File: vecmat.h

package info (click to toggle)
freespace2 3.7.4%2Brepack-1.1
  • links: PTS, VCS
  • area: non-free
  • in suites: bullseye
  • size: 22,268 kB
  • sloc: cpp: 393,535; ansic: 4,106; makefile: 1,091; xml: 181; sh: 137
file content (437 lines) | stat: -rwxr-xr-x 19,045 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/*
 * Copyright (C) Volition, Inc. 1999.  All rights reserved.
 *
 * All source code herein is the property of Volition, Inc. You may not sell 
 * or otherwise commercially exploit the source or things you created based on the 
 * source.
 *
*/ 



#ifndef _VECMAT_H
#define _VECMAT_H

#include "globalincs/pstypes.h"
#include "math/floating.h"


#define vm_is_vec_nan(v) (_isnan((v)->xyz.x) || _isnan((v)->xyz.y) || _isnan((v)->xyz.z))

//Macros/functions to fill in fields of structures

//macro to check if vector is zero
#define IS_VEC_NULL_SQ_SAFE(v) ( ( (v)->xyz.x > -1e-16 ) && ( (v)->xyz.x < 1e-16 ) && \
								 ( (v)->xyz.y > -1e-16 ) && ( (v)->xyz.y < 1e-16 ) && \
								 ( (v)->xyz.z > -1e-16 ) && ( (v)->xyz.z < 1e-16 ) )

#define IS_VEC_NULL(v) ( ( (v)->xyz.x > -1e-36 ) && ( (v)->xyz.x < 1e-36 ) && \
						 ( (v)->xyz.y > -1e-36 ) && ( (v)->xyz.y < 1e-36 ) && \
						 ( (v)->xyz.z > -1e-36 ) && ( (v)->xyz.z < 1e-36 ) )

#define IS_MAT_NULL(v) (IS_VEC_NULL(&(v)->vec.fvec) && IS_VEC_NULL(&(v)->vec.uvec) && IS_VEC_NULL(&(v)->vec.rvec))

//macro to set a vector to zero.  we could do this with an in-line assembly
//macro, but it's probably better to let the compiler optimize it.
//Note: NO RETURN VALUE
#define vm_vec_zero(v) (v)->xyz.x=(v)->xyz.y=(v)->xyz.z=0.0f

/*
//macro set set a matrix to the identity. Note: NO RETURN VALUE
#define vm_set_identity(m) do {m->rvec.x = m->uvec.y = m->fvec.z = (float)1.0;	\
										m->rvec.y = m->rvec.z = \
										m->uvec.x = m->uvec.z = \
										m->fvec.x = m->fvec.y = (float)0.0;} while (0)
*/
extern void vm_set_identity(matrix *m);

#define vm_vec_make(v,_x,_y,_z) ((v)->xyz.x=(_x), (v)->xyz.y=(_y), (v)->xyz.z=(_z))

//Global constants

extern vec3d vmd_zero_vector;
extern vec3d vmd_x_vector;
extern vec3d vmd_y_vector;
extern vec3d vmd_z_vector;
extern matrix vmd_identity_matrix;

//Here's a handy constant

#define ZERO_VECTOR { { { 0.0f, 0.0f, 0.0f } } }
//#define IDENTITY_MATRIX {1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f}
// first set of inside braces is for union, second set is for inside union, then for a2d[3][3] (some compiler warning messages just suck)
//#define IDENTITY_MATRIX { { { {1.0f, 0.0f, 0.0f}, {0.0f, 1.0f, 0.0f}, {0.0f, 0.0f, 1.0f} } } }
#define IDENTITY_MATRIX { { { { { { 1.0f, 0.0f, 0.0f } } }, { { { 0.0f, 1.0f, 0.0f } } }, { { { 0.0f, 0.0f, 1.0f } } } } } }

//fills in fields of an angle vector
#define vm_angvec_make(v,_p,_b,_h) (((v)->p=(_p), (v)->b=(_b), (v)->h=(_h)), (v))

//negate a vector
#define vm_vec_negate(v) do {(v)->xyz.x = - (v)->xyz.x; (v)->xyz.y = - (v)->xyz.y; (v)->xyz.z = - (v)->xyz.z;} while (0);

typedef struct plane {
	float	A, B, C, D;
} plane;

//Functions in library

//adds two vectors, fills in dest, returns ptr to dest
//ok for dest to equal either source, but should use vm_vec_add2() if so
void vm_vec_add(vec3d *dest, const vec3d *src0, const vec3d *src1);

//adds src onto dest vector, returns ptr to dest
void vm_vec_add2(vec3d *dest, const vec3d *src);


//scales a vector and subs from to another
//dest -= k * src
void vm_vec_scale_sub2(vec3d *dest, const vec3d *src, float k);

//subs two vectors, fills in dest, returns ptr to dest
//ok for dest to equal either source, but should use vm_vec_sub2() if so
void vm_vec_sub(vec3d *dest, const vec3d *src0, const vec3d *src1);


//subs one vector from another, returns ptr to dest
//dest can equal source
void vm_vec_sub2(vec3d *dest, const vec3d *src);

//averages n vectors
vec3d *vm_vec_avg_n(vec3d *dest, int n, const vec3d src[]);


//averages two vectors. returns ptr to dest
//dest can equal either source
vec3d *vm_vec_avg(vec3d *dest, const vec3d *src0, const vec3d *src1);

vec3d *vm_vec_avg3(vec3d *dest, const vec3d *src0, const vec3d *src1, const vec3d *src2);

//averages four vectors. returns ptr to dest
//dest can equal any source
vec3d *vm_vec_avg4(vec3d *dest, const vec3d *src0, const vec3d *src1, const vec3d *src2, const vec3d *src3);

//scales a vector in place.  returns ptr to vector
void vm_vec_scale(vec3d *dest, float s);

//scales and copies a vector.  returns ptr to dest
void vm_vec_copy_scale(vec3d *dest, const vec3d *src, float s);

//scales a vector, adds it to another, and stores in a 3rd vector
//dest = src1 + k * src2
void vm_vec_scale_add(vec3d *dest, const vec3d *src1, const vec3d *src2, float k);

void vm_vec_scale_sub(vec3d *dest, const vec3d *src1, const vec3d *src2, float k);

//scales a vector and adds it to another
//dest += k * src
void vm_vec_scale_add2(vec3d *dest, const vec3d *src, float k);

//scales a vector in place, taking n/d for scale.  returns ptr to vector
//dest *= n/d
void vm_vec_scale2(vec3d *dest, float n, float d);

bool vm_vec_equal(const vec2d &self, const vec2d &other);

bool vm_vec_equal(const vec3d &self, const vec3d &other);

bool vm_vec_equal(const vec4 &self, const vec4 &other);

bool vm_matrix_equal(const matrix &self, const matrix &other);

bool vm_matrix_equal(const matrix4 &self, const matrix4 &other);

// finds the projection of source vector along a unit vector
// returns the magnitude of the component
float vm_vec_projection_parallel (vec3d *component, const vec3d *src, const vec3d *unit_vector);

// finds the projection of source vector onto a surface given by surface normal
void vm_vec_projection_onto_plane (vec3d *projection, const vec3d *src, const vec3d *normal);

//returns magnitude of a vector
float vm_vec_mag(const vec3d *v);

// returns the square of the magnitude of a vector (useful if comparing distances)
float vm_vec_mag_squared(const vec3d* v);

// returns the square of the distance between two points (fast and exact)
float vm_vec_dist_squared(const vec3d *v0, const vec3d *v1);

//computes the distance between two points. (does sub and mag)
float vm_vec_dist(const vec3d *v0, const vec3d *v1);

//computes an approximation of the magnitude of the vector
//uses dist = largest + next_largest*3/8 + smallest*3/16
float vm_vec_mag_quick(const vec3d *v);

//computes an approximation of the distance between two points.
//uses dist = largest + next_largest*3/8 + smallest*3/16
float vm_vec_dist_quick(const vec3d *v0, const vec3d *v1);


//normalize a vector. returns mag of source vec
float vm_vec_copy_normalize(vec3d *dest, const vec3d *src);
float vm_vec_normalize(vec3d *v);

//	This version of vector normalize checks for the null vector before normalization.
//	If it is detected, it generates a Warning() and returns the vector 1, 0, 0.
float vm_vec_normalize_safe(vec3d *v);

//normalize a vector. returns mag of source vec. uses approx mag
float vm_vec_copy_normalize_quick(vec3d *dest, const vec3d *src);
float vm_vec_normalize_quick(vec3d *v);

//normalize a vector. returns mag of source vec. uses approx mag
float vm_vec_copy_normalize_quick_mag(vec3d *dest, const vec3d *src);
float vm_vec_normalize_quick_mag(vec3d *v);

//return the normalized direction vector between two points
//dest = normalized(end - start).  Returns mag of direction vector
//NOTE: the order of the parameters matches the vector subtraction
float vm_vec_normalized_dir(vec3d *dest,const vec3d *end, const vec3d *start);
float vm_vec_normalized_dir_quick_mag(vec3d *dest, const vec3d *end, const vec3d *start);
// Returns mag of direction vector
float vm_vec_normalized_dir_quick(vec3d *dest, const vec3d *end, const vec3d *start);

////returns dot product of two vectors
float vm_vec_dot(const vec3d *v0, const vec3d *v1);

float vm_vec_dot3(float x, float y, float z, vec3d *v);

//computes cross product of two vectors. returns ptr to dest
//dest CANNOT equal either source
vec3d *vm_vec_cross(vec3d *dest, const vec3d *src0, const vec3d *src1);

// test if 2 vectors are parallel or not.
int vm_test_parallel(const vec3d *src0, const vec3d *src1);

//computes surface normal from three points. result is normalized
//returns ptr to dest
//dest CANNOT equal either source
vec3d *vm_vec_normal(vec3d *dest,const vec3d *p0, const vec3d *p1, const vec3d *p2);

//computes non-normalized surface normal from three points.
//returns ptr to dest
//dest CANNOT equal either source
vec3d *vm_vec_perp(vec3d *dest, const vec3d *p0, const vec3d *p1, const vec3d *p2);

//computes the delta angle between two vectors.
//vectors need not be normalized. if they are, call vm_vec_delta_ang_norm()
//the forward vector (third parameter) can be NULL, in which case the absolute
//value of the angle in returned.  Otherwise the angle around that vector is
//returned.
float vm_vec_delta_ang(const vec3d *v0, const vec3d *v1, const vec3d *fvec);

//computes the delta angle between two normalized vectors.
float vm_vec_delta_ang_norm(const vec3d *v0, const vec3d *v1,const vec3d *fvec);

//computes a matrix from a set of three angles.  returns ptr to matrix
matrix *vm_angles_2_matrix(matrix *m, const angles *a);

//	Computes a matrix from a single angle.
//	angle_index = 0,1,2 for p,b,h
matrix *vm_angle_2_matrix(matrix *m, float a, int angle_index);

//computes a matrix from a forward vector and an angle
matrix *vm_vec_ang_2_matrix(matrix *m, const vec3d *v, float a);

//computes a matrix from one or more vectors. The forward vector is required,
//with the other two being optional.  If both up & right vectors are passed,
//the up vector is used.  If only the forward vector is passed, a bank of
//zero is assumed
//returns ptr to matrix
matrix *vm_vector_2_matrix(matrix *m, const vec3d *fvec, const vec3d *uvec, const vec3d *rvec);

//this version of vector_2_matrix requires that the vectors be more-or-less
//normalized and close to perpendicular
matrix *vm_vector_2_matrix_norm(matrix *m, const vec3d *fvec, const vec3d *uvec = NULL, const vec3d *rvec = NULL);

//rotates a vector through a matrix. returns ptr to dest vector
//dest CANNOT equal either source
vec3d *vm_vec_rotate(vec3d *dest, const vec3d *src, const matrix *m);

//rotates a vector through the transpose of the given matrix. 
//returns ptr to dest vector
//dest CANNOT equal source
// This is a faster replacement for this common code sequence:
//    vm_copy_transpose(&tempm,src_matrix);
//    vm_vec_rotate(dst_vec,src_vect,&tempm);
// Replace with:
//    vm_vec_unrotate(dst_vec,src_vect, src_matrix)
//
// THIS DOES NOT ACTUALLY TRANSPOSE THE SOURCE MATRIX!!! So if
// you need it transposed later on, you should use the 
// vm_vec_transpose() / vm_vec_rotate() technique.
vec3d *vm_vec_unrotate(vec3d *dest, const vec3d *src, const matrix *m);

//transpose a matrix in place. returns ptr to matrix
matrix *vm_transpose(matrix *m);

//copy and transpose a matrix. returns ptr to matrix
//dest CANNOT equal source. use vm_transpose() if this is the case
matrix *vm_copy_transpose(matrix *dest, const matrix *src);

//mulitply 2 matrices, fill in dest.  returns ptr to dest
//dest CANNOT equal either source
matrix *vm_matrix_x_matrix(matrix *dest, const matrix *src0, const matrix *src1);

//extract angles from a matrix
angles *vm_extract_angles_matrix(angles *a, const matrix *m);
angles *vm_extract_angles_matrix_alternate(angles *a, const matrix *m);

//extract heading and pitch from a vector, assuming bank==0
angles *vm_extract_angles_vector(angles *a, const vec3d *v);

//make sure matrix is orthogonal
void vm_orthogonalize_matrix(matrix *m_src);

// like vm_orthogonalize_matrix(), except that zero vectors can exist within the
// matrix without causing problems.  Valid vectors will be created where needed.
void vm_fix_matrix(matrix *m);

//Rotates the orient matrix by the angles in tangles and then
//makes sure that the matrix is orthogonal.
void vm_rotate_matrix_by_angles( matrix *orient, const angles *tangles );

//compute the distance from a point to a plane.  takes the normalized normal
//of the plane (ebx), a point on the plane (edi), and the point to check (esi).
//returns distance in eax
//distance is signed, so negative dist is on the back of the plane
float vm_dist_to_plane(const vec3d *checkp, const vec3d *norm, const vec3d *planep);

// Given mouse movement in dx, dy, returns a 3x3 rotation matrix in RotMat.
// Taken from Graphics Gems III, page 51, "The Rolling Ball"
// Example:
//if ( (Mouse.dx!=0) || (Mouse.dy!=0) ) {
//   vm_trackball( Mouse.dx, Mouse.dy, &MouseRotMat );
//   vm_matrix_x_matrix(&tempm,&LargeView.ev_matrix,&MouseRotMat);
//   LargeView.ev_matrix = tempm;
//}
void vm_trackball( int idx, int idy, matrix * RotMat );

//	Find the point on the line between p0 and p1 that is nearest to int_pnt.
//	Stuff result in nearest_point.
//	Return value indicated where on the line *nearest_point lies.  Between 0.0f and 1.0f means it's
//	in the line segment.  Positive means beyond *p1, negative means before *p0.  2.0f means it's
//	beyond *p1 by 2x.
float find_nearest_point_on_line(vec3d *nearest_point, const vec3d *p0, const vec3d *p1, const vec3d *int_pnt);

float vm_vec_dot_to_point(const vec3d *dir, const vec3d *p1, const vec3d *p2);

void compute_point_on_plane(vec3d *q, const plane *planep, const vec3d *p);

// ----------------------------------------------------------------------------
// computes the point on a plane closest to a given point (which may be on the plane)
// 
//		inputs:		new_point		=>		point on the plane [result]
//						point				=>		point to compute closest plane point
//						plane_normal	=>		plane normal
//						plane_point		=>		plane point
void vm_project_point_onto_plane(vec3d *new_point, const vec3d *point, const vec3d *plane_normal, const vec3d *plane_point);


//	Returns fairly random vector, "quick" normalized
void vm_vec_rand_vec_quick(vec3d *rvec);

// Given an point "in" rotate it by "angle" around an
// arbritary line defined by a point on the line "line_point" 
// and the normalized line direction, "line_dir"
// Returns the rotated point in "out".
void vm_rot_point_around_line(vec3d *out, const vec3d *in, float angle, const vec3d *line_point, const vec3d *line_dir);

// Given two position vectors, return 0 if the same, else non-zero.
int vm_vec_cmp(const vec3d * a, const vec3d * b);

// Given two orientation matrices, return 0 if the same, else non-zero.
int vm_matrix_cmp(const matrix * a, const matrix * b);

// Moves angle 'h' towards 'desired_angle', taking the shortest
// route possible.   It will move a maximum of 'step_size' radians
// each call.   All angles in radians.
float vm_interp_angle( float *h, float desired_angle, float step_size, bool force_front = false );

// calculate and return the difference (ie. delta) between two angles
// using same method as with vm_interp_angle().
float vm_delta_from_interp_angle( float current_angle, float desired_angle );

// check a matrix for zero rows and columns
int vm_check_matrix_for_zeros(const matrix *m);

// see if two vectors are identical
int vm_vec_same(const vec3d *v1, const vec3d *v2);

// see if two matrices are identical
int vm_matrix_same(matrix *m1, matrix *m2);

//	Interpolate from a start matrix toward a goal matrix, minimizing time between orientations.
// Moves at maximum rotational acceleration toward the goal when far and then max deceleration when close.
// Subject to constaints on rotational velocity and angular accleleration.
// Returns next_orientation valid at time delta_t.
void vm_matrix_interpolate(const matrix *goal_orient, const matrix *start_orient, const vec3d *rotvel_in, float delta_t,
		matrix *next_orient, vec3d *rotvel_out, const vec3d *rotvel_limit, const vec3d *acc_limit, int no_overshoot=0);

//	Interpolate from a start forward vec toward a goal forward vec, minimizing time between orientations.
// Moves at maximum rotational acceleration toward the goal when far and then max deceleration when close.
// Subject to constaints on rotational velocity and angular accleleration.
// Returns next forward vec valid at time delta_t.
void vm_forward_interpolate(const vec3d *goal_fvec, const matrix *orient, const vec3d *rotvel_in, float delta_t, float delta_bank,
		matrix *next_orient, vec3d *rotvel_out, const vec3d *vel_limit, const vec3d *acc_limit, int no_overshoot=0);

// Find the bounding sphere for a set of points (center and radius are output parameters)
void vm_find_bounding_sphere(const vec3d *pnts, int num_pnts, vec3d *center, float *radius);

// Version of atan2() that is safe for optimized builds
float atan2_safe(float x, float y);

// Translates from world coordinates to body coordinates
vec3d* vm_rotate_vec_to_body(vec3d *body_vec, const vec3d *world_vec, const matrix *orient);

// Translates from body coordinates to world coordiantes
vec3d* vm_rotate_vec_to_world(vec3d *world_vec, const vec3d *body_vec, const matrix *orient);

// estimate next orientation matrix as extrapolation of last and current
void vm_estimate_next_orientation(const matrix *last_orient, const matrix *current_orient, matrix *next_orient);

//	Return true if all elements of *vec are legal, that is, not a NAN.
int is_valid_vec(const vec3d *vec);

//	Return true if all elements of *m are legal, that is, not a NAN.
int is_valid_matrix(const matrix *m);

// Finds the rotation matrix corresponding to a rotation of theta about axis u
void vm_quaternion_rotate(matrix *m, float theta, const vec3d *u);

// Takes a rotation matrix and returns the axis and angle needed to generate it
void vm_matrix_to_rot_axis_and_angle(const matrix *m, float *theta, vec3d *rot_axis);

// interpolate between 2 vectors. t goes from 0.0 to 1.0. at
void vm_vec_interp_constant(vec3d *out, const vec3d *v1, const vec3d *v2, float t);

// randomly perturb a vector around a given (normalized vector) or optional orientation matrix
void vm_vec_random_cone(vec3d *out, const vec3d *in, float max_angle, const matrix *orient = NULL);
void vm_vec_random_cone(vec3d *out, const vec3d *in, float min_angle, float max_angle, const matrix *orient = NULL);

// given a start vector, an orientation and a radius, give a point on the plane of the circle
// if on_edge is 1, the point is on the very edge of the circle
void vm_vec_random_in_circle(vec3d *out, const vec3d *in, const matrix *orient, float radius, int on_edge);

// given a start vector, an orientation, and a radius, give a point in a spherical volume
// if on_edge is 1, the point is on the very edge of the sphere
void vm_vec_random_in_sphere(vec3d *out, const vec3d *in, const matrix *orient, float radius, int on_edge);

// find the nearest point on the line to p. if dist is non-NULL, it is filled in
// returns 0 if the point is inside the line segment, -1 if "before" the line segment and 1 ir "after" the line segment
int vm_vec_dist_to_line(const vec3d *p, const vec3d *l0, const vec3d *l1, vec3d *nearest, float *dist);

// Goober5000
// Finds the distance squared to a line.  Same as above, except it uses vm_vec_dist_squared, which is faster;
// and it doesn't check whether the nearest point is on the line segment.
void vm_vec_dist_squared_to_line(const vec3d *p, const vec3d *l0, const vec3d *l1, vec3d *nearest, float *dist_squared);

//SUSHI: 2D vector "box" scaling
void vm_vec_boxscale(vec2d *vec, float scale);

bool vm_inverse_matrix4(const matrix4 *m, matrix4 *invOut);

#endif