.x, local_v_in.xyz.x, sim_time, &local_v_out.xyz.x, &local_disp.xyz.x);

	// find updated LOCAL velocity and position in the local y direction
	apply_physics (damp.xyz.y, local_desired_vel.xyz.y, local_v_in.xyz.y, sim_time, &local_v_out.xyz.y, &local_disp.xyz.y);

	// find updated LOCAL velocity and position in the local z direction
	// for player ship, damp should normally be zero, but may be altered in a shockwave
	//  in death, shockwave,etc. we want damping time const large for all 3 axes
	// warp in test - make excessive speed drop exponentially from max allowed
	// become (0.01x in 3 sec)

	int special_warp_in = FALSE;
	float excess = local_v_in.xyz.z - pi->max_vel.xyz.z;
	if (excess > 5 && (pi->flags & PF_SPECIAL_WARP_IN)) {
		special_warp_in = TRUE;
		float exp_factor = float(exp(-sim_time / SPECIAL_WARP_T_CONST));
		local_v_out.xyz.z = pi->max_vel.xyz.z + excess * exp_factor;
		local_disp.xyz.z = (pi->max_vel.xyz.z * sim_time) + excess * (float(SPECIAL_WARP_T_CONST) * (1.0f - exp_factor));
	} else if (pi->flags & PF_SPECIAL_WARP_OUT) {
		float exp_factor = float(exp(-sim_time / SPECIAL_WARP_T_CONST));
		vec3d temp;
		vm_vec_rotate(&temp, &pi->prev_ramp_vel, orient);
		float deficeit = temp.xyz.z - local_v_in.xyz.z;
		local_v_out.xyz.z = local_v_in.xyz.z + deficeit * (1.0f - exp_factor);
		local_disp.xyz.z = (local_v_in.xyz.z * sim_time) + deficeit * (sim_time - (float(SPECIAL_WARP_T_CONST) * (1.0f - exp_factor)));
	} else {
		apply_physics (damp.xyz.z, local_desired_vel.xyz.z, local_v_in.xyz.z, sim_time, &local_v_out.xyz.z, &local_disp.xyz.z);
	}

	// maybe turn off special warp in flag
	if ((pi->flags & PF_SPECIAL_WARP_IN) && (excess < 5)) {
		pi->flags &= ~(PF_SPECIAL_WARP_IN);
	}

	// update world position from local to world coords using orient
	vec3d world_disp;
	vm_vec_unrotate (&world_disp, &local_disp, orient);
	vm_vec_add2 (position, &world_disp);

	// update world velocity
	vm_vec_unrotate(&pi->vel, &local_v_out, orient);

	if (special_warp_in) {
		vm_vec_rotate(&pi->prev_ramp_vel, &pi->vel, orient);
	}
}

//	-----------------------------------------------------------------------------------------------------------
// Simulate a physics object for this frame
void physics_sim(vec3d* position, matrix* orient, physics_info* pi, float sim_time)
{
	// check flag which tells us whether or not to do velocity translation
	if (pi->flags & PF_CONST_VEL) {
		vm_vec_scale_add2(position, &pi->vel, sim_time);
	}
	else
	{
		physics_sim_vel(position, pi, sim_time, orient);
		physics_sim_rot(orient, pi, sim_time);

		pi->speed = vm_vec_mag(&pi->vel);							//	Note, cannot use quick version, causes cumulative error, increasing speed.
		pi->fspeed = vm_vec_dot(&orient->vec.fvec, &pi->vel);		// instead of vector magnitude -- use only forward vector since we are only interested in forward velocity
	}

}

//	-----------------------------------------------------------------------------------------------------------
// Simulate a physics object for this frame.  Used by the editor.  The difference between
// this function and physics_sim() is that this one uses a heading change to rotate around
// the universal Y axis, rather than the local orientation's Y axis.  Banking is also ignored.
void physics_sim_editor(vec3d *position, matrix * orient, physics_info * pi, float sim_time )
{
	physics_sim_vel(position, pi, sim_time, orient);
	physics_sim_rot_editor(orient, pi, sim_time);
	pi->speed = vm_vec_mag_quick(&pi->vel);
	pi->fspeed = vm_vec_dot(&orient->vec.fvec, &pi->vel);		// instead of vector magnitude -- use only forward vector since we are only interested in forward velocity
}

// function to predict an object's position given the delta time and an objects physics info
void physics_predict_pos(physics_info *pi, float delta_time, vec3d *predicted_pos)
{
	apply_physics( pi->side_slip_time_const, pi->desired_vel.xyz.x, pi->vel.xyz.x, delta_time,
								 NULL, &predicted_pos->xyz.x );

	apply_physics( pi->side_slip_time_const, pi->desired_vel.xyz.y, pi->vel.xyz.y, delta_time,
								 NULL, &predicted_pos->xyz.y );

	apply_physics( pi->side_slip_time_const, pi->desired_vel.xyz.z, pi->vel.xyz.z, delta_time,
								 NULL, &predicted_pos->xyz.z );
}

// function to predict an object's velocity given the parameters
void physics_predict_vel(physics_info *pi, float delta_time, vec3d *predicted_vel)
{
	if (pi->flags & PF_CONST_VEL) {
		predicted_vel = &pi->vel;
	} else {
		apply_physics( pi->side_slip_time_const, pi->desired_vel.xyz.x, pi->vel.xyz.x, delta_time,
									 &predicted_vel->xyz.x, NULL );

		apply_physics( pi->side_slip_time_const, pi->desired_vel.xyz.y, pi->vel.xyz.y, delta_time,
									 &predicted_vel->xyz.y, NULL );

		apply_physics( pi->side_slip_time_const, pi->desired_vel.xyz.z, pi->vel.xyz.z, delta_time,
									 &predicted_vel->xyz.z, NULL );
	}
}

// function to predict position and velocity of an object
void physics_predict_pos_and_vel(physics_info *pi, float delta_time, vec3d *predicted_vel, vec3d *predicted_pos)
{

	apply_physics( pi->side_slip_time_const, pi->desired_vel.xyz.x, pi->vel.xyz.x, delta_time,
	                      &predicted_vel->xyz.x, &predicted_pos->xyz.x );

	apply_physics( pi->side_slip_time_const, pi->desired_vel.xyz.y, pi->vel.xyz.y, delta_time,
	                      &predicted_vel->xyz.y, &predicted_pos->xyz.y );

	apply_physics( pi->side_slip_time_const, pi->desired_vel.xyz.z, pi->vel.xyz.z, delta_time,
	                      &predicted_vel->xyz.z, &predicted_pos->xyz.z );
}

// physics_read_flying_controls()
//
// parmeters:  *orient	==>
//					*pi		==>
//					*ci		==>
//	Adam: Uncomment-out this define to enable banking while turning.
#define	BANK_WHEN_TURN



// function looks at the flying controls and the current velocity to determine a goal velocity
// function determines velocity in object's reference frame and goal velocity in object's reference frame
void physics_read_flying_controls( matrix * orient, physics_info * pi, control_info * ci, float sim_time, vec3d *wash_rot)
{
	vec3d goal_vel;		// goal velocity in local coords, *not* accounting for ramping of velcity
	float ramp_time_const;		// time constant for velocity ramping

	// apply throttle, unless reverse thrusters are held down
	if (ci->forward != -1.0f)
		ci->forward += (ci->forward_cruise_percent / 100.0f);

	// give control input to cause rotation in engine wash
	extern int Wash_on;
	if ( wash_rot && Wash_on ) {
		ci->pitch += wash_rot->xyz.x;
		ci->bank += wash_rot->xyz.z;
		ci->heading += wash_rot->xyz.y;
	}

	if (ci->pitch > 1.0f ) ci->pitch = 1.0f;
	else if (ci->pitch < -1.0f ) ci->pitch = -1.0f;

	if (ci->vertical > 1.0f ) ci->vertical = 1.0f;
	else if (ci->vertical < -1.0f ) ci->vertical = -1.0f;

	if (ci->heading > 1.0f ) ci->heading = 1.0f;
	else if (ci->heading < -1.0f ) ci->heading = -1.0f;

	if (ci->sideways > 1.0f  ) ci->sideways = 1.0f;
	else if (ci->sideways < -1.0f  ) ci->sideways = -1.0f;

	if (ci->bank > 1.0f ) ci->bank = 1.0f;
	else if (ci->bank < -1.0f ) ci->bank = -1.0f;

	if ( pi->flags & PF_AFTERBURNER_ON ){
		//SparK: modifield to accept reverse burners
		if (!(pi->afterburner_max_reverse_vel > 0.0f)){
			ci->forward = 1.0f;
		}
	}

	if (ci->forward > 1.0f ) ci->forward = 1.0f;
	else if (ci->forward < -1.0f ) ci->forward = -1.0f;

	pi->desired_rotvel.xyz.x = ci->pitch * pi->max_rotvel.xyz.x;
	pi->desired_rotvel.xyz.y = ci->heading * pi->max_rotvel.xyz.y;

	float	delta_bank;

#ifdef BANK_WHEN_TURN
	//	To change direction of bank, negate the whole expression.
	//	To increase magnitude of banking, decrease denominator.
	//	Adam: The following statement is all the math for banking while turning.
	delta_bank = - (ci->heading * pi->max_rotvel.xyz.y) * pi->delta_bank_const;
#else
	delta_bank = 0.0f;
#endif

	pi->desired_rotvel.xyz.z = ci->bank * pi->max_rotvel.xyz.z + delta_bank;
	pi->forward_thrust = ci->forward;
	pi->vert_thrust = ci->vertical;	//added these two in order to get side and forward thrusters
	pi->side_thrust = ci->sideways;	//to glow brighter when the ship is moving in the right direction -Bobboau

	if ( pi->flags & PF_AFTERBURNER_ON ) {
		goal_vel.xyz.x = ci->sideways*pi->afterburner_max_vel.xyz.x;
		goal_vel.xyz.y = ci->vertical*pi->afterburner_max_vel.xyz.y;
		if(ci->forward < 0.0f)
			goal_vel.xyz.z = ci->forward* pi->afterburner_max_reverse_vel;
		else
			goal_vel.xyz.z = ci->forward* pi->afterburner_max_vel.xyz.z;
	}
	else if ( pi->flags & PF_BOOSTER_ON ) {
		goal_vel.xyz.x = ci->sideways*pi->booster_max_vel.xyz.x;
		goal_vel.xyz.y = ci->vertical*pi->booster_max_vel.xyz.y;
		goal_vel.xyz.z = ci->forward* pi->booster_max_vel.xyz.z;
	}
	else {
		goal_vel.xyz.x = ci->sideways*pi->max_vel.xyz.x;
		goal_vel.xyz.y = ci->vertical*pi->max_vel.xyz.y;
		goal_vel.xyz.z = ci->forward* pi->max_vel.xyz.z;
	}

	if ( goal_vel.xyz.z < -pi->max_rear_vel && !(pi->flags & PF_AFTERBURNER_ON) )
		goal_vel.xyz.z = -pi->max_rear_vel;


	if ( pi->flags & PF_ACCELERATES )	{
		//
		// Determine *resultant* DESIRED VELOCITY (desired_vel) accounting for RAMPING of velocity
		// Use LOCAL coordinates
		// if slide_enabled, ramp velocity for x and y, otherwise set goal (0)
		//    always ramp velocity for z
		//

		// If reduced damp in effect, then adjust ramp_velocity and desired_velocity can not change as fast.
		// Scale according to reduced_damp_time_expansion.
		float reduced_damp_ramp_time_expansion;
		if ( pi->flags & PF_REDUCED_DAMP && !timestamp_elapsed(pi->reduced_damp_decay) ) {
			float reduced_damp_fraction_time_left = timestamp_until( pi->reduced_damp_decay ) / (float) REDUCED_DAMP_TIME;
			reduced_damp_ramp_time_expansion = 1.0f + (REDUCED_DAMP_FACTOR-1) * reduced_damp_fraction_time_left;
		} else {
			reduced_damp_ramp_time_expansion = 1.0f;
		}

		if (pi->flags & PF_SLIDE_ENABLED)  {
			// determine the local velocity
			// deterimine whether accelerating or decleration toward goal for x
			if ( goal_vel.xyz.x > 0.0f )  {
				if ( goal_vel.xyz.x >= pi->prev_ramp_vel.xyz.x )
					ramp_time_const = pi->slide_accel_time_const;
				else
					ramp_time_const = pi->slide_decel_time_const;
			} else if ( goal_vel.xyz.x < 0.0f ) {
				if ( goal_vel.xyz.x <= pi->prev_ramp_vel.xyz.x )
					ramp_time_const = pi->slide_accel_time_const;
				else
					ramp_time_const = pi->slide_decel_time_const;
			} else {
				ramp_time_const = pi->slide_decel_time_const;
			}
			// If reduced damp in effect, then adjust ramp_velocity and desired_velocity can not change as fast
			if ( pi->flags & PF_REDUCED_DAMP ) {
				ramp_time_const *= reduced_damp_ramp_time_expansion;
			}
			pi->prev_ramp_vel.xyz.x = velocity_ramp(pi->prev_ramp_vel.xyz.x, goal_vel.xyz.x, ramp_time_const, sim_time);

			// deterimine whether accelerating or decleration toward goal for y
			if ( goal_vel.xyz.y > 0.0f )  {
				if ( goal_vel.xyz.y >= pi->prev_ramp_vel.xyz.y )
					ramp_time_const = pi->slide_accel_time_const;
				else
					ramp_time_const = pi->slide_decel_time_const;
			} else if ( goal_vel.xyz.y < 0.0f ) {
				if ( goal_vel.xyz.y <= pi->prev_ramp_vel.xyz.y )
					ramp_time_const = pi->slide_accel_time_const;
				else
					ramp_time_const = pi->slide_decel_time_const;
			} else {
				ramp_time_const = pi->slide_decel_time_const;
			}
			// If reduced damp in effect, then adjust ramp_velocity and desired_velocity can not change as fast
			if ( pi->flags & PF_REDUCED_DAMP ) {
				ramp_time_const *= reduced_damp_ramp_time_expansion;
			}
			pi->prev_ramp_vel.xyz.y = velocity_ramp( pi->prev_ramp_vel.xyz.y, goal_vel.xyz.y, ramp_time_const, sim_time);
		} else  {
			// slide not enabled
			pi->prev_ramp_vel.xyz.x = 0.0f;
			pi->prev_ramp_vel.xyz.y = 0.0f;
		}

		// deterimine whether accelerating or decleration toward goal for z
		if ( goal_vel.xyz.z > 0.0f )  {
			if ( goal_vel.xyz.z >= pi->prev_ramp_vel.xyz.z )  {
				if ( pi->flags & PF_AFTERBURNER_ON )
					ramp_time_const = pi->afterburner_forward_accel_time_const;
				else if (pi->flags & PF_BOOSTER_ON)
					ramp_time_const = pi->booster_forward_accel_time_const;
				else
					ramp_time_const = pi->forward_accel_time_const;
			} else {
				ramp_time_const = pi->forward_decel_time_const;
			}
		} else if ( goal_vel.xyz.z < 0.0f ) {
			if ( pi->flags & PF_AFTERBURNER_ON )
				ramp_time_const = pi->afterburner_reverse_accel;
			else
				ramp_time_const = pi->forward_decel_time_const;
		} else {
			ramp_time_const = pi->forward_decel_time_const;
		}

		// If reduced damp in effect, then adjust ramp_velocity and desired_velocity can not change as fast
		if ( pi->flags & PF_REDUCED_DAMP ) {
			ramp_time_const *= reduced_damp_ramp_time_expansion;
		}
		pi->prev_ramp_vel.xyz.z = velocity_ramp(pi->prev_ramp_vel.xyz.z, goal_vel.xyz.z, ramp_time_const, sim_time);

		//Deternine the current dynamic glide cap, and ramp to it
		//This is outside the normal "glide" block since we want the cap to adjust whether or not the ship is in glide mode
		float dynamic_glide_cap_goal = 0.0;
		if (pi->flags & PF_AFTERBURNER_ON) {
			dynamic_glide_cap_goal = ( goal_vel.xyz.z >= 0.0f ) ? pi->afterburner_max_vel.xyz.z : pi->afterburner_max_reverse_vel;
		}
		else {
			//Use the maximum value in X, Y, and Z (including overclocking)
			dynamic_glide_cap_goal = MAX(MAX(pi->max_vel.xyz.x,pi->max_vel.xyz.y), pi->max_vel.xyz.z);
		}
		pi->cur_glide_cap = velocity_ramp(pi->cur_glide_cap, dynamic_glide_cap_goal, ramp_time_const, sim_time);


		if ( (pi->flags & PF_GLIDING) || (pi->flags & PF_FORCE_GLIDE ) ) {
			pi->desired_vel = pi->vel;

			//SUSHI: A (hopefully better) approach to dealing with accelerations in glide mode
			//Get *actual* current velocities along each axis and use those instead of ramped velocities
			vec3d local_vel;
			vm_vec_rotate(&local_vel, &pi->vel, orient);

			//Having pi->glide_cap == 0 means we're using a dynamic glide cap
			float curGlideCap = 0.0f;
			if (pi->glide_cap == 0.0f) 
				curGlideCap = pi->cur_glide_cap;
			else 
				curGlideCap = pi->glide_cap;

			//If we're near the (positive) glide cap, decay velocity where we aren't thrusting
			//This is a hack, but makes the flight feel a lot smoother
			//Don't do this if we aren't applying any thrust, we have no glide cap, or the accel multiplier is 0 (no thrust while gliding)
			float cap_decay_threshold = 0.95f;
			float cap_decay_amount = 0.2f;
			if (curGlideCap >= 0.0f && vm_vec_mag(&pi->desired_vel) >= cap_decay_threshold * curGlideCap && 
					vm_vec_mag(&goal_vel) > 0.0f &&
					pi->glide_accel_mult != 0.0f) 
			{
				if (goal_vel.xyz.x == 0.0f)
					vm_vec_scale_add2(&pi->desired_vel, &orient->vec.rvec, -cap_decay_amount * local_vel.xyz.x);
				if (goal_vel.xyz.y == 0.0f)
					vm_vec_scale_add2(&pi->desired_vel, &orient->vec.uvec, -cap_decay_amount * local_vel.xyz.y);
				if (goal_vel.xyz.z == 0.0f)
					vm_vec_scale_add2(&pi->desired_vel, &orient->vec.fvec, -cap_decay_amount * local_vel.xyz.z);
			}

			//The glide_ramp function uses (basically) the same math as the velocity ramp so that thruster power is consistent
			//Only ramp if the glide cap is positive
			float xVal = glide_ramp(local_vel.xyz.x, goal_vel.xyz.x, pi->slide_accel_time_const, pi->glide_accel_mult, sim_time);
			float yVal = glide_ramp(local_vel.xyz.y, goal_vel.xyz.y, pi->slide_accel_time_const, pi->glide_accel_mult, sim_time);
			float zVal = 0.0;
			if (pi->flags & PF_AFTERBURNER_ON) 
				zVal = glide_ramp(local_vel.xyz.z, goal_vel.xyz.z, pi->afterburner_forward_accel_time_const, pi->glide_accel_mult, sim_time);
			else {
				if (goal_vel.xyz.z >= 0.0f)
					zVal = glide_ramp(local_vel.xyz.z, goal_vel.xyz.z, pi->forward_accel_time_const, pi->glide_accel_mult, sim_time);
				else
					zVal = glide_ramp(local_vel.xyz.z, goal_vel.xyz.z, pi->forward_decel_time_const, pi->glide_accel_mult, sim_time);
			}

			//Compensate for effect of dampening: normal flight cheats here, so /we make up for it this way so glide acts the same way
			xVal *= pi->side_slip_time_const / sim_time;
			yVal *= pi->side_slip_time_const / sim_time;
			if (pi->use_newtonian_damp) zVal *= pi->side_slip_time_const / sim_time;

			vm_vec_scale_add2(&pi->desired_vel, &orient->vec.fvec, zVal);
			vm_vec_scale_add2(&pi->desired_vel, &orient->vec.rvec, xVal);
			vm_vec_scale_add2(&pi->desired_vel, &orient->vec.uvec, yVal);

			// Only do the glide cap if we have one and are actively thrusting in some direction.
			if ( curGlideCap >= 0.0f && (ci->forward != 0.0f || ci->sideways != 0.0f || ci->vertical != 0.0f) ) {
				float currentmag = vm_vec_mag(&pi->desired_vel);
				if ( currentmag > curGlideCap ) {
					vm_vec_scale( &pi->desired_vel, curGlideCap / currentmag );
				}
			}
		}
		else
		{
			// this translates local desired velocities to world velocities
			vm_vec_zero(&pi->desired_vel);
			vm_vec_scale_add2( &pi->desired_vel, &orient->vec.rvec, pi->prev_ramp_vel.xyz.x );
			vm_vec_scale_add2( &pi->desired_vel, &orient->vec.uvec, pi->prev_ramp_vel.xyz.y );
			vm_vec_scale_add2( &pi->desired_vel, &orient->vec.fvec, pi->prev_ramp_vel.xyz.z );
		}
	} else  // object does not accelerate  (PF_ACCELERATES not set)
		pi->desired_vel = pi->vel;
}



//	----------------------------------------------------------------
//	Do *dest = *delta unless:
//				*delta is pretty small
//		and	they are of different signs.
void physics_set_rotvel_and_saturate(float *dest, float delta)
{
	/*
	if ((delta ^ *dest) < 0) {
		if (abs(delta) < F1_0/8) {
			// mprintf((0, "D"));
			*dest = delta/4;
		} else
			// mprintf((0, "d"));
			*dest = delta;
	} else {
		// mprintf((0, "!"));
		*dest = delta;
	}
	*/
	*dest = delta;
}


// ----------------------------------------------------------------------------
// physics_apply_whack applies an instaneous whack on an object changing
// both the objects velocity and the rotational velocity based on the impulse
// being applied.
//
//	input:	impulse		=>		impulse vector ( force*time = impulse = change in momentum (mv) )
//				pos			=>		vector from center of mass to location of where the force acts
//				pi				=>		pointer to phys_info struct of object getting whacked
//				orient		=>		orientation matrix (needed to set rotational impulse in body coords)
//				mass			=>		mass of the object (may be different from pi.mass if docked)
//
#define WHACK_LIMIT	0.001f
#define ROTVEL_WHACK_CONST 0.12
void physics_apply_whack(vec3d *impulse, vec3d *pos, physics_info *pi, matrix *orient, float mass)
{
	vec3d	local_torque, torque;
//	vec3d	npos;

	//	Detect null vector.
	if ((fl_abs(impulse->xyz.x) <= WHACK_LIMIT) && (fl_abs(impulse->xyz.y) <= WHACK_LIMIT) && (fl_abs(impulse->xyz.z) <= WHACK_LIMIT))
		return;

	// first do the rotational velocity
	// calculate the torque on the body based on the point on the
	// object that was hit and the momentum being applied to the object

	vm_vec_crossprod(&torque, pos, impulse);
	vm_vec_rotate ( &local_torque, &torque, orient );

	vec3d delta_rotvel;
	vm_vec_rotate( &delta_rotvel, &local_torque, &pi->I_body_inv );
	vm_vec_scale ( &delta_rotvel, (float) ROTVEL_WHACK_CONST );
	vm_vec_add2( &pi->rotvel, &delta_rotvel );

	//mprintf(("Whack: %7.3f %7.3f %7.3f\n", pi->rotvel.xyz.x, pi->rotvel.xyz.y, pi->rotvel.xyz.z));

	// instant whack on the velocity
	// reduce damping on all axes
	pi->flags |= PF_REDUCED_DAMP;
	update_reduced_damp_timestamp( pi, vm_vec_mag(impulse) );

	// find time for shake from weapon to end
	int dtime = timestamp_until(pi->afterburner_decay);
	if (dtime < WEAPON_SHAKE_TIME) {
		pi->afterburner_decay = timestamp( WEAPON_SHAKE_TIME );
	}

	// Goober5000 - pi->mass should probably be just mass, as specified in the header
	vm_vec_scale_add2( &pi->vel, impulse, 1.0f / mass );
	if (!(pi->flags & PF_USE_VEL) && (vm_vec_mag_squared(&pi->vel) > MAX_SHIP_SPEED*MAX_SHIP_SPEED)) {
		// Get DaveA
		nprintf(("Physics", "speed reset in physics_apply_whack [speed: %f]\n", vm_vec_mag(&pi->vel)));
		vm_vec_normalize(&pi->vel);
		vm_vec_scale(&pi->vel, (float)RESET_SHIP_SPEED);
	}
	vm_vec_rotate( &pi->prev_ramp_vel, &pi->vel, orient );		// set so velocity will ramp starting from current speed
																					// ramped velocity is now affected by collision
}

// function generates a velocity ramp with a given time constant independent of frame rate
// uses an exponential approach to desired velocity and a cheat when close to improve closure speed
float velocity_ramp (float v_in, float v_goal, float ramp_time_const, float t)
{
	float delta_v;
	float decay_factor;
	float dist;

	// JAS: If no time elapsed, change nothing
	if ( t==0.0f )
		return v_in;

	delta_v = v_goal - v_in;
	dist = (float)fl_abs(delta_v);

	// hack to speed up closure when close to goal
	if (dist < ramp_time_const/3)
		ramp_time_const = dist / 3;

	// Rather than get a divide by zero, just go to the goal
	if ( ramp_time_const < 0.0001f )	{
		return v_goal;
	}

	// determine decay factor  (ranges from 0 for short times to 1 for long times)
	// when decay factor is near 0, the velocity in nearly unchanged
	// when decay factor in near 1, the velocity approaches goal
	decay_factor = (float)exp(- t / ramp_time_const);

	return (v_in + delta_v * (1.0f - decay_factor) );
}

//Handles thrust values when gliding. Purposefully similar to velocity_ramp in order to yeild a similar "feel" in
//terms of thruster accels (as much as possible)
//This is all in the local frame of reference for a single movement axis
float glide_ramp (float v_in, float v_goal, float ramp_time_const, float accel_mult, float t)
{
	if (v_goal == 0.0f) {
		return 0.0f;
	}

	//This approach to delta_v allows us to ramp accelerations even in glide mode
	//Get the difference in velocity between current and goal as thrust 
	//(capped by the goal velocity on one end and 0 on the other)
	//If accel_mult is < 0, don't ramp (fixed acceleration)
	float delta_v = 0.0f;
	if (accel_mult < 0.0f) {
		if (v_goal > 0.0f) {
			delta_v = MAX(MIN(v_goal - v_in, v_goal), 0.0f); 
		}
		else {
			delta_v = MIN(MAX(v_goal - v_in, v_goal), 0.0f);
		}
	}
	else {
		delta_v = v_goal * accel_mult;
	}
	
	//Calculate the (decayed) thrust
	float decay_factor = (ramp_time_const > 0.0f) ? (1.0f - (float)exp(-t / ramp_time_const)) : 1.0f;
	return delta_v * decay_factor;
}


// ----------------------------------------------------------------------------
// physics_apply_shock applies applies a shockwave to an object.  This causes a velocity impulse and
// and a rotational impulse.  This is different than physics_apply_whack since a shock wave is a pressure
// wave which acts over the *surface* of the object, not a point.
//
// inputs:	direction_vec		=>		a position vector whose direction is from the center of the shock wave to the object
//				pressure				=>		the pressure of the shock wave at the object
//				pi						=>		physics_info structure
//				orient				=>		matrix orientation of the object
//				min					=>		vector of minimum values of the bounding box
//				max					=>		vector of maximum values of the bounding box
//				radius				=>		bounding box radius of the object, used for scaling rotation
//
// outputs:	makes changes to physics_info structure rotvel and vel variables
//
#define	STD_PRESSURE		1000		// amplitude of standard shockwave blasts
#define	MIN_RADIUS			10			// radius within which full rotvel and shake applied
#define	MAX_RADIUS			50			// radius at which no rotvel or shake applied
#define	MAX_ROTVEL			0.4		// max rotational velocity
#define	MAX_SHAKE			0.1		// max rotational amplitude of shake
#define	MAX_VEL				8			// max vel from shockwave
void physics_apply_shock(vec3d *direction_vec, float pressure, physics_info *pi, matrix *orient, vec3d *min, vec3d *max, float radius)
{
	vec3d normal;
	vec3d local_torque, temp_torque, torque;
	vec3d impact_vec;
	vec3d area;
	vec3d sin;

	if (radius > MAX_RADIUS) {
		return;
	}

	vm_vec_normalize_safe ( direction_vec );

	area.xyz.x = (max->xyz.y - min->xyz.z) * (max->xyz.z - min->xyz.z);
	area.xyz.y = (max->xyz.x - min->xyz.x) * (max->xyz.z - min->xyz.z);
	area.xyz.z = (max->xyz.x - min->xyz.x) * (max->xyz.y - min->xyz.y);

	normal.xyz.x = vm_vec_dotprod( direction_vec, &orient->vec.rvec );
	normal.xyz.y = vm_vec_dotprod( direction_vec, &orient->vec.uvec );
	normal.xyz.z = vm_vec_dotprod( direction_vec, &orient->vec.fvec );

	sin.xyz.x = fl_sqrt( fl_abs(1.0f - normal.xyz.x*normal.xyz.x) );
	sin.xyz.y = fl_sqrt( fl_abs(1.0f - normal.xyz.y*normal.xyz.y) );
	sin.xyz.z = fl_sqrt( fl_abs(1.0f - normal.xyz.z*normal.xyz.z) );

	vm_vec_make( &torque, 0.0f, 0.0f, 0.0f );

	// find the torque exerted due to the shockwave hitting each face
	//  model the effect of the shockwave as if the shockwave were a plane of projectiles,
	//  all moving in the direction direction_vec.  then find the torque as the cross prod
	//  of the force (pressure * area * normal * sin * scale * mass)
	//  normal takes account the fraction of the surface exposed to the shockwave
	//  the sin term is not technically needed but "feels" better
	//  scale factors out the increase in area with larger objects
	//  more massive objects get less rotation

	// find torque due to forces on the right/left face
	if ( normal.xyz.x < 0.0f )		// normal < 0, hits the right face
		vm_vec_copy_scale( &impact_vec, &orient->vec.rvec, max->xyz.x * pressure * area.xyz.x *  normal.xyz.x * sin.xyz.x / pi->mass );
	else								// normal > 0, hits the left face
		vm_vec_copy_scale( &impact_vec, &orient->vec.rvec, min->xyz.x * pressure * area.xyz.x * -normal.xyz.x * sin.xyz.x / pi->mass );

	vm_vec_crossprod( &temp_torque, &impact_vec, direction_vec );
	vm_vec_add2( &torque, &temp_torque );

	// find torque due to forces on the up/down face
	if ( normal.xyz.y < 0.0f )
		vm_vec_copy_scale( &impact_vec, &orient->vec.uvec, max->xyz.y * pressure * area.xyz.y *  normal.xyz.y * sin.xyz.y / pi->mass );
	else
		vm_vec_copy_scale( &impact_vec, &orient->vec.uvec, min->xyz.y * pressure * area.xyz.y * -normal.xyz.y * sin.xyz.y / pi->mass );

	vm_vec_crossprod( &temp_torque, &impact_vec, direction_vec );
	vm_vec_add2( &torque, &temp_torque );

	// find torque due to forces on the forward/backward face
	if ( normal.xyz.z < 0.0f )
		vm_vec_copy_scale( &impact_vec, &orient->vec.fvec, max->xyz.z * pressure * area.xyz.z *  normal.xyz.z * sin.xyz.z / pi->mass );
	else
		vm_vec_copy_scale( &impact_vec, &orient->vec.fvec, min->xyz.z * pressure * area.xyz.z * -normal.xyz.z * sin.xyz.z / pi->mass );

	vm_vec_crossprod( &temp_torque, &impact_vec, direction_vec );
	vm_vec_add2( &torque, &temp_torque );

	// compute delta rotvel, scale according to blast and radius
	float scale;
	vec3d delta_rotvel;
	vm_vec_rotate( &local_torque, &torque, orient );
	vm_vec_copy_normalize(&delta_rotvel, &local_torque);
	if (radius < MIN_RADIUS) {
		scale = 1.0f;
	} else {
		scale = (MAX_RADIUS - radius)/(MAX_RADIUS-MIN_RADIUS);
	}
	vm_vec_scale(&delta_rotvel, (float)(MAX_ROTVEL*(pressure/STD_PRESSURE)*scale));
	// nprintf(("Physics", "rotvel scale %f\n", (MAX_ROTVEL*(pressure/STD_PRESSURE)*scale)));
	vm_vec_add2(&pi->rotvel, &delta_rotvel);

	// set shockwave shake amplitude, duration, flag
	pi->shockwave_shake_amp = (float)(MAX_SHAKE*(pressure/STD_PRESSURE)*scale);
	pi->shockwave_decay = timestamp( SW_BLAST_DURATION );
	pi->flags |= PF_IN_SHOCKWAVE;

	// set reduced translational damping, set flags
	float velocity_scale = (float)MAX_VEL*scale;
	pi->flags |= PF_REDUCED_DAMP;
	update_reduced_damp_timestamp( pi, velocity_scale*pi->mass );
	vm_vec_scale_add2( &pi->vel, direction_vec, velocity_scale );
	vm_vec_rotate(&pi->prev_ramp_vel, &pi->vel, orient);	// set so velocity will ramp starting from current speed

	// check that kick from shockwave is not too large
	if (!(pi->flags & PF_USE_VEL) && (vm_vec_mag_squared(&pi->vel) > MAX_SHIP_SPEED*MAX_SHIP_SPEED)) {
		// Get DaveA
		nprintf(("Physics", "speed reset in physics_apply_shock [speed: %f]\n", vm_vec_mag(&pi->vel)));
		vm_vec_normalize(&pi->vel);
		vm_vec_scale(&pi->vel, (float)RESET_SHIP_SPEED);
	}
}

// ----------------------------------------------------------------------------
// physics_collide_whack applies an instaneous whack on an object changing
// both the objects velocity and the rotational velocity based on the impulse
// being applied.
//
//	input:	impulse					=>		impulse vector ( force*time = impulse = change in momentum (mv) )
//				world_delta_rotvel	=>		change in rotational velocity (already calculated)
//				pi							=>		pointer to phys_info struct of object getting whacked
//				orient					=>		orientation matrix (needed to set rotational impulse in body coords)
//

// Warning:  Do not change ROTVEL_COLLIDE_WHACK_CONST.  This will mess up collision physics.
// If you need to change the rotation, change  COLLISION_ROTATION_FACTOR in collide_ship_ship.
#define ROTVEL_COLLIDE_WHACK_CONST 1.0
void physics_collide_whack( vec3d *impulse, vec3d *world_delta_rotvel, physics_info *pi, matrix *orient, bool is_landing )
{
	vec3d	body_delta_rotvel;

	//	Detect null vector.
	if ((fl_abs(impulse->xyz.x) <= WHACK_LIMIT) && (fl_abs(impulse->xyz.y) <= WHACK_LIMIT) && (fl_abs(impulse->xyz.z) <= WHACK_LIMIT))
		return;

	vm_vec_rotate( &body_delta_rotvel, world_delta_rotvel, orient );
//	vm_vec_scale( &body_delta_rotvel, (float)	ROTVEL_COLLIDE_WHACK_CONST );
	vm_vec_add2( &pi->rotvel, &body_delta_rotvel );

	update_reduced_damp_timestamp( pi, vm_vec_mag(impulse) );

	// find time for shake from weapon to end
	if (!is_landing) {
		int dtime = timestamp_until(pi->afterburner_decay);
		if (dtime < WEAPON_SHAKE_TIME) {
			pi->afterburner_decay = timestamp( WEAPON_SHAKE_TIME );
		}
	}

	pi->flags |= PF_REDUCED_DAMP;
	vm_vec_scale_add2( &pi->vel, impulse, 1.0f / pi->mass );
	// check that collision does not give ship too much speed
	// reset if too high
	if (!(pi->flags & PF_USE_VEL) && (vm_vec_mag_squared(&pi->vel) > MAX_SHIP_SPEED*MAX_SHIP_SPEED)) {
		// Get DaveA
		nprintf(("Physics", "speed reset in physics_collide_whack [speed: %f]\n", vm_vec_mag(&pi->vel)));
		vm_vec_normalize(&pi->vel);
		vm_vec_scale(&pi->vel, (float)RESET_SHIP_SPEED);
	}
	vm_vec_rotate( &pi->prev_ramp_vel, &pi->vel, orient );		// set so velocity will ramp starting from current speed
																					// ramped velocity is now affected by collision
	// rotate previous ramp velocity (in model coord) to be same as vel (in world coords)
}


int check_rotvel_limit( physics_info *pi )
{
	if ( 0 == pi->flags )		// weapon
		return 0;

	if ( Fred_running )
		return 0;

	int change_made = 0;
	if ( !(pi->flags & PF_DEAD_DAMP) ) {
		// case of normal, live ship
		// -- Commented out by MK: Assert( vm_vec_mag_squared(&pi->max_rotvel) > ROTVEL_TOL );
		// Assert( (pi->max_rotvel.xyz.x <= ROTVEL_CAP) && (pi->max_rotvel.xyz.y <= ROTVEL_CAP) && (pi->max_rotvel.xyz.z <= ROTVEL_CAP) );
		//		Warning(LOCATION,"Excessive rotvel (wx: %f, wy: %f, wz:%f)\n", pi->rotvel.xyz.x, pi->rotvel.xyz.y, pi->rotvel.xyz.z);
		if ( fl_abs(pi->rotvel.xyz.x) > pi->max_rotvel.xyz.x ) {
			pi->rotvel.xyz.x = (pi->rotvel.xyz.x / fl_abs(pi->rotvel.xyz.x)) * (pi->max_rotvel.xyz.x - (float) ROTVEL_TOL);
			change_made = 1;
		}
		if ( fl_abs(pi->rotvel.xyz.y) > pi->max_rotvel.xyz.y ) {
			pi->rotvel.xyz.y = (pi->rotvel.xyz.y / fl_abs(pi->rotvel.xyz.y)) * (pi->max_rotvel.xyz.y - (float) ROTVEL_TOL);
			change_made = 1;
		}
		if ( fl_abs(pi->rotvel.xyz.z) > pi->max_rotvel.xyz.z ) {
			pi->rotvel.xyz.z = (pi->rotvel.xyz.z / fl_abs(pi->rotvel.xyz.z)) * (pi->max_rotvel.xyz.z - (float) ROTVEL_TOL);
			change_made = 1;
		}
	} else {
		// case of dead ship
		if ( fl_abs(pi->rotvel.xyz.x) > DEAD_ROTVEL_CAP ) {
			pi->rotvel.xyz.x = (pi->rotvel.xyz.x / fl_abs(pi->rotvel.xyz.x)) * (float) (DEAD_ROTVEL_CAP - ROTVEL_TOL);
			change_made = 1;
		}
		if ( fl_abs(pi->rotvel.xyz.y) > DEAD_ROTVEL_CAP ) {
			pi->rotvel.xyz.y = (pi->rotvel.xyz.y / fl_abs(pi->rotvel.xyz.y)) * (float) (DEAD_ROTVEL_CAP - ROTVEL_TOL);
			change_made = 1;
		}
		if ( fl_abs(pi->rotvel.xyz.z) > DEAD_ROTVEL_CAP ) {
			pi->rotvel.xyz.z = (pi->rotvel.xyz.z / fl_abs(pi->rotvel.xyz.z)) * (float) (DEAD_ROTVEL_CAP - ROTVEL_TOL);
			change_made = 1;
		}
	}
	return change_made;
}

// ----------------------------------------------------------------------------
// update_reduced_damp_timestamp()
//
void update_reduced_damp_timestamp( physics_info *pi, float impulse )
{

	// Compute duration of reduced damp from present
	// Compare with current value and increase if greater, otherwise ignore
	int reduced_damp_decay_time;
	reduced_damp_decay_time = (int) (REDUCED_DAMP_TIME * impulse / (REDUCED_DAMP_VEL * pi->mass));
	if ( reduced_damp_decay_time > REDUCED_DAMP_TIME )
		reduced_damp_decay_time = REDUCED_DAMP_TIME;

	// Reset timestamp if larger than current (if any)
	if ( timestamp_valid( pi->reduced_damp_decay ) ) {
		int time_left = timestamp_until( pi->reduced_damp_decay );
		if ( time_left > 0 ) {
			// increment old time, but apply cap
			int new_time = reduced_damp_decay_time + time_left;
			if ( new_time < REDUCED_DAMP_TIME ) {
				pi->reduced_damp_decay = timestamp( new_time );
			}
		} else {
			pi->reduced_damp_decay = timestamp( reduced_damp_decay_time );
		}
	} else {
		// set if not valid
		pi->reduced_damp_decay = timestamp( reduced_damp_decay_time );
	}

}

//*************************CLASS: avd_movement*************************
avd_movement::avd_movement() : Pc(0.0f), Vc(0.0f), TSi(0), Pi(0.0f), Vi(0.0f), Pf(0.0f), Tf(0.0f), Tai(0.0f), Taf(0.0f), Vf(0.0f), Vm(0.0f), Ai(0.0f), Af(0.0f)
{
}

void avd_movement::clear()
{
    // We should really refactor so that a ::clear() method isn't needed.
    // For now, be sure this syncs with the class declaration 
    
    //Current
	Pc = 0;		//Current position
	Vc = 0;		//Current velocity
	
	//Initial
	TSi = 0;		//Initial timestamp <-- note TIMESTAMP
	Pi = 0;		//Initial position
	Vi = 0;		//Initial velocity
    
	//Given
	Pf = 0;		//Final position
	Tf = 0;		//Final duration
	Tai = 0;		//Starting acceleration duration
	Taf = 0;		//Ending acceleration duration
	Vf = 0;		//Final velocity
    
	//Calculated
	Vm = 0;		//Middle velocity
	Ai = 0;		//Starting acceleration
	Af = 0;		//Ending acceleration
}

void avd_movement::get(float Time, float *Position, float *Velocity)
{
	this->update(Time);

	if(Position != NULL)
		*Position = Pc;
	if(Velocity != NULL)
		*Velocity = Vc;
}

void avd_movement::get(float *Position, float *Velocity)
{
	float time = (float)(timestamp() - TSi)/1000.0f;
	this->get(time, Position, Velocity);
}

void avd_movement::set(float position)
{
	this->clear();
	Pi = Pf = Pc = position;
}

void avd_movement::setAVD(float final_position, float total_movement_time, float starting_accleration_time, float ending_acceleration_time, float final_velocity)
{
	//Make sure Pc et al are up-to-date
	this->update();

	Pf = final_position;
	Tf = total_movement_time;
	Tai = starting_accleration_time;
	Taf = ending_acceleration_time;
	Vf = final_velocity;

	if(Tai+Taf >= Tf)
	{
		Tai = Tf;
		Taf = 0.0f;
	}

	if(Tf <= 0.0f)
	{
		Pc = Pi = Pf;
		Vc = Vi = Vf;
		return;
	}

	Pi = Pc;
	Vi = Vc;
	TSi = timestamp();
	
	Vm = (Pf-Pi-0.5f*(Vi*Tai)-0.5f*(Vf*Taf)) / (Tf - 0.5f*Tai - 0.5f*Taf);
	Ai = (Vm-Vi)/Tai;
	Af = (Vf-Vm)/Taf;
}

void avd_movement::setVD(float total_movement_time, float ending_acceleration_time, float final_velocity)
{
	//Make sure Pc et al are up-to-date
	this->update();

	Tf = total_movement_time;
	Tai = 0.0f;
	Taf = ending_acceleration_time;
	Vf = final_velocity;

	Pi = Pc;
	Vm = Vi = Vc;

	TSi = timestamp();
	Ai = 0.0f;
	Af = (Vf-Vm)/Taf;
	Pf = Pi + Pf*(Tf - Taf) + Vm*Taf + 0.5f*Af*(Taf*Taf);
}

void avd_movement::update()
{
	float time = (float)(timestamp() - TSi)/1000.0f;
	this->update(time);
}

void avd_movement::update(float Time)
{
	if(Tf <= 0.0f)
	{
		//This avd_movement is just serving as static storage
		Pc = Pi;
		Vc = Vi;
	}
	else if(Time >= Tf)
	{
		//Movement has ended, but the thing may still have a constant velocity
		Pc = Pf + Vf*(Time-Tf);
		Vc = Vf;
	}
	else
	{
		//Movement is in-progress and we must calculate where the thing is now.
		float t = Time;
		float Tc = 0.0f;

		if(t >= 0.0f)
		{
			Pc = Pi;
			Vc = Vi;
		}
		
		if(t >= 0.0f && Tai > 0.0f)
		{
			if(t < Tai)
				Tc = t;
			else
				Tc = Tai;
			Pc = Pc + Vi*Tc + 0.5f*Ai*(Tc*Tc);
			Vc = Vc + Ai*Tc;
		}
		
		if(t >= Tai && (Tai+Taf) < Tf)
		{
			if(t < (Tf-Taf))
				Tc = (t-Tai);
			else
				Tc = (Tf-Tai-Taf);

			Pc = Pc + Vm*Tc;
			Vc = Vc;
		}
		
		if(t >= (Tf-Taf) && Taf > 0.0f)
		{
			if(t < Tf)
				Tc = t-(Tf-Taf);
			else
				Tc = Taf;

			Pc = Pc + Vm*Tc + 0.5f*Af*(Tc*Tc);
			Vc = Vc + Af*Tc;
		}
	}
}