File: missiongrid.cpp

package info (click to toggle)
freespace2 3.7.4%2Brepack-1.1
  • links: PTS, VCS
  • area: non-free
  • in suites: bullseye
  • size: 22,268 kB
  • sloc: cpp: 393,535; ansic: 4,106; makefile: 1,091; xml: 181; sh: 137
file content (300 lines) | stat: -rw-r--r-- 8,180 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/*
 * Copyright (C) Volition, Inc. 1999.  All rights reserved.
 *
 * All source code herein is the property of Volition, Inc. You may not sell 
 * or otherwise commercially exploit the source or things you created based on the 
 * source.
 *
*/ 



#include "graphics/2d.h"
#include "io/key.h"
#include "math/fvi.h"
#include "mission/missiongrid.h"
#include "render/3d.h"


grid	Global_grid;
grid	*The_grid;
int	double_fine_gridlines = 0;

void grid_read_camera_controls( control_info * ci, float frametime )
{
	float kh;

	{
		float temp = ci->heading;
		float temp1 = ci->pitch;
		memset( ci, 0, sizeof(control_info) );
		ci->heading = temp;
		ci->pitch = temp1;
	}

	// From keyboard...
	kh = key_down_timef(KEY_PAD6) - key_down_timef(KEY_PAD4);
	if (kh == 0.0f)
		ci->heading = 0.0f;
	else if (kh > 0.0f) {
		if (ci->heading < 0.0f)
			ci->heading = 0.0f;
	} else // kh < 0
		if (ci->heading > 0.0f)
			ci->heading = 0.0f;
	ci->heading += kh;

	kh = key_down_timef(KEY_PAD8) - key_down_timef(KEY_PAD2);
	if (kh == 0.0f)
		ci->pitch = 0.0f;
	else if (kh > 0.0f) {
		if (ci->pitch < 0.0f)
			ci->pitch = 0.0f;
	} else // kh < 0
		if (ci->pitch > 0.0f)
			ci->pitch = 0.0f;
	ci->pitch += kh;

	ci->bank = (key_down_timef(KEY_PAD7) - key_down_timef(KEY_PAD9));
	ci->forward = (key_down_timef(KEY_A) - key_down_timef(KEY_Z));
	ci->sideways = (key_down_timef(KEY_PAD3) - key_down_timef(KEY_PAD1));
	ci->vertical = (key_down_timef(KEY_PADMINUS) - key_down_timef(KEY_PADPLUS));
}

//	Project the viewer's position onto the grid plane.  If more than threshold distance
//	from grid center, move grid center.
void maybe_create_new_grid(grid* gridp, vec3d *pos, matrix *orient, int force)
{
	int roundoff;
	plane	tplane;
	vec3d	gpos, tmp, c;
	float	dist_to_plane;
	float	square_size, ux, uy, uz;

	ux = tplane.A = gridp->gmatrix.vec.uvec.xyz.x;
	uy = tplane.B = gridp->gmatrix.vec.uvec.xyz.y;
	uz = tplane.C = gridp->gmatrix.vec.uvec.xyz.z;
	tplane.D = gridp->planeD;

	compute_point_on_plane(&c, &tplane, pos);
	dist_to_plane = fl_abs(vm_dist_to_plane(pos, &gridp->gmatrix.vec.uvec, &c));
	square_size = 1.0f;
	while (dist_to_plane >= 25.0f)
	{
		square_size *= 10.0f;
		dist_to_plane /= 10.0f;
	}
	
	if (fvi_ray_plane(&gpos, &gridp->center, &gridp->gmatrix.vec.uvec, pos, &orient->vec.fvec, 0.0f)<0.0f)	{
		vec3d p;
		vm_vec_scale_add(&p,pos,&orient->vec.fvec, 100.0f );
		compute_point_on_plane(&gpos, &tplane, &p );
	}

	if (vm_vec_dist(&gpos, &c) > 50.0f * square_size)
	{
		vm_vec_sub(&tmp, &gpos, &c);
		vm_vec_normalize(&tmp);
		vm_vec_scale_add(&gpos, &c, &tmp, 50.0f * square_size);
	}

	roundoff = (int) square_size * 10;
	if (!ux)
		gpos.xyz.x = fl_roundoff(gpos.xyz.x, roundoff);
	if (!uy)
		gpos.xyz.y = fl_roundoff(gpos.xyz.y, roundoff);
	if (!uz)
		gpos.xyz.z = fl_roundoff(gpos.xyz.z, roundoff);

	if ((square_size != gridp->square_size) ||
		(gpos.xyz.x != gridp->center.xyz.x) ||
		(gpos.xyz.y != gridp->center.xyz.y) ||
		(gpos.xyz.z != gridp->center.xyz.z) || force)
	{
		gridp->square_size = square_size;
		gridp->center = gpos;
		modify_grid(gridp);
	}
}

//	Create a grid
//	*forward is vector pointing forward
//	*right is vector pointing right
//	*center is center point of grid
//	length is length of grid
//	width is width of grid
//	square_size is size of a grid square
//	For example:
//		*forward = (0.0, 0.0, 1.0)
//		*right   = (1.0, 0.0, 0.0)
//		*center = (0.0, 0.0, 0.0)
//		nrows = 10
//		ncols =  50.0
//		square_size = 10.0
//	will generate a grid of squares 10 long by 5 wide.
//	Each grid square will be 10.0 x 10.0 units.
//	The center of the grid will be at the global origin.
//	The grid will be parallel to the xz plane (because the normal is 0,1,0).
//	(In fact, it will be the xz plane because it is centered on the origin.)
//
//	Stuffs grid in *gridp.  If gridp == NULL, mallocs and returns a grid.
grid *create_grid(grid *gridp, vec3d *forward, vec3d *right, vec3d *center, int nrows, int ncols, float square_size)
{
	int	i, ncols2, nrows2, d = 1;
	vec3d	dfvec, drvec, cur, cur2, tvec, uvec, save, save2;

	Assert(square_size > 0.0);
	if (double_fine_gridlines)
		d = 2;

	if (gridp == NULL)
		gridp = (grid *) vm_malloc(sizeof(grid));

	Assert(gridp);

	gridp->center = *center;
	gridp->square_size = square_size;

	//	Create the plane equation.
	Assert(!IS_VEC_NULL(forward));
	Assert(!IS_VEC_NULL(right));

	vm_vec_copy_normalize(&dfvec, forward);
	vm_vec_copy_normalize(&drvec, right);

	vm_vec_cross(&uvec, &dfvec, &drvec);
	
	Assert(!IS_VEC_NULL(&uvec));

	gridp->gmatrix.vec.uvec = uvec;

	gridp->planeD = -(center->xyz.x * uvec.xyz.x + center->xyz.y * uvec.xyz.y + center->xyz.z * uvec.xyz.z);
	Assert(!_isnan(gridp->planeD));

	gridp->gmatrix.vec.fvec = dfvec;
	gridp->gmatrix.vec.rvec = drvec;

	vm_vec_scale(&dfvec, square_size);
	vm_vec_scale(&drvec, square_size);

	vm_vec_scale_add(&cur, center, &dfvec, (float) -nrows * d / 2);
	vm_vec_scale_add2(&cur, &drvec, (float) -ncols * d / 2);
	vm_vec_scale_add(&cur2, center, &dfvec, (float) -nrows * 5 / 2);
	vm_vec_scale_add2(&cur2, &drvec, (float) -ncols * 5 / 2);
	save = cur;
	save2 = cur2;

	gridp->ncols = ncols;
	gridp->nrows = nrows;
	ncols2 = ncols / 2;
	nrows2 = nrows / 2;
	Assert(ncols < MAX_GRIDLINE_POINTS && nrows < MAX_GRIDLINE_POINTS);

	// Create the points along the edges of the grid, so we can just draw lines
	// between them to form the grid.  
	for (i=0; i<=ncols*d; i++) {
		gridp->gpoints1[i] = cur;  // small, dark gridline points
		vm_vec_scale_add(&tvec, &cur, &dfvec, (float) nrows * d);
		gridp->gpoints2[i] = tvec;
		vm_vec_add2(&cur, &drvec);
	}

	for (i=0; i<=ncols2; i++) {
		gridp->gpoints5[i] = cur2;  // large, brighter gridline points
		vm_vec_scale_add(&tvec, &cur2, &dfvec, (float) nrows2 * 10);
		gridp->gpoints6[i] = tvec; 
		vm_vec_scale_add2(&cur2, &drvec, 10.0f);
	}

	cur = save;
	cur2 = save2;
	for (i=0; i<=nrows*d; i++) {
		gridp->gpoints3[i] = cur;  // small, dark gridline points
		vm_vec_scale_add(&tvec, &cur, &drvec, (float) ncols * d);
		gridp->gpoints4[i] = tvec;
		vm_vec_add2(&cur, &dfvec);
	}

	for (i=0; i<=nrows2; i++) {
		gridp->gpoints7[i] = cur2;  // large, brighter gridline points
		vm_vec_scale_add(&tvec, &cur2, &drvec, (float) ncols2 * 10);
		gridp->gpoints8[i] = tvec;
		vm_vec_scale_add2(&cur2, &dfvec, 10.0f);
	}

	return gridp;
}

//	Create a nice grid -- centered at origin, 10x10, 10.0 size squares, in xz plane.
grid *create_default_grid(void)
{
	grid	*rgrid;
	vec3d	fvec, rvec, cvec;

	vm_vec_make(&fvec, 0.0f, 0.0f, 1.0f);
	vm_vec_make(&rvec, 1.0f, 0.0f, 0.0f);
	vm_vec_make(&cvec, 0.0f, 0.0f, 0.0f);

	rgrid = create_grid(&Global_grid, &fvec, &rvec, &cvec, 100, 100, 5.0f);

	physics_init(&rgrid->physics);
	return rgrid;
}

//	Rotate and project points and draw a line.
void rpd_line(vec3d *v0, vec3d *v1)
{
	vertex	tv0, tv1;

   	g3_rotate_vertex(&tv0, v0);
  	g3_rotate_vertex(&tv1, v1);
  	g3_draw_line(&tv0, &tv1);
}


void modify_grid(grid *gridp)
{
	create_grid(gridp, &gridp->gmatrix.vec.fvec, &gridp->gmatrix.vec.rvec, &gridp->center,
		gridp->nrows, gridp->ncols, gridp->square_size);
}

void grid_render_elevation_line(vec3d *pos, grid* gridp)
{
	vec3d	gpos;	//	Location of point on grid.
	vec3d	tpos;
	float		dxz;
	plane		tplane;
	vec3d	*gv;
	
	tplane.A = gridp->gmatrix.vec.uvec.xyz.x;
	tplane.B = gridp->gmatrix.vec.uvec.xyz.y;
	tplane.C = gridp->gmatrix.vec.uvec.xyz.z;
	tplane.D = gridp->planeD;

	compute_point_on_plane(&gpos, &tplane, pos);

	dxz = vm_vec_dist(pos, &gpos)/8.0f;

	gv = &gridp->gmatrix.vec.uvec;
	if (gv->xyz.x * pos->xyz.x + gv->xyz.y * pos->xyz.y + gv->xyz.z * pos->xyz.z < -gridp->planeD)
		gr_set_color(127, 127, 127);
	else
		gr_set_color(255, 255, 255);   // white

	rpd_line(&gpos, pos);	//	Line from grid to object center.

	tpos = gpos;

	vm_vec_scale_add2(&gpos, &gridp->gmatrix.vec.rvec, -dxz/2);
	vm_vec_scale_add2(&gpos, &gridp->gmatrix.vec.fvec, -dxz/2);
	
	vm_vec_scale_add2(&tpos, &gridp->gmatrix.vec.rvec, dxz/2);
	vm_vec_scale_add2(&tpos, &gridp->gmatrix.vec.fvec, dxz/2);
	
	rpd_line(&gpos, &tpos);

	vm_vec_scale_add2(&gpos, &gridp->gmatrix.vec.rvec, dxz);
	vm_vec_scale_add2(&tpos, &gridp->gmatrix.vec.rvec, -dxz);

	rpd_line(&gpos, &tpos);
}