1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
/*
* Copyright (C) Volition, Inc. 1999. All rights reserved.
*
* All source code herein is the property of Volition, Inc. You may not sell
* or otherwise commercially exploit the source or things you created based on the
* source.
*
*/
#ifndef _VECMAT_H
#define _VECMAT_H
#include "globalincs/pstypes.h"
#include "math/floating.h"
#define vm_is_vec_nan(v) (_isnan((v)->xyz.x) || _isnan((v)->xyz.y) || _isnan((v)->xyz.z))
//Macros/functions to fill in fields of structures
//macro to check if vector is zero
#define IS_VEC_NULL_SQ_SAFE(v) ( ( (v)->xyz.x > -1e-16 ) && ( (v)->xyz.x < 1e-16 ) && \
( (v)->xyz.y > -1e-16 ) && ( (v)->xyz.y < 1e-16 ) && \
( (v)->xyz.z > -1e-16 ) && ( (v)->xyz.z < 1e-16 ) )
#define IS_VEC_NULL(v) ( ( (v)->xyz.x > -1e-36 ) && ( (v)->xyz.x < 1e-36 ) && \
( (v)->xyz.y > -1e-36 ) && ( (v)->xyz.y < 1e-36 ) && \
( (v)->xyz.z > -1e-36 ) && ( (v)->xyz.z < 1e-36 ) )
#define IS_MAT_NULL(v) (IS_VEC_NULL(&(v)->vec.fvec) && IS_VEC_NULL(&(v)->vec.uvec) && IS_VEC_NULL(&(v)->vec.rvec))
//macro to set a vector to zero. we could do this with an in-line assembly
//macro, but it's probably better to let the compiler optimize it.
//Note: NO RETURN VALUE
#define vm_vec_zero(v) (v)->xyz.x=(v)->xyz.y=(v)->xyz.z=0.0f
/*
//macro set set a matrix to the identity. Note: NO RETURN VALUE
#define vm_set_identity(m) do {m->rvec.x = m->uvec.y = m->fvec.z = (float)1.0; \
m->rvec.y = m->rvec.z = \
m->uvec.x = m->uvec.z = \
m->fvec.x = m->fvec.y = (float)0.0;} while (0)
*/
extern void vm_set_identity(matrix *m);
#define vm_vec_make(v,_x,_y,_z) ((v)->xyz.x=(_x), (v)->xyz.y=(_y), (v)->xyz.z=(_z))
//Global constants
extern vec3d vmd_zero_vector;
extern vec3d vmd_x_vector;
extern vec3d vmd_y_vector;
extern vec3d vmd_z_vector;
extern matrix vmd_identity_matrix;
//Here's a handy constant
#define ZERO_VECTOR { { { 0.0f, 0.0f, 0.0f } } }
//#define IDENTITY_MATRIX {1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f}
// first set of inside braces is for union, second set is for inside union, then for a2d[3][3] (some compiler warning messages just suck)
//#define IDENTITY_MATRIX { { { {1.0f, 0.0f, 0.0f}, {0.0f, 1.0f, 0.0f}, {0.0f, 0.0f, 1.0f} } } }
#define IDENTITY_MATRIX { { { { { { 1.0f, 0.0f, 0.0f } } }, { { { 0.0f, 1.0f, 0.0f } } }, { { { 0.0f, 0.0f, 1.0f } } } } } }
//fills in fields of an angle vector
#define vm_angvec_make(v,_p,_b,_h) (((v)->p=(_p), (v)->b=(_b), (v)->h=(_h)), (v))
//negate a vector
#define vm_vec_negate(v) do {(v)->xyz.x = - (v)->xyz.x; (v)->xyz.y = - (v)->xyz.y; (v)->xyz.z = - (v)->xyz.z;} while (0);
typedef struct plane {
float A, B, C, D;
} plane;
//Functions in library
//adds two vectors, fills in dest, returns ptr to dest
//ok for dest to equal either source, but should use vm_vec_add2() if so
void vm_vec_add(vec3d *dest, const vec3d *src0, const vec3d *src1);
//adds src onto dest vector, returns ptr to dest
void vm_vec_add2(vec3d *dest, const vec3d *src);
//scales a vector and subs from to another
//dest -= k * src
void vm_vec_scale_sub2(vec3d *dest, const vec3d *src, float k);
//subs two vectors, fills in dest, returns ptr to dest
//ok for dest to equal either source, but should use vm_vec_sub2() if so
void vm_vec_sub(vec3d *dest, const vec3d *src0, const vec3d *src1);
//subs one vector from another, returns ptr to dest
//dest can equal source
void vm_vec_sub2(vec3d *dest, const vec3d *src);
//averages n vectors
vec3d *vm_vec_avg_n(vec3d *dest, int n, const vec3d src[]);
//averages two vectors. returns ptr to dest
//dest can equal either source
vec3d *vm_vec_avg(vec3d *dest, const vec3d *src0, const vec3d *src1);
vec3d *vm_vec_avg3(vec3d *dest, const vec3d *src0, const vec3d *src1, const vec3d *src2);
//averages four vectors. returns ptr to dest
//dest can equal any source
vec3d *vm_vec_avg4(vec3d *dest, const vec3d *src0, const vec3d *src1, const vec3d *src2, const vec3d *src3);
//scales a vector in place. returns ptr to vector
void vm_vec_scale(vec3d *dest, float s);
//scales and copies a vector. returns ptr to dest
void vm_vec_copy_scale(vec3d *dest, const vec3d *src, float s);
//scales a vector, adds it to another, and stores in a 3rd vector
//dest = src1 + k * src2
void vm_vec_scale_add(vec3d *dest, const vec3d *src1, const vec3d *src2, float k);
void vm_vec_scale_sub(vec3d *dest, const vec3d *src1, const vec3d *src2, float k);
//scales a vector and adds it to another
//dest += k * src
void vm_vec_scale_add2(vec3d *dest, const vec3d *src, float k);
//scales a vector in place, taking n/d for scale. returns ptr to vector
//dest *= n/d
void vm_vec_scale2(vec3d *dest, float n, float d);
bool vm_vec_equal(const vec2d &self, const vec2d &other);
bool vm_vec_equal(const vec3d &self, const vec3d &other);
bool vm_vec_equal(const vec4 &self, const vec4 &other);
bool vm_matrix_equal(const matrix &self, const matrix &other);
bool vm_matrix_equal(const matrix4 &self, const matrix4 &other);
// finds the projection of source vector along a unit vector
// returns the magnitude of the component
float vm_vec_projection_parallel (vec3d *component, const vec3d *src, const vec3d *unit_vector);
// finds the projection of source vector onto a surface given by surface normal
void vm_vec_projection_onto_plane (vec3d *projection, const vec3d *src, const vec3d *normal);
//returns magnitude of a vector
float vm_vec_mag(const vec3d *v);
// returns the square of the magnitude of a vector (useful if comparing distances)
float vm_vec_mag_squared(const vec3d* v);
// returns the square of the distance between two points (fast and exact)
float vm_vec_dist_squared(const vec3d *v0, const vec3d *v1);
//computes the distance between two points. (does sub and mag)
float vm_vec_dist(const vec3d *v0, const vec3d *v1);
//computes an approximation of the magnitude of the vector
//uses dist = largest + next_largest*3/8 + smallest*3/16
float vm_vec_mag_quick(const vec3d *v);
//computes an approximation of the distance between two points.
//uses dist = largest + next_largest*3/8 + smallest*3/16
float vm_vec_dist_quick(const vec3d *v0, const vec3d *v1);
//normalize a vector. returns mag of source vec
float vm_vec_copy_normalize(vec3d *dest, const vec3d *src);
float vm_vec_normalize(vec3d *v);
// This version of vector normalize checks for the null vector before normalization.
// If it is detected, it generates a Warning() and returns the vector 1, 0, 0.
float vm_vec_normalize_safe(vec3d *v);
//normalize a vector. returns mag of source vec. uses approx mag
float vm_vec_copy_normalize_quick(vec3d *dest, const vec3d *src);
float vm_vec_normalize_quick(vec3d *v);
//normalize a vector. returns mag of source vec. uses approx mag
float vm_vec_copy_normalize_quick_mag(vec3d *dest, const vec3d *src);
float vm_vec_normalize_quick_mag(vec3d *v);
//return the normalized direction vector between two points
//dest = normalized(end - start). Returns mag of direction vector
//NOTE: the order of the parameters matches the vector subtraction
float vm_vec_normalized_dir(vec3d *dest,const vec3d *end, const vec3d *start);
float vm_vec_normalized_dir_quick_mag(vec3d *dest, const vec3d *end, const vec3d *start);
// Returns mag of direction vector
float vm_vec_normalized_dir_quick(vec3d *dest, const vec3d *end, const vec3d *start);
////returns dot product of two vectors
float vm_vec_dot(const vec3d *v0, const vec3d *v1);
float vm_vec_dot3(float x, float y, float z, vec3d *v);
//computes cross product of two vectors. returns ptr to dest
//dest CANNOT equal either source
vec3d *vm_vec_cross(vec3d *dest, const vec3d *src0, const vec3d *src1);
// test if 2 vectors are parallel or not.
int vm_test_parallel(const vec3d *src0, const vec3d *src1);
//computes surface normal from three points. result is normalized
//returns ptr to dest
//dest CANNOT equal either source
vec3d *vm_vec_normal(vec3d *dest,const vec3d *p0, const vec3d *p1, const vec3d *p2);
//computes non-normalized surface normal from three points.
//returns ptr to dest
//dest CANNOT equal either source
vec3d *vm_vec_perp(vec3d *dest, const vec3d *p0, const vec3d *p1, const vec3d *p2);
//computes the delta angle between two vectors.
//vectors need not be normalized. if they are, call vm_vec_delta_ang_norm()
//the forward vector (third parameter) can be NULL, in which case the absolute
//value of the angle in returned. Otherwise the angle around that vector is
//returned.
float vm_vec_delta_ang(const vec3d *v0, const vec3d *v1, const vec3d *fvec);
//computes the delta angle between two normalized vectors.
float vm_vec_delta_ang_norm(const vec3d *v0, const vec3d *v1,const vec3d *fvec);
//computes a matrix from a set of three angles. returns ptr to matrix
matrix *vm_angles_2_matrix(matrix *m, const angles *a);
// Computes a matrix from a single angle.
// angle_index = 0,1,2 for p,b,h
matrix *vm_angle_2_matrix(matrix *m, float a, int angle_index);
//computes a matrix from a forward vector and an angle
matrix *vm_vec_ang_2_matrix(matrix *m, const vec3d *v, float a);
//computes a matrix from one or more vectors. The forward vector is required,
//with the other two being optional. If both up & right vectors are passed,
//the up vector is used. If only the forward vector is passed, a bank of
//zero is assumed
//returns ptr to matrix
matrix *vm_vector_2_matrix(matrix *m, const vec3d *fvec, const vec3d *uvec, const vec3d *rvec);
//this version of vector_2_matrix requires that the vectors be more-or-less
//normalized and close to perpendicular
matrix *vm_vector_2_matrix_norm(matrix *m, const vec3d *fvec, const vec3d *uvec = NULL, const vec3d *rvec = NULL);
//rotates a vector through a matrix. returns ptr to dest vector
//dest CANNOT equal either source
vec3d *vm_vec_rotate(vec3d *dest, const vec3d *src, const matrix *m);
//rotates a vector through the transpose of the given matrix.
//returns ptr to dest vector
//dest CANNOT equal source
// This is a faster replacement for this common code sequence:
// vm_copy_transpose(&tempm,src_matrix);
// vm_vec_rotate(dst_vec,src_vect,&tempm);
// Replace with:
// vm_vec_unrotate(dst_vec,src_vect, src_matrix)
//
// THIS DOES NOT ACTUALLY TRANSPOSE THE SOURCE MATRIX!!! So if
// you need it transposed later on, you should use the
// vm_vec_transpose() / vm_vec_rotate() technique.
vec3d *vm_vec_unrotate(vec3d *dest, const vec3d *src, const matrix *m);
//transpose a matrix in place. returns ptr to matrix
matrix *vm_transpose(matrix *m);
//copy and transpose a matrix. returns ptr to matrix
//dest CANNOT equal source. use vm_transpose() if this is the case
matrix *vm_copy_transpose(matrix *dest, const matrix *src);
//mulitply 2 matrices, fill in dest. returns ptr to dest
//dest CANNOT equal either source
matrix *vm_matrix_x_matrix(matrix *dest, const matrix *src0, const matrix *src1);
//extract angles from a matrix
angles *vm_extract_angles_matrix(angles *a, const matrix *m);
angles *vm_extract_angles_matrix_alternate(angles *a, const matrix *m);
//extract heading and pitch from a vector, assuming bank==0
angles *vm_extract_angles_vector(angles *a, const vec3d *v);
//make sure matrix is orthogonal
void vm_orthogonalize_matrix(matrix *m_src);
// like vm_orthogonalize_matrix(), except that zero vectors can exist within the
// matrix without causing problems. Valid vectors will be created where needed.
void vm_fix_matrix(matrix *m);
//Rotates the orient matrix by the angles in tangles and then
//makes sure that the matrix is orthogonal.
void vm_rotate_matrix_by_angles( matrix *orient, const angles *tangles );
//compute the distance from a point to a plane. takes the normalized normal
//of the plane (ebx), a point on the plane (edi), and the point to check (esi).
//returns distance in eax
//distance is signed, so negative dist is on the back of the plane
float vm_dist_to_plane(const vec3d *checkp, const vec3d *norm, const vec3d *planep);
// Given mouse movement in dx, dy, returns a 3x3 rotation matrix in RotMat.
// Taken from Graphics Gems III, page 51, "The Rolling Ball"
// Example:
//if ( (Mouse.dx!=0) || (Mouse.dy!=0) ) {
// vm_trackball( Mouse.dx, Mouse.dy, &MouseRotMat );
// vm_matrix_x_matrix(&tempm,&LargeView.ev_matrix,&MouseRotMat);
// LargeView.ev_matrix = tempm;
//}
void vm_trackball( int idx, int idy, matrix * RotMat );
// Find the point on the line between p0 and p1 that is nearest to int_pnt.
// Stuff result in nearest_point.
// Return value indicated where on the line *nearest_point lies. Between 0.0f and 1.0f means it's
// in the line segment. Positive means beyond *p1, negative means before *p0. 2.0f means it's
// beyond *p1 by 2x.
float find_nearest_point_on_line(vec3d *nearest_point, const vec3d *p0, const vec3d *p1, const vec3d *int_pnt);
float vm_vec_dot_to_point(const vec3d *dir, const vec3d *p1, const vec3d *p2);
void compute_point_on_plane(vec3d *q, const plane *planep, const vec3d *p);
// ----------------------------------------------------------------------------
// computes the point on a plane closest to a given point (which may be on the plane)
//
// inputs: new_point => point on the plane [result]
// point => point to compute closest plane point
// plane_normal => plane normal
// plane_point => plane point
void vm_project_point_onto_plane(vec3d *new_point, const vec3d *point, const vec3d *plane_normal, const vec3d *plane_point);
// Returns fairly random vector, "quick" normalized
void vm_vec_rand_vec_quick(vec3d *rvec);
// Given an point "in" rotate it by "angle" around an
// arbritary line defined by a point on the line "line_point"
// and the normalized line direction, "line_dir"
// Returns the rotated point in "out".
void vm_rot_point_around_line(vec3d *out, const vec3d *in, float angle, const vec3d *line_point, const vec3d *line_dir);
// Given two position vectors, return 0 if the same, else non-zero.
int vm_vec_cmp(const vec3d * a, const vec3d * b);
// Given two orientation matrices, return 0 if the same, else non-zero.
int vm_matrix_cmp(const matrix * a, const matrix * b);
// Moves angle 'h' towards 'desired_angle', taking the shortest
// route possible. It will move a maximum of 'step_size' radians
// each call. All angles in radians.
float vm_interp_angle( float *h, float desired_angle, float step_size, bool force_front = false );
// calculate and return the difference (ie. delta) between two angles
// using same method as with vm_interp_angle().
float vm_delta_from_interp_angle( float current_angle, float desired_angle );
// check a matrix for zero rows and columns
int vm_check_matrix_for_zeros(const matrix *m);
// see if two vectors are identical
int vm_vec_same(const vec3d *v1, const vec3d *v2);
// see if two matrices are identical
int vm_matrix_same(matrix *m1, matrix *m2);
// Interpolate from a start matrix toward a goal matrix, minimizing time between orientations.
// Moves at maximum rotational acceleration toward the goal when far and then max deceleration when close.
// Subject to constaints on rotational velocity and angular accleleration.
// Returns next_orientation valid at time delta_t.
void vm_matrix_interpolate(const matrix *goal_orient, const matrix *start_orient, const vec3d *rotvel_in, float delta_t,
matrix *next_orient, vec3d *rotvel_out, const vec3d *rotvel_limit, const vec3d *acc_limit, int no_overshoot=0);
// Interpolate from a start forward vec toward a goal forward vec, minimizing time between orientations.
// Moves at maximum rotational acceleration toward the goal when far and then max deceleration when close.
// Subject to constaints on rotational velocity and angular accleleration.
// Returns next forward vec valid at time delta_t.
void vm_forward_interpolate(const vec3d *goal_fvec, const matrix *orient, const vec3d *rotvel_in, float delta_t, float delta_bank,
matrix *next_orient, vec3d *rotvel_out, const vec3d *vel_limit, const vec3d *acc_limit, int no_overshoot=0);
// Find the bounding sphere for a set of points (center and radius are output parameters)
void vm_find_bounding_sphere(const vec3d *pnts, int num_pnts, vec3d *center, float *radius);
// Version of atan2() that is safe for optimized builds
float atan2_safe(float x, float y);
// Translates from world coordinates to body coordinates
vec3d* vm_rotate_vec_to_body(vec3d *body_vec, const vec3d *world_vec, const matrix *orient);
// Translates from body coordinates to world coordiantes
vec3d* vm_rotate_vec_to_world(vec3d *world_vec, const vec3d *body_vec, const matrix *orient);
// estimate next orientation matrix as extrapolation of last and current
void vm_estimate_next_orientation(const matrix *last_orient, const matrix *current_orient, matrix *next_orient);
// Return true if all elements of *vec are legal, that is, not a NAN.
int is_valid_vec(const vec3d *vec);
// Return true if all elements of *m are legal, that is, not a NAN.
int is_valid_matrix(const matrix *m);
// Finds the rotation matrix corresponding to a rotation of theta about axis u
void vm_quaternion_rotate(matrix *m, float theta, const vec3d *u);
// Takes a rotation matrix and returns the axis and angle needed to generate it
void vm_matrix_to_rot_axis_and_angle(const matrix *m, float *theta, vec3d *rot_axis);
// interpolate between 2 vectors. t goes from 0.0 to 1.0. at
void vm_vec_interp_constant(vec3d *out, const vec3d *v1, const vec3d *v2, float t);
// randomly perturb a vector around a given (normalized vector) or optional orientation matrix
void vm_vec_random_cone(vec3d *out, const vec3d *in, float max_angle, const matrix *orient = NULL);
void vm_vec_random_cone(vec3d *out, const vec3d *in, float min_angle, float max_angle, const matrix *orient = NULL);
// given a start vector, an orientation and a radius, give a point on the plane of the circle
// if on_edge is 1, the point is on the very edge of the circle
void vm_vec_random_in_circle(vec3d *out, const vec3d *in, const matrix *orient, float radius, int on_edge);
// given a start vector, an orientation, and a radius, give a point in a spherical volume
// if on_edge is 1, the point is on the very edge of the sphere
void vm_vec_random_in_sphere(vec3d *out, const vec3d *in, const matrix *orient, float radius, int on_edge);
// find the nearest point on the line to p. if dist is non-NULL, it is filled in
// returns 0 if the point is inside the line segment, -1 if "before" the line segment and 1 ir "after" the line segment
int vm_vec_dist_to_line(const vec3d *p, const vec3d *l0, const vec3d *l1, vec3d *nearest, float *dist);
// Goober5000
// Finds the distance squared to a line. Same as above, except it uses vm_vec_dist_squared, which is faster;
// and it doesn't check whether the nearest point is on the line segment.
void vm_vec_dist_squared_to_line(const vec3d *p, const vec3d *l0, const vec3d *l1, vec3d *nearest, float *dist_squared);
//SUSHI: 2D vector "box" scaling
void vm_vec_boxscale(vec2d *vec, float scale);
bool vm_inverse_matrix4(const matrix4 *m, matrix4 *invOut);
#endif
|