1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
|
/*
* Copyright (C) Volition, Inc. 1999. All rights reserved.
*
* All source code herein is the property of Volition, Inc. You may not sell
* or otherwise commercially exploit the source or things you created based on the
* source.
*
*/
#define MODEL_LIB
#include "cmdline/cmdline.h"
#include "graphics/tmapper.h"
#include "math/fvi.h"
#include "math/vecmat.h"
#include "model/model.h"
#include "model/modelsinc.h"
#define TOL 1E-4
#define DIST_TOL 1.0
// Some global variables that get set by model_collide and are used internally for
// checking a collision rather than passing a bunch of parameters around. These are
// not persistant between calls to model_collide
static mc_info *Mc; // The mc_info passed into model_collide
static polymodel *Mc_pm; // The polygon model we're checking
static int Mc_submodel; // The current submodel we're checking
static polymodel_instance *Mc_pmi;
static matrix Mc_orient; // A matrix to rotate a world point into the current
// submodel's frame of reference.
static vec3d Mc_base; // A point used along with Mc_orient.
static vec3d Mc_p0; // The ray origin rotated into the current submodel's frame of reference
static vec3d Mc_p1; // The ray end rotated into the current submodel's frame of reference
static float Mc_mag; // The length of the ray
static vec3d Mc_direction; // A vector from the ray's origin to its end, in the current submodel's frame of reference
static vec3d **Mc_point_list = NULL; // A pointer to the current submodel's vertex list
static float Mc_edge_time;
void model_collide_free_point_list()
{
if (Mc_point_list != NULL) {
vm_free(Mc_point_list);
Mc_point_list = NULL;
}
}
// allocate the point list
// NOTE: SHOULD ONLY EVER BE CALLED FROM model_allocate_interp_data()!!!
void model_collide_allocate_point_list(int n_points)
{
Assert( n_points > 0 );
if (Mc_point_list != NULL) {
vm_free(Mc_point_list);
Mc_point_list = NULL;
}
Mc_point_list = (vec3d**) vm_malloc( sizeof(vec3d *) * n_points );
Verify( Mc_point_list != NULL );
}
// Returns non-zero if vector from p0 to pdir
// intersects the bounding box.
// hitpos could be NULL, so don't fill it if it is.
int mc_ray_boundingbox( vec3d *min, vec3d *max, vec3d * p0, vec3d *pdir, vec3d *hitpos )
{
vec3d tmp_hitpos;
if ( hitpos == NULL ) {
hitpos = &tmp_hitpos;
}
if ( Mc->flags & MC_CHECK_SPHERELINE ) {
// In the case of a sphere, just increase the size of the box by the radius
// of the sphere in all directions.
vec3d sphere_mod_min, sphere_mod_max;
sphere_mod_min.xyz.x = min->xyz.x - Mc->radius;
sphere_mod_max.xyz.x = max->xyz.x + Mc->radius;
sphere_mod_min.xyz.y = min->xyz.y - Mc->radius;
sphere_mod_max.xyz.y = max->xyz.y + Mc->radius;
sphere_mod_min.xyz.z = min->xyz.z - Mc->radius;
sphere_mod_max.xyz.z = max->xyz.z + Mc->radius;
return fvi_ray_boundingbox( &sphere_mod_min, &sphere_mod_max, p0, pdir, hitpos );
} else {
return fvi_ray_boundingbox( min, max, p0, pdir, hitpos );
}
}
// -----
// mc_check_face
// nv -- number of vertices
// verts -- actual vertices
// plane_pnt -- A point on the plane. Could probably use the first vertex.
// plane_norm -- normal of the plane
// uvl_list -- list of uv coords for the poly.
// ntmap -- The tmap index into the model's textures array.
//
// detects whether or not a vector has collided with a polygon. vector points stored in global
// Mc_p0 and Mc_p1. Results stored in global mc_info * Mc.
static void mc_check_face(int nv, vec3d **verts, vec3d *plane_pnt, float face_rad, vec3d *plane_norm, uv_pair *uvl_list, int ntmap, ubyte *poly, bsp_collision_leaf* bsp_leaf)
{
vec3d hit_point;
float dist;
float u, v;
// Check to see if poly is facing away from ray. If so, don't bother
// checking it.
if (vm_vec_dot(&Mc_direction,plane_norm) > 0.0f) {
return;
}
// Find the intersection of this ray with the plane that the poly
dist = fvi_ray_plane(NULL, plane_pnt, plane_norm, &Mc_p0, &Mc_direction, 0.0f);
if ( dist < 0.0f ) return; // If the ray is behind the plane there is no collision
if ( !(Mc->flags & MC_CHECK_RAY) && (dist > 1.0f) ) return; // The ray isn't long enough to intersect the plane
// If the ray hits, but a closer intersection has already been found, return
if ( Mc->num_hits && (dist >= Mc->hit_dist ) ) return;
// Find the hit point
vm_vec_scale_add( &hit_point, &Mc_p0, &Mc_direction, dist );
// Check to see if the point of intersection is on the plane. If so, this
// also finds the uv's where the ray hit.
if ( fvi_point_face(&hit_point, nv, verts, plane_norm, &u,&v, uvl_list ) ) {
Mc->hit_dist = dist;
Mc->hit_point = hit_point;
Mc->hit_submodel = Mc_submodel;
Mc->hit_normal = *plane_norm;
if ( uvl_list ) {
Mc->hit_u = u;
Mc->hit_v = v;
if ( ntmap < 0 ) {
Mc->hit_bitmap = -1;
} else {
Mc->hit_bitmap = Mc_pm->maps[ntmap].textures[TM_BASE_TYPE].GetTexture();
}
}
if(ntmap >= 0){
Mc->t_poly = poly;
Mc->f_poly = NULL;
} else {
Mc->t_poly = NULL;
Mc->f_poly = poly;
}
Mc->bsp_leaf = bsp_leaf;
// mprintf(( "Bing!\n" ));
Mc->num_hits++;
}
}
// ----------------------------------------------------------------------------------------------------------
// check face with spheres
//
// inputs: nv => number of vertices
// verts => array of vertices
// plane_pnt => center point in plane (about which radius is measured)
// face_rad => radius of face
// plane_norm => normal of face
static void mc_check_sphereline_face( int nv, vec3d ** verts, vec3d * plane_pnt, float face_rad, vec3d * plane_norm, uv_pair * uvl_list, int ntmap, ubyte *poly, bsp_collision_leaf *bsp_leaf)
{
vec3d hit_point;
float u, v;
float delta_t; // time sphere takes to cross from one side of plane to the other
float face_t; // time at which face touches plane
// NOTE all times are normalized so that t = 1.0 at the end of the frame
int check_face = 1; // assume we'll check the face.
int check_edges = 1; // assume we'll check the edges.
// Check to see if poly is facing away from ray. If so, don't bother
// checking it.
if (vm_vec_dot(&Mc_direction,plane_norm) > 0.0f) {
return;
}
// Find the intersection of this sphere with the plane of the poly
if ( !fvi_sphere_plane( &hit_point, &Mc_p0, &Mc_direction, Mc->radius, plane_norm, plane_pnt, &face_t, &delta_t ) ) {
return;
}
// If the ray is behind the plane there is no collision
if (face_t > 1.0f) {
check_face = 0;
check_edges = 0;
} else if (face_t < 0.0f) {
check_face = 0;
// check whether sphere can hit edge in allowed time range
if ( (face_t + delta_t) < 0.0f)
check_edges = 0;
}
// If the ray hits, but a closer intersection has already been found, don't check face
if ( Mc->num_hits && (face_t >= Mc->hit_dist ) ) {
check_face = 0; // The ray isn't long enough to intersect the plane
}
//vec3d temp_sphere;
//vec3d temp_dir;
//float temp_dist;
// DA 11/5/97 Above is used to test distance between hit_point and sphere_hit_point.
// This can be as large as 0.003 on a unit sphere. I suspect that with larger spheres,
// both the relative and absolute error decrease, but this should still be checked for the
// case of larger spheres (about 5-10 units). The error also depends on the geometry of the
// object we're colliding against, but I think to a lesser degree.
if ( check_face ) {
// Find the time of the sphere surface touches the plane
// If this is within the collision window, check to see if we hit a face
if ( fvi_point_face(&hit_point, nv, verts, plane_norm, &u, &v, uvl_list) ) {
Mc->hit_dist = face_t;
Mc->hit_point = hit_point;
Mc->hit_normal = *plane_norm;
Mc->hit_submodel = Mc_submodel;
Mc->edge_hit = 0;
if ( uvl_list ) {
Mc->hit_u = u;
Mc->hit_v = v;
if ( ntmap < 0 ) {
Mc->hit_bitmap = -1;
} else {
Mc->hit_bitmap = Mc_pm->maps[ntmap].textures[TM_BASE_TYPE].GetTexture();
}
}
if(ntmap >= 0){
Mc->t_poly = poly;
Mc->f_poly = NULL;
} else {
Mc->t_poly = NULL;
Mc->f_poly = poly;
}
Mc->bsp_leaf = bsp_leaf;
Mc->num_hits++;
check_edges = 0;
/*
vm_vec_scale_add( &temp_sphere, &Mc_p0, &Mc_direction, Mc->hit_dist );
temp_dist = vm_vec_dist( &temp_sphere, &hit_point );
if ( (temp_dist - DIST_TOL > Mc->radius) || (temp_dist + DIST_TOL < Mc->radius) ) {
// get Andsager
//mprintf(("Estimated radius error: Estimate %f, actual %f Mc->radius\n", temp_dist, Mc->radius));
}
vm_vec_sub( &temp_dir, &hit_point, &temp_sphere );
// Assert( vm_vec_dot( &temp_dir, &Mc_direction ) > 0 );
*/
}
}
if ( check_edges ) {
// Either (face_t) is out of range or we miss the face
// Check for sphere hitting edge
// If checking shields, we *still* need to check edges
// this is where we need another test to cull checking for edges
// PUT TEST HERE
// check each edge to see if we hit, find the closest edge
// Mc->hit_dist stores the best edge time of *all* faces
float sphere_time;
if ( fvi_polyedge_sphereline(&hit_point, &Mc_p0, &Mc_direction, Mc->radius, nv, verts, &sphere_time)) {
Assert( sphere_time >= 0.0f );
/*
vm_vec_scale_add( &temp_sphere, &Mc_p0, &Mc_direction, sphere_time );
temp_dist = vm_vec_dist( &temp_sphere, &hit_point );
if ( (temp_dist - DIST_TOL > Mc->radius) || (temp_dist + DIST_TOL < Mc->radius) ) {
// get Andsager
//mprintf(("Estimated radius error: Estimate %f, actual %f Mc->radius\n", temp_dist, Mc->radius));
}
vm_vec_sub( &temp_dir, &hit_point, &temp_sphere );
// Assert( vm_vec_dot( &temp_dir, &Mc_direction ) > 0 );
*/
if ( (Mc->num_hits==0) || (sphere_time < Mc->hit_dist) ) {
// This is closer than best so far
Mc->hit_dist = sphere_time;
Mc->hit_point = hit_point;
Mc->hit_submodel = Mc_submodel;
Mc->edge_hit = 1;
if ( ntmap < 0 ) {
Mc->hit_bitmap = -1;
} else {
Mc->hit_bitmap = Mc_pm->maps[ntmap].textures[TM_BASE_TYPE].GetTexture();
}
if(ntmap >= 0){
Mc->t_poly = poly;
Mc->f_poly = NULL;
} else {
Mc->t_poly = NULL;
Mc->f_poly = poly;
}
Mc->num_hits++;
// nprintf(("Physics", "edge sphere time: %f, normal: (%f, %f, %f) hit_point: (%f, %f, %f)\n", sphere_time,
// Mc->hit_normal.xyz.x, Mc->hit_normal.xyz.y, Mc->hit_normal.xyz.z,
// hit_point.xyz.x, hit_point.xyz.y, hit_point.xyz.z));
} else { // Not best so far
Assert(Mc->num_hits>0);
Mc->num_hits++;
}
}
}
}
// Point list
// +0 int id
// +4 int size
// +8 int n_verts
// +12 int n_norms
// +16 int offset from start of chunk to vertex data
// +20 n_verts*char norm_counts
// +offset vertex data. Each vertex n is a point followed by norm_counts[n] normals.
void model_collide_defpoints(ubyte * p)
{
int n;
int nverts = w(p+8);
int offset = w(p+16);
ubyte * normcount = p+20;
vec3d *src = vp(p+offset);
Assert( Mc_point_list != NULL );
for (n=0; n<nverts; n++ ) {
Mc_point_list[n] = src;
src += normcount[n]+1;
}
}
int model_collide_parse_bsp_defpoints(ubyte * p)
{
int n;
int nverts = w(p+8);
int offset = w(p+16);
ubyte * normcount = p+20;
vec3d *src = vp(p+offset);
model_collide_allocate_point_list(nverts);
Assert( Mc_point_list != NULL );
for (n=0; n<nverts; n++ ) {
Mc_point_list[n] = src;
src += normcount[n]+1;
}
return nverts;
}
// Flat Poly
// +0 int id
// +4 int size
// +8 vec3d normal
// +20 vec3d center
// +32 float radius
// +36 int nverts
// +40 byte red
// +41 byte green
// +42 byte blue
// +43 byte pad
// +44 nverts*int vertlist
void model_collide_flatpoly(ubyte * p)
{
int i;
int nv;
vec3d *points[TMAP_MAX_VERTS];
short *verts;
nv = w(p+36);
if ( nv <= 0 )
return;
if ( nv > TMAP_MAX_VERTS ) {
Int3();
return;
}
verts = (short *)(p+44);
for (i=0;i<nv;i++) {
points[i] = Mc_point_list[verts[i*2]];
}
if ( Mc->flags & MC_CHECK_SPHERELINE ) {
mc_check_sphereline_face(nv, points, vp(p+20), fl(p+32), vp(p+8), NULL, -1, p, NULL);
} else {
mc_check_face(nv, points, vp(p+20), fl(p+32), vp(p+8), NULL, -1, p, NULL);
}
}
// Textured Poly
// +0 int id
// +4 int size
// +8 vec3d normal
// +20 vec3d normal_point
// +32 int tmp = 0
// +36 int nverts
// +40 int tmap_num
// +44 nverts*(model_tmap_vert) vertlist (n,u,v)
void model_collide_tmappoly(ubyte * p)
{
int i;
int nv;
uv_pair uvlist[TMAP_MAX_VERTS];
vec3d *points[TMAP_MAX_VERTS];
model_tmap_vert *verts;
nv = w(p+36);
if ( nv <= 0 )
return;
if ( nv > TMAP_MAX_VERTS ) {
Int3();
return;
}
int tmap_num = w(p+40);
Assert(tmap_num >= 0 && tmap_num < MAX_MODEL_TEXTURES); // Goober5000
if ( (!(Mc->flags & MC_CHECK_INVISIBLE_FACES)) && (Mc_pm->maps[tmap_num].textures[TM_BASE_TYPE].GetTexture() < 0) ) {
// Don't check invisible polygons.
//SUSHI: Unless $collide_invisible is set.
if (!(Mc_pm->submodel[Mc_submodel].collide_invisible))
return;
}
verts = (model_tmap_vert *)(p+44);
for (i=0;i<nv;i++) {
points[i] = Mc_point_list[verts[i].vertnum];
uvlist[i].u = verts[i].u;
uvlist[i].v = verts[i].v;
}
if ( Mc->flags & MC_CHECK_SPHERELINE ) {
mc_check_sphereline_face(nv, points, vp(p+20), fl(p+32), vp(p+8), uvlist, tmap_num, p, NULL);
} else {
mc_check_face(nv, points, vp(p+20), fl(p+32), vp(p+8), uvlist, tmap_num, p, NULL);
}
}
// Sortnorms
// +0 int id
// +4 int size
// +8 vec3d normal
// +20 vec3d center
// +32 float radius
// 36 int front offset
// 40 int back offset
// 44 int prelist offset
// 48 int postlist offset
// 52 int online offset
int model_collide_sub( void *model_ptr );
void model_collide_sortnorm(ubyte * p)
{
int frontlist = w(p+36);
int backlist = w(p+40);
int prelist = w(p+44);
int postlist = w(p+48);
int onlist = w(p+52);
vec3d hitpos;
if ( Mc_pm->version >= 2000 ) {
if ( mc_ray_boundingbox( vp(p+56), vp(p+68), &Mc_p0, &Mc_direction, &hitpos) ) {
if ( !(Mc->flags & MC_CHECK_RAY) && (vm_vec_dist(&hitpos, &Mc_p0) > Mc_mag) ) {
return;
}
} else {
return;
}
}
if (prelist) model_collide_sub(p+prelist);
if (backlist) model_collide_sub(p+backlist);
if (onlist) model_collide_sub(p+onlist);
if (frontlist) model_collide_sub(p+frontlist);
if (postlist) model_collide_sub(p+postlist);
}
//calls the object interpreter to render an object. The object renderer
//is really a seperate pipeline. returns true if drew
int model_collide_sub(void *model_ptr )
{
ubyte *p = (ubyte *)model_ptr;
int chunk_type, chunk_size;
vec3d hitpos;
chunk_type = w(p);
chunk_size = w(p+4);
while (chunk_type != OP_EOF) {
// mprintf(( "Processing chunk type %d, len=%d\n", chunk_type, chunk_size ));
switch (chunk_type) {
case OP_DEFPOINTS: model_collide_defpoints(p); break;
case OP_FLATPOLY: model_collide_flatpoly(p); break;
case OP_TMAPPOLY: model_collide_tmappoly(p); break;
case OP_SORTNORM: model_collide_sortnorm(p); break;
case OP_BOUNDBOX:
if ( mc_ray_boundingbox( vp(p+8), vp(p+20), &Mc_p0, &Mc_direction, &hitpos ) ) {
if ( !(Mc->flags & MC_CHECK_RAY) && (vm_vec_dist(&hitpos, &Mc_p0) > Mc_mag) ) {
// The ray isn't long enough to intersect the bounding box
return 1;
}
} else {
return 1;
}
break;
default:
mprintf(( "Bad chunk type %d, len=%d in model_collide_sub\n", chunk_type, chunk_size ));
Int3(); // Bad chunk type!
return 0;
}
p += chunk_size;
chunk_type = w(p);
chunk_size = w(p+4);
}
return 1;
}
void model_collide_bsp_poly(bsp_collision_tree *tree, int leaf_index)
{
int i;
int tested_leaf = leaf_index;
uv_pair uvlist[TMAP_MAX_VERTS];
vec3d *points[TMAP_MAX_VERTS];
while ( tested_leaf >= 0 ) {
bsp_collision_leaf *leaf = &tree->leaf_list[tested_leaf];
bool flat_poly = false;
int vert_start = leaf->vert_start;
int nv = leaf->num_verts;
if ( leaf->tmap_num < MAX_MODEL_TEXTURES ) {
if ( (!(Mc->flags & MC_CHECK_INVISIBLE_FACES)) && (Mc_pm->maps[leaf->tmap_num].textures[TM_BASE_TYPE].GetTexture() < 0) ) {
// Don't check invisible polygons.
//SUSHI: Unless $collide_invisible is set.
if (!(Mc_pm->submodel[Mc_submodel].collide_invisible))
return;
}
} else {
flat_poly = true;
}
int vert_num;
for ( i = 0; i < nv; ++i ) {
vert_num = tree->vert_list[vert_start+i].vertnum;
points[i] = &tree->point_list[vert_num];
uvlist[i].u = tree->vert_list[vert_start+i].u;
uvlist[i].v = tree->vert_list[vert_start+i].v;
}
if ( flat_poly ) {
if ( Mc->flags & MC_CHECK_SPHERELINE ) {
mc_check_sphereline_face(nv, points, &leaf->plane_pnt, leaf->face_rad, &leaf->plane_norm, NULL, -1, NULL, leaf);
} else {
mc_check_face(nv, points, &leaf->plane_pnt, leaf->face_rad, &leaf->plane_norm, NULL, -1, NULL, leaf);
}
} else {
if ( Mc->flags & MC_CHECK_SPHERELINE ) {
mc_check_sphereline_face(nv, points, &leaf->plane_pnt, leaf->face_rad, &leaf->plane_norm, uvlist, leaf->tmap_num, NULL, leaf);
} else {
mc_check_face(nv, points, &leaf->plane_pnt, leaf->face_rad, &leaf->plane_norm, uvlist, leaf->tmap_num, NULL, leaf);
}
}
tested_leaf = leaf->next;
}
}
void model_collide_bsp(bsp_collision_tree *tree, int node_index)
{
if ( tree->node_list == NULL || tree->n_verts <= 0) {
return;
}
bsp_collision_node *node = &tree->node_list[node_index];
vec3d hitpos;
// check the bounding box of this node. if it passes, check left and right children
if ( mc_ray_boundingbox( &node->min, &node->max, &Mc_p0, &Mc_direction, &hitpos ) ) {
if ( !(Mc->flags & MC_CHECK_RAY) && (vm_vec_dist(&hitpos, &Mc_p0) > Mc_mag) ) {
// The ray isn't long enough to intersect the bounding box
return;
}
if ( node->leaf >= 0 ) {
model_collide_bsp_poly(tree, node->leaf);
} else {
if ( node->back >= 0 ) model_collide_bsp(tree, node->back);
if ( node->front >= 0 ) model_collide_bsp(tree, node->front);
}
}
}
void model_collide_parse_bsp_tmappoly(bsp_collision_leaf *leaf, SCP_vector<model_tmap_vert> *vert_buffer, void *model_ptr)
{
ubyte *p = (ubyte *)model_ptr;
int i;
int nv;
model_tmap_vert *verts;
nv = w(p+36);
if ( nv < 0 ) return;
if ( nv > TMAP_MAX_VERTS ) {
Int3();
return;
}
int tmap_num = w(p+40);
Assert(tmap_num >= 0 && tmap_num < MAX_MODEL_TEXTURES);
verts = (model_tmap_vert *)(p+44);
leaf->tmap_num = (ubyte)tmap_num;
leaf->num_verts = (ubyte)nv;
leaf->vert_start = vert_buffer->size();
vec3d *plane_pnt = vp(p+20);
float face_rad = fl(p+32);
vec3d *plane_norm = vp(p+8);
leaf->plane_pnt = *plane_pnt;
leaf->face_rad = face_rad;
leaf->plane_norm = *plane_norm;
for ( i = 0; i < nv; ++i ) {
vert_buffer->push_back(verts[i]);
}
}
void model_collide_parse_bsp_flatpoly(bsp_collision_leaf *leaf, SCP_vector<model_tmap_vert> *vert_buffer, void *model_ptr)
{
ubyte *p = (ubyte *)model_ptr;
int i;
int nv;
short *verts;
nv = w(p+36);
if ( nv < 0 ) return;
if ( nv > TMAP_MAX_VERTS ) {
Int3();
return;
}
verts = (short *)(p+44);
leaf->tmap_num = 255;
leaf->num_verts = (ubyte)nv;
leaf->vert_start = vert_buffer->size();
vec3d *plane_pnt = vp(p+20);
float face_rad = fl(p+32);
vec3d *plane_norm = vp(p+8);
leaf->plane_pnt = *plane_pnt;
leaf->face_rad = face_rad;
leaf->plane_norm = *plane_norm;
model_tmap_vert vert;
for ( i = 0; i < nv; ++i ) {
vert.vertnum = verts[i*2];
vert.normnum = 0;
vert.u = 0.0f;
vert.v = 0.0f;
vert_buffer->push_back(vert);
}
}
void model_collide_parse_bsp(bsp_collision_tree *tree, void *model_ptr, int version)
{
ubyte *p = (ubyte *)model_ptr;
ubyte *next_p;
int chunk_type = w(p);
int chunk_size = w(p+4);
int next_chunk_type;
int next_chunk_size;
Assert(chunk_type == OP_DEFPOINTS);
int n_verts = model_collide_parse_bsp_defpoints(p);
if ( n_verts <= 0) {
tree->point_list = NULL;
tree->n_verts = 0;
tree->n_nodes = 0;
tree->node_list = NULL;
tree->n_leaves = 0;
tree->leaf_list = NULL;
// finally copy the vert list.
tree->vert_list = NULL;
return;
}
p += chunk_size;
bsp_collision_node new_node;
bsp_collision_leaf new_leaf;
SCP_vector<bsp_collision_node> node_buffer;
SCP_vector<bsp_collision_leaf> leaf_buffer;
SCP_vector<model_tmap_vert> vert_buffer;
SCP_map<size_t, ubyte*> bsp_datap;
node_buffer.push_back(new_node);
size_t i = 0;
vec3d *min;
vec3d *max;
bsp_datap[i] = p;
while ( i < node_buffer.size() ) {
p = bsp_datap[i];
chunk_type = w(p);
chunk_size = w(p+4);
switch ( chunk_type ) {
case OP_SORTNORM:
if ( version >= 2000 ) {
min = vp(p+56);
max = vp(p+68);
node_buffer[i].min = *min;
node_buffer[i].max = *max;
}
node_buffer[i].leaf = -1;
node_buffer[i].front = -1;
node_buffer[i].back = -1;
if ( w(p+36) ) {
next_chunk_type = w(p+w(p+36));
if ( next_chunk_type != OP_EOF ) {
node_buffer.push_back(new_node);
node_buffer[i].front = (node_buffer.size() - 1);
bsp_datap[node_buffer[i].front] = p+w(p+36);
}
}
if ( w(p+40) ) {
next_chunk_type = w(p+w(p+40));
if ( next_chunk_type != OP_EOF ) {
node_buffer.push_back(new_node);
node_buffer[i].back = (node_buffer.size() - 1);
bsp_datap[node_buffer[i].back] = p+w(p+40);
}
}
next_p = p + chunk_size;
next_chunk_type = w(next_p);
Assert( next_chunk_type == OP_EOF );
++i;
break;
case OP_BOUNDBOX:
min = vp(p+8);
max = vp(p+20);
node_buffer[i].min = *min;
node_buffer[i].max = *max;
node_buffer[i].front = -1;
node_buffer[i].back = -1;
node_buffer[i].leaf = -1;
next_p = p + chunk_size;
next_chunk_type = w(next_p);
next_chunk_size = w(next_p+4);
if ( next_chunk_type != OP_EOF && (next_chunk_type == OP_TMAPPOLY || next_chunk_type == OP_FLATPOLY ) ) {
new_leaf.next = -1;
node_buffer[i].leaf = leaf_buffer.size(); // get index of where our poly list starts in the leaf buffer
while ( next_chunk_type != OP_EOF ) {
if ( next_chunk_type == OP_TMAPPOLY ) {
model_collide_parse_bsp_tmappoly(&new_leaf, &vert_buffer, next_p);
leaf_buffer.push_back(new_leaf);
leaf_buffer.back().next = leaf_buffer.size();
} else if ( next_chunk_type == OP_FLATPOLY ) {
model_collide_parse_bsp_flatpoly(&new_leaf, &vert_buffer, next_p);
leaf_buffer.push_back(new_leaf);
leaf_buffer.back().next = leaf_buffer.size();
} else {
Int3();
}
next_p += next_chunk_size;
next_chunk_type = w(next_p);
next_chunk_size = w(next_p+4);
}
leaf_buffer.back().next = -1;
}
Assert(next_chunk_type == OP_EOF);
++i;
break;
}
}
// copy point list
Assert(n_verts != -1);
tree->point_list = (vec3d*)vm_malloc(sizeof(vec3d) * n_verts);
for ( i = 0; i < (size_t)n_verts; ++i ) {
tree->point_list[i] = *Mc_point_list[i];
}
tree->n_verts = n_verts;
// copy node info. this might be a good time to organize the nodes into a cache efficient tree layout.
tree->n_nodes = node_buffer.size();
tree->node_list = (bsp_collision_node*)vm_malloc(sizeof(bsp_collision_node) * node_buffer.size());
memcpy(tree->node_list, &node_buffer[0], sizeof(bsp_collision_node) * node_buffer.size());
node_buffer.clear();
// copy leaves.
tree->n_leaves = leaf_buffer.size();
tree->leaf_list = (bsp_collision_leaf*)vm_malloc(sizeof(bsp_collision_leaf) * leaf_buffer.size());
memcpy(tree->leaf_list, &leaf_buffer[0], sizeof(bsp_collision_leaf) * leaf_buffer.size());
leaf_buffer.clear();
// finally copy the vert list.
tree->vert_list = (model_tmap_vert*)vm_malloc(sizeof(model_tmap_vert) * vert_buffer.size());
memcpy(tree->vert_list, &vert_buffer[0], sizeof(model_tmap_vert) * vert_buffer.size());
vert_buffer.clear();
}
bool mc_shield_check_common(shield_tri *tri)
{
vec3d * points[3];
vec3d hitpoint;
float dist;
float sphere_check_closest_shield_dist = FLT_MAX;
// Check to see if Mc_pmly is facing away from ray. If so, don't bother
// checking it.
if (vm_vec_dot(&Mc_direction,&tri->norm) > 0.0f) {
return false;
}
// get the vertices in the form the next function wants them
for (int j = 0; j < 3; j++ )
points[j] = &Mc_pm->shield.verts[tri->verts[j]].pos;
if (!(Mc->flags & MC_CHECK_SPHERELINE) ) { // Don't do this test for sphere colliding against shields
// Find the intersection of this ray with the plane that the Mc_pmly
// lies in
dist = fvi_ray_plane(NULL, points[0],&tri->norm,&Mc_p0,&Mc_direction,0.0f);
if ( dist < 0.0f ) return false; // If the ray is behind the plane there is no collision
if ( !(Mc->flags & MC_CHECK_RAY) && (dist > 1.0f) ) return false; // The ray isn't long enough to intersect the plane
// Find the hit Mc_pmint
vm_vec_scale_add( &hitpoint, &Mc_p0, &Mc_direction, dist );
// Check to see if the Mc_pmint of intersection is on the plane. If so, this
// also finds the uv's where the ray hit.
if ( fvi_point_face(&hitpoint, 3, points, &tri->norm, NULL,NULL,NULL ) ) {
Mc->hit_dist = dist;
Mc->shield_hit_tri = tri - Mc_pm->shield.tris;
Mc->hit_point = hitpoint;
Mc->hit_normal = tri->norm;
Mc->hit_submodel = -1;
Mc->num_hits++;
return true; // We hit, so we're done
}
} else { // Sphere check against shield
// This needs to look at *all* shield tris and not just return after the first hit
// HACK HACK!! The 10000.0 is the face radius, I didn't know this,
// so I'm assume 10000 would be as big as ever.
mc_check_sphereline_face(3, points, points[0], 10000.0f, &tri->norm, NULL, 0, NULL, NULL);
if (Mc->num_hits && Mc->hit_dist < sphere_check_closest_shield_dist) {
// same behavior whether face or edge
// normal, edge_hit, hit_point all updated thru sphereline_face
sphere_check_closest_shield_dist = Mc->hit_dist;
Mc->shield_hit_tri = tri - Mc_pm->shield.tris;
Mc->hit_submodel = -1;
Mc->num_hits++;
return true; // We hit, so we're done
}
} // Mc->flags & MC_CHECK_SPHERELINE else
return false;
}
bool mc_check_sldc(int offset)
{
if (offset > Mc_pm->sldc_size-5) //no way is this big enough
return false;
char *type_p = (char *)(Mc_pm->shield_collision_tree+offset);
// not used
//int *size_p = (int *)(Mc_pm->shield_collision_tree+offset+1);
// split and polygons
vec3d *minbox_p = (vec3d*)(Mc_pm->shield_collision_tree+offset+5);
vec3d *maxbox_p = (vec3d*)(Mc_pm->shield_collision_tree+offset+17);
// split
unsigned int *front_offset_p = (unsigned int*)(Mc_pm->shield_collision_tree+offset+29);
unsigned int *back_offset_p = (unsigned int*)(Mc_pm->shield_collision_tree+offset+33);
// polygons
unsigned int *num_polygons_p = (unsigned int*)(Mc_pm->shield_collision_tree+offset+29);
unsigned int *shld_polys = (unsigned int*)(Mc_pm->shield_collision_tree+offset+33);
// see if it fits inside our bbox
if (!mc_ray_boundingbox( minbox_p, maxbox_p, &Mc_p0, &Mc_direction, NULL )) {
return false;
}
if (*type_p == 0) // SPLIT
{
return mc_check_sldc(offset+*front_offset_p) || mc_check_sldc(offset+*back_offset_p);
}
else
{
// poly list
shield_tri * tri;
for (unsigned int i = 0; i < *num_polygons_p; i++)
{
tri = &Mc_pm->shield.tris[shld_polys[i]];
mc_shield_check_common(tri);
} // for (unsigned int i = 0; i < leaf->num_polygons; i++)
}
// shouldn't be reached
return false;
}
// checks a vector collision against a ships shield (if it has shield points defined).
void mc_check_shield()
{
int i;
if ( Mc_pm->shield.ntris < 1 )
return;
if (Mc_pm->shield_collision_tree)
{
mc_check_sldc(0); // see if we hit the SLDC
}
else
{
int o;
for (o=0; o<8; o++ ) {
model_octant * poct1 = &Mc_pm->octants[o];
if (!mc_ray_boundingbox( &poct1->min, &poct1->max, &Mc_p0, &Mc_direction, NULL )) {
continue;
}
for (i = 0; i < poct1->nshield_tris; i++) {
shield_tri * tri = poct1->shield_tris[i];
mc_shield_check_common(tri);
}
}
}//model has shield_collsion_tree
}
// This function recursively checks a submodel and its children
// for a collision with a vector.
void mc_check_subobj( int mn )
{
vec3d tempv;
vec3d hitpt; // used in bounding box check
bsp_info * sm;
int i;
Assert( mn >= 0 );
Assert( mn < Mc_pm->n_models );
if ( (mn < 0) || (mn>=Mc_pm->n_models) ) return;
sm = &Mc_pm->submodel[mn];
if (sm->no_collisions) return; // don't do collisions
if (sm->nocollide_this_only) goto NoHit; // Don't collide for this model, but keep checking others
// Rotate the world check points into the current subobject's
// frame of reference.
// After this block, Mc_p0, Mc_p1, Mc_direction, and Mc_mag are correct
// and relative to this subobjects' frame of reference.
vm_vec_sub(&tempv, Mc->p0, &Mc_base);
vm_vec_rotate(&Mc_p0, &tempv, &Mc_orient);
vm_vec_sub(&tempv, Mc->p1, &Mc_base);
vm_vec_rotate(&Mc_p1, &tempv, &Mc_orient);
vm_vec_sub(&Mc_direction, &Mc_p1, &Mc_p0);
// bail early if no ray exists
if ( IS_VEC_NULL(&Mc_direction) ) {
return;
}
if (Mc_pm->detail[0] == mn) {
// Quickly bail if we aren't inside the full model bbox
if (!mc_ray_boundingbox( &Mc_pm->mins, &Mc_pm->maxs, &Mc_p0, &Mc_direction, NULL)) {
return;
}
// If we are checking the root submodel, then we might want to check
// the shield at this point
if ((Mc->flags & MC_CHECK_SHIELD) && (Mc_pm->shield.ntris > 0 )) {
mc_check_shield();
return;
}
}
if (!(Mc->flags & MC_CHECK_MODEL)) {
return;
}
Mc_submodel = mn;
// Check if the ray intersects this subobject's bounding box
if ( mc_ray_boundingbox(&sm->min, &sm->max, &Mc_p0, &Mc_direction, &hitpt) ) {
if (Mc->flags & MC_ONLY_BOUND_BOX) {
float dist = vm_vec_dist( &Mc_p0, &hitpt );
// If the ray is behind the plane there is no collision
if (dist < 0.0f) {
goto NoHit;
}
// The ray isn't long enough to intersect the plane
if ( !(Mc->flags & MC_CHECK_RAY) && (dist > Mc_mag) ) {
goto NoHit;
}
// If the ray hits, but a closer intersection has already been found, return
if ( Mc->num_hits && (dist >= Mc->hit_dist) ) {
goto NoHit;
}
Mc->hit_dist = dist;
Mc->hit_point = hitpt;
Mc->hit_submodel = Mc_submodel;
Mc->hit_bitmap = -1;
Mc->num_hits++;
} else {
// The ray intersects this bounding box, so we have to check all the
// polygons in this submodel.
if ( Cmdline_old_collision_sys ) {
model_collide_sub(sm->bsp_data);
} else {
if (Mc->lod > 0 && sm->num_details > 0) {
bsp_info *lod_sm = sm;
for (i = Mc->lod - 1; i >= 0; i--) {
if (sm->details[i] != -1) {
lod_sm = &Mc_pm->submodel[sm->details[i]];
//mprintf(("Checking %s collision for %s using %s instead\n", Mc_pm->filename, sm->name, lod_sm->name));
break;
}
}
model_collide_bsp(model_get_bsp_collision_tree(lod_sm->collision_tree_index), 0);
} else {
model_collide_bsp(model_get_bsp_collision_tree(sm->collision_tree_index), 0);
}
}
}
}
NoHit:
// If we're only checking one submodel, return
if (Mc->flags & MC_SUBMODEL) {
return;
}
// If this subobject doesn't have any children, we're done checking it.
if ( sm->num_children < 1 ) return;
// Save instance (Mc_orient, Mc_base, Mc_point_base)
matrix saved_orient = Mc_orient;
vec3d saved_base = Mc_base;
// Check all of this subobject's children
i = sm->first_child;
while ( i >= 0 ) {
angles angs;
bool blown_off;
bool collision_checked;
bsp_info * csm = &Mc_pm->submodel[i];
if ( Mc_pmi ) {
angs = Mc_pmi->submodel[i].angs;
blown_off = Mc_pmi->submodel[i].blown_off;
collision_checked = Mc_pmi->submodel[i].collision_checked;
} else {
angs = csm->angs;
blown_off = csm->blown_off ? true : false;
collision_checked = false;
}
// Don't check it or its children if it is destroyed
// or if it's set to no collision
if ( !blown_off && !collision_checked && !csm->no_collisions ) {
if ( Mc_pmi ) {
Mc_orient = Mc_pmi->submodel[i].mc_orient;
Mc_base = Mc_pmi->submodel[i].mc_base;
vm_vec_add2(&Mc_base, Mc->pos);
} else {
//instance for this subobject
matrix tm = IDENTITY_MATRIX;
vm_vec_unrotate(&Mc_base, &csm->offset, &saved_orient );
vm_vec_add2(&Mc_base, &saved_base );
if( vm_matrix_same(&tm, &csm->orientation)) {
// if submodel orientation matrix is identity matrix then don't bother with matrix ops
vm_angles_2_matrix(&tm, &angs);
} else {
matrix rotation_matrix = csm->orientation;
vm_rotate_matrix_by_angles(&rotation_matrix, &angs);
matrix inv_orientation;
vm_copy_transpose(&inv_orientation, &csm->orientation);
vm_matrix_x_matrix(&tm, &rotation_matrix, &inv_orientation);
}
vm_matrix_x_matrix(&Mc_orient, &saved_orient, &tm);
}
mc_check_subobj( i );
}
i = csm->next_sibling;
}
}
MONITOR(NumFVI)
// See model.h for usage. I don't want to put the
// usage here because you need to see the #defines and structures
// this uses while reading the help.
int model_collide(mc_info *mc_info_obj)
{
Mc = mc_info_obj;
MONITOR_INC(NumFVI,1);
Mc->num_hits = 0; // How many collisions were found
Mc->shield_hit_tri = -1; // Assume we won't hit any shield polygons
Mc->hit_bitmap = -1;
Mc->edge_hit = 0;
if ( (Mc->flags & MC_CHECK_SHIELD) && (Mc->flags & MC_CHECK_MODEL) ) {
Error( LOCATION, "Checking both shield and model!\n" );
return 0;
}
//Fill in some global variables that all the model collide routines need internally.
Mc_pm = model_get(Mc->model_num);
Mc_orient = *Mc->orient;
Mc_base = *Mc->pos;
Mc_mag = vm_vec_dist( Mc->p0, Mc->p1 );
Mc_edge_time = FLT_MAX;
if ( Mc->model_instance_num >= 0 ) {
Mc_pmi = model_get_instance(Mc->model_instance_num);
} else {
Mc_pmi = NULL;
}
// DA 11/19/98 - disable this check for rotating submodels
// Don't do check if for very small movement
// if (Mc_mag < 0.01f) {
// return 0;
// }
float model_radius; // How big is the model we're checking against
int first_submodel; // Which submodel gets returned as hit if MC_ONLY_SPHERE specified
if ( (Mc->flags & MC_SUBMODEL) || (Mc->flags & MC_SUBMODEL_INSTANCE) ) {
first_submodel = Mc->submodel_num;
model_radius = Mc_pm->submodel[first_submodel].rad;
} else {
first_submodel = Mc_pm->detail[0];
model_radius = Mc_pm->rad;
}
if ( Mc->flags & MC_CHECK_SPHERELINE ) {
if ( Mc->radius <= 0.0f ) {
Warning(LOCATION, "Attempting to collide with a sphere, but the sphere's radius is <= 0.0f!\n\n(model file is %s; submodel is %d, mc_flags are %d)", Mc_pm->filename, first_submodel, Mc->flags);
return 0;
}
// Do a quick check on the Bounding Sphere
if (fvi_segment_sphere(&Mc->hit_point_world, Mc->p0, Mc->p1, Mc->pos, model_radius+Mc->radius) ) {
if ( Mc->flags & MC_ONLY_SPHERE ) {
Mc->hit_point = Mc->hit_point_world;
Mc->hit_submodel = first_submodel;
Mc->num_hits++;
return (Mc->num_hits > 0);
}
// continue checking polygons.
} else {
return 0;
}
} else {
int r;
// Do a quick check on the Bounding Sphere
if ( Mc->flags & MC_CHECK_RAY ) {
r = fvi_ray_sphere(&Mc->hit_point_world, Mc->p0, Mc->p1, Mc->pos, model_radius);
} else {
r = fvi_segment_sphere(&Mc->hit_point_world, Mc->p0, Mc->p1, Mc->pos, model_radius);
}
if (r) {
if ( Mc->flags & MC_ONLY_SPHERE ) {
Mc->hit_point = Mc->hit_point_world;
Mc->hit_submodel = first_submodel;
Mc->num_hits++;
return (Mc->num_hits > 0);
}
// continue checking polygons.
} else {
return 0;
}
}
if ( Mc->flags & MC_SUBMODEL ) {
// Check only one subobject
mc_check_subobj( Mc->submodel_num );
// Check submodel and any children
} else if (Mc->flags & MC_SUBMODEL_INSTANCE) {
mc_check_subobj(Mc->submodel_num);
} else {
// Check all the the highest detail model polygons and subobjects for intersections
// Don't check it or its children if it is destroyed
if (!Mc_pm->submodel[Mc_pm->detail[0]].blown_off) {
mc_check_subobj( Mc_pm->detail[0] );
}
}
//If we found a hit, then rotate it into world coordinates
if ( Mc->num_hits ) {
if ( Mc->flags & MC_SUBMODEL ) {
// If we're just checking one submodel, don't use normal instancing to find world points
vm_vec_unrotate(&Mc->hit_point_world, &Mc->hit_point, Mc->orient);
vm_vec_add2(&Mc->hit_point_world, Mc->pos);
} else {
if ( Mc_pmi ) {
model_instance_find_world_point(&Mc->hit_point_world, &Mc->hit_point, Mc->model_instance_num, Mc->hit_submodel, Mc->orient, Mc->pos);
} else {
model_find_world_point(&Mc->hit_point_world, &Mc->hit_point, Mc->model_num, Mc->hit_submodel, Mc->orient, Mc->pos);
}
}
}
return Mc->num_hits;
}
void model_collide_preprocess_subobj(vec3d *pos, matrix *orient, polymodel *pm, polymodel_instance *pmi, int subobj_num)
{
submodel_instance *smi = &pmi->submodel[subobj_num];
smi->mc_base = *pos;
smi->mc_orient = *orient;
int i = pm->submodel[subobj_num].first_child;
while ( i >= 0 ) {
angles angs = pmi->submodel[i].angs;
bsp_info * csm = &pm->submodel[i];
matrix tm = IDENTITY_MATRIX;
vm_vec_unrotate(pos, &csm->offset, &smi->mc_orient );
vm_vec_add2(pos, &smi->mc_base);
if( vm_matrix_same(&tm, &csm->orientation)) {
// if submodel orientation matrix is identity matrix then don't bother with matrix ops
vm_angles_2_matrix(&tm, &angs);
} else {
matrix rotation_matrix = csm->orientation;
vm_rotate_matrix_by_angles(&rotation_matrix, &angs);
matrix inv_orientation;
vm_copy_transpose(&inv_orientation, &csm->orientation);
vm_matrix_x_matrix(&tm, &rotation_matrix, &inv_orientation);
}
vm_matrix_x_matrix(orient, &smi->mc_orient, &tm);
model_collide_preprocess_subobj(pos, orient, pm, pmi, i);
i = csm->next_sibling;
}
}
void model_collide_preprocess(matrix *orient, int model_instance_num, int detail_num)
{
polymodel_instance *pmi;
polymodel *pm;
pmi = model_get_instance(model_instance_num);
pm = model_get(pmi->model_num);
matrix current_orient;
vec3d current_pos;
current_orient = *orient;
vm_vec_zero(¤t_pos);
model_collide_preprocess_subobj(¤t_pos, ¤t_orient, pm, pmi, pm->detail[detail_num]);
}
|