1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
/*
* Copyright (C) Volition, Inc. 1999. All rights reserved.
*
* All source code herein is the property of Volition, Inc. You may not sell
* or otherwise commercially exploit the source or things you created based on the
* source.
*
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#define ENCRYPT_NEW // new, better encryption scheme
#include "globalincs/pstypes.h"
#include "parse/encrypt.h"
#if BYTE_ORDER == BIG_ENDIAN
const uint Encrypt_new_signature = 0x551a335c; // new encrpytion
const uint Encrypt_signature = 0xefbeadde; // full encryption
#else
const uint Encrypt_new_signature = 0x5c331a55; // new encryption
const uint Encrypt_signature = 0xdeadbeef; // full encryption
#endif
const uint Encrypt_signature_8bit = 0xcacacaca; // light encryption - doesn't use 7bit chars
int Encrypt_inited = 0;
// new encryption
void encrypt_new(char *text, int text_len, char *scrambled_text, int *scrambled_len);
void unencrypt_new(char *scrambled_text, int scrambled_len, char *text, int *text_len);
// update cur_seed with the chksum of the new_data of size new_data_size
ushort chksum_add_short(ushort seed, char *buffer, int size)
{
ubyte * ptr = (ubyte *)buffer;
unsigned int sum1,sum2;
sum1 = sum2 = (int)(seed);
while(size--) {
sum1 += *ptr++;
if (sum1 >= 255 ) sum1 -= 255;
sum2 += sum1;
}
sum2 %= 255;
return (unsigned short)((sum1<<8)+ sum2);
}
// scramble text data
//
// input: text => ascii data to be scrambled
// text_len => number of bytes of ascii data to scramble
// scrambled_text => storage for scrambled text (malloc at least text_len)
// scrambled_len => size of text after getting scrambled
// use_8bit => flag to indicate that chars are stored using 8 bits (default value is 0)
// new_encrypt => flag to switch between old and new encryption styles (default = yes)
void encrypt(char *text, int text_len, char *scrambled_text, int *scrambled_len, int use_8bit, bool new_encrypt)
{
#ifdef ENCRYPT_NEW
// new_encrypt, when set, is for FS2 style encryption
// when not set it's either of two FS1 styles, 8bit or 7bit
if (new_encrypt == true) {
encrypt_new(text, text_len, scrambled_text, scrambled_len);
return;
}
#endif
int i;
int byte_offset = 0;
int bit_offset = 0;
*scrambled_len = 0;
// Identify encrypted files with a unique signature
if (use_8bit) {
memcpy(scrambled_text, &Encrypt_signature_8bit, 4);
} else {
memcpy(scrambled_text, &Encrypt_signature, 4);
}
byte_offset = 4;
// First stage: packing chars into 7 bit boundries
for ( i =0; i < text_len; i++ ) {
// account for wacky apostrophe that has ascii code 0x92
if ( (unsigned char)text[i] == 0x92 ) {
text[i] = 0x27;
}
if (use_8bit) {
scrambled_text[byte_offset++] = text[i];
} else {
switch(bit_offset) {
case 0:
scrambled_text[byte_offset] = (char)((text[i] << 1) & 0xfe);
bit_offset = 7;
break;
case 1:
scrambled_text[byte_offset] &= 0x80; // clear out bottom 7 bits
scrambled_text[byte_offset] |= (text[i] & 0x7F);
byte_offset++;
bit_offset = 0;
break;
case 2:
scrambled_text[byte_offset] &= 0xc0; // clear out bottom 6 bits
scrambled_text[byte_offset] |= ((text[i] >> 1) & 0x3F); // put in top 6 bits
byte_offset++;
scrambled_text[byte_offset] = (char)((text[i] << 7) & 0x80); // put in last bit
bit_offset = 1;
break;
case 3:
scrambled_text[byte_offset] &= 0xe0; // clear out bottom 5 bits
scrambled_text[byte_offset] |= ((text[i] >> 2) & 0x1F); // put in top 5 bits
byte_offset++;
scrambled_text[byte_offset] = (char)((text[i] << 6) & 0xc0); // put in last two bits
bit_offset = 2;
break;
case 4:
scrambled_text[byte_offset] &= 0xf0; // clear out bottom 4 bits
scrambled_text[byte_offset] |= ((text[i] >> 3) & 0x0F); // put in top 4 bits
byte_offset++;
scrambled_text[byte_offset] = (char)((text[i] << 5) & 0xe0); // put in last three bits
bit_offset = 3;
break;
case 5:
scrambled_text[byte_offset] &= 0xf8; // clear out bottom 3 bits
scrambled_text[byte_offset] |= ((text[i] >> 4) & 0x07); // put in top 3 bits
byte_offset++;
scrambled_text[byte_offset] = (char)((text[i] << 4) & 0xf0); // put in last four bits
bit_offset = 4;
break;
case 6:
scrambled_text[byte_offset] &= 0xfc; // clear out bottom 2 bits
scrambled_text[byte_offset] |= ((text[i] >> 5) & 0x03); // put in top 2 bits
byte_offset++;
scrambled_text[byte_offset] = (char)((text[i] << 3) & 0xf8); // put in last five bits
bit_offset = 5;
break;
case 7:
scrambled_text[byte_offset] &= 0xfe; // clear out bottom bit
scrambled_text[byte_offset] |= ((text[i] >> 6) & 0x01); // put in top bit
byte_offset++;
scrambled_text[byte_offset] = (char)((text[i] << 2) & 0xfc); // put in last six bits
bit_offset = 6;
break;
default:
return;
}
}
}
if ( bit_offset > 0 ) {
byte_offset++;
}
*scrambled_len = byte_offset;
// Second stage: XOR with offset into file (skip signature)
scrambled_text += 4;
int len = *scrambled_len - 4;
for ( i =0; i < len; i++ ) {
scrambled_text[i] ^= i;
}
}
// input: scrambled_text => scrambled text
// scrambled_len => number of bytes of scrambled text
// text => storage for unscrambled ascii data
// text_len => actual number of bytes of unscrambled data
void unencrypt(char *scrambled_text, int scrambled_len, char *text, int *text_len)
{
#ifdef ENCRYPT_NEW
// check if we are an old FS1 style encryption before moving to new type
if ( !is_old_encrypt(scrambled_text) ) {
unencrypt_new(scrambled_text, scrambled_len, text, text_len);
return;
}
#endif
int i, num_runs;
int scramble_offset = 0;
int byte_offset = 0;
char maybe_last = 0;
uint encrypt_id;
// Only decrypt files that start with unique signature
memcpy(&encrypt_id, scrambled_text, 4);
if ( (encrypt_id != Encrypt_signature) && (encrypt_id != Encrypt_signature_8bit) ) {
memcpy(text, scrambled_text, scrambled_len);
*text_len = scrambled_len;
return;
}
scrambled_text += 4;
scrambled_len -= 4;
// First decrypt stage: undo XOR operation
for ( i =0; i < scrambled_len; i++ ) {
scrambled_text[i] ^= i;
}
if (encrypt_id == Encrypt_signature_8bit) {
memcpy(text, scrambled_text, scrambled_len);
*text_len = scrambled_len;
return;
}
// Second decrypt stage: remove chars from 7 bit packing to 8 bit boundries
num_runs = (int) (scrambled_len / 7.0f );
if ( scrambled_len % 7 ) {
num_runs++;
}
for ( i =0; i < num_runs; i++ ) {
// a run consists of 8 chars packed into 56 bits (instead of 64)
text[byte_offset] = (char)((scrambled_text[scramble_offset] >> 1) & 0x7f);
byte_offset++;
scramble_offset++;
if ( scramble_offset >= scrambled_len ) {
break;
}
text[byte_offset] = (char)((scrambled_text[scramble_offset] >> 2) & 0x3f);
text[byte_offset] |= ( (scrambled_text[scramble_offset-1] << 6) & 0x40 );
byte_offset++;
scramble_offset++;
if ( scramble_offset >= scrambled_len ) {
break;
}
text[byte_offset] = (char)((scrambled_text[scramble_offset] >> 3) & 0x1f);
text[byte_offset] |= ( (scrambled_text[scramble_offset-1] << 5) & 0x60 );
byte_offset++;
scramble_offset++;
if ( scramble_offset >= scrambled_len ) {
break;
}
text[byte_offset] = (char)((scrambled_text[scramble_offset] >> 4) & 0x0f);
text[byte_offset] |= ( (scrambled_text[scramble_offset-1] << 4) & 0x70 );
byte_offset++;
scramble_offset++;
if ( scramble_offset >= scrambled_len ) {
break;
}
text[byte_offset] = (char)((scrambled_text[scramble_offset] >> 5) & 0x07);
text[byte_offset] |= ( (scrambled_text[scramble_offset-1] << 3) & 0x78 );
byte_offset++;
scramble_offset++;
if ( scramble_offset >= scrambled_len ) {
break;
}
text[byte_offset] = (char)((scrambled_text[scramble_offset] >> 6) & 0x03);
text[byte_offset] |= ( (scrambled_text[scramble_offset-1] << 2) & 0x7c );
byte_offset++;
scramble_offset++;
if ( scramble_offset >= scrambled_len ) {
break;
}
text[byte_offset] = (char)((scrambled_text[scramble_offset] >> 7) & 0x01);
text[byte_offset] |= ( (scrambled_text[scramble_offset-1] << 1) & 0x7e );
byte_offset++;
maybe_last = (char)(scrambled_text[scramble_offset] & 0x7f);
if ( maybe_last > 0 ) {
text[byte_offset] = maybe_last;
byte_offset++;
scramble_offset++;
}
}
*text_len = byte_offset;
}
#define NUM_LVL1_KEYS 11
ushort Lvl1_keys[NUM_LVL1_KEYS] = {
0xa820, 0x71f0,
0x88da, 0x1fff,
0x2718, 0xe6a1,
0x42b8, 0x0ce9,
0x10ec, 0xd77d,
0x3fa9
};
// scramble text data
//
// input: text => ascii data to be scrambled
// text_len => number of bytes of ascii data to scramble
// scrambled_text => storage for scrambled text (malloc at least text_len)
// scrambled_len => size of text after getting scrambled
void encrypt_new(char *text, int text_len, char *scrambled_text, int *scrambled_len)
{
ushort lvl1_block[NUM_LVL1_KEYS * 2];
ushort block_checksum;
int block_size, idx;
// add the encryption signature
memcpy(scrambled_text, &Encrypt_new_signature, 4);
// go through and read in chunks of NUM_LVL1_KEYS * 2 bytes
block_checksum = 0xffff;
*scrambled_len = 0;
while(*scrambled_len < text_len){
// if we have less than one block left
if((text_len - *scrambled_len) < (NUM_LVL1_KEYS * 2)){
memcpy(lvl1_block, text + *scrambled_len, text_len - *scrambled_len);
block_size = text_len - *scrambled_len;
}
// if we have at least one full block left
else {
memcpy(lvl1_block, text + *scrambled_len, NUM_LVL1_KEYS * 2); //-V512
block_size = NUM_LVL1_KEYS * 2;
}
// run the lvl1 over the block
for(idx=0; idx<block_size/2; idx++){
// the base key with the running checksum from the _last_ block
lvl1_block[idx] ^= (Lvl1_keys[idx] ^ block_checksum);
}
// the running checksum
block_checksum = chksum_add_short(block_checksum, (char*)lvl1_block, block_size);
// copy into the outgoing buffer
memcpy(scrambled_text + *scrambled_len + 4, lvl1_block, block_size);
*scrambled_len += block_size;
}
// add the 4 bytes for the header
*scrambled_len += 4;
}
// input: scrambled_text => scrambled text
// scrambled_len => number of bytes of scrambled text
// text => storage for unscrambled ascii data
// text_len => actual number of bytes of unscrambled data
void unencrypt_new(char *scrambled_text, int scrambled_len, char *text, int *text_len)
{
ushort lvl1_block[NUM_LVL1_KEYS * 2];
ushort lvl1_block_copy[NUM_LVL1_KEYS * 2];
ushort block_checksum;
int block_size, idx;
uint encrypt_id;
// Only decrypt files that start with unique signature
memcpy(&encrypt_id, scrambled_text, 4);
if (encrypt_id != Encrypt_new_signature) {
memcpy(text, scrambled_text, scrambled_len);
*text_len = scrambled_len;
return;
}
// go through and read in chunks of NUM_LVL1_KEYS * 2 bytes
*text_len = 0;
scrambled_text += 4;
scrambled_len -= 4;
block_checksum = 0xffff;
while(*text_len < scrambled_len){
// if we have less than one block left
if((scrambled_len - *text_len) < (NUM_LVL1_KEYS * 2)){
memcpy(lvl1_block, scrambled_text + *text_len, scrambled_len - *text_len);
block_size = scrambled_len - *text_len;
}
// if we have at least one full block left
else {
memcpy(lvl1_block, scrambled_text + *text_len, NUM_LVL1_KEYS * 2); //-V512
block_size = NUM_LVL1_KEYS * 2;
}
// copy the block so that we can properly calculate the next running checksum
memcpy(lvl1_block_copy, lvl1_block, block_size);
// run the lvl1 over the block
for(idx=0; idx<block_size/2; idx++){
lvl1_block[idx] ^= (Lvl1_keys[idx] ^ block_checksum);
}
// the running checksum
block_checksum = chksum_add_short(block_checksum, (char*)lvl1_block_copy, block_size);
// copy into the outgoing buffer
memcpy(text + *text_len, lvl1_block, block_size);
*text_len += block_size;
}
}
// Return 1 if the data is encrypted, otherwise return 0
int is_encrypted(char *scrambled_text)
{
uint encrypt_id;
memcpy(&encrypt_id, scrambled_text, 4);
if ( (encrypt_id == Encrypt_signature) || (encrypt_id == Encrypt_signature_8bit) || (encrypt_id == Encrypt_new_signature)) {
return 1;
}
return 0;
}
// Returns 1 if the data uses a FS1 style encryption, 0 if FS2 style
int is_old_encrypt(char *scrambled_text)
{
uint encrypt_id;
memcpy(&encrypt_id, scrambled_text, 4);
if ( (encrypt_id == Encrypt_signature) || (encrypt_id == Encrypt_signature_8bit) ) {
return 1;
}
return 0;
}
// return text description of the encrypted text type
const char *encrypt_type(char *scrambled_text)
{
uint encrypt_id;
memcpy(&encrypt_id, scrambled_text, 4);
if (encrypt_id == Encrypt_signature) {
return "FreeSpace 1 type encryption, 7-bit";
} else if (encrypt_id == Encrypt_signature_8bit) {
return "FreeSpace 1 type encryption, 8-bit";
} else if (encrypt_id == Encrypt_new_signature) {
return "FreeSpace 2 type encryption";
} else {
return "Not encrypted or unknown encryption type";
}
}
// initialize encryption
void encrypt_init()
{
int idx;
ushort temp_var = 0xe2A8;
if(Encrypt_inited){
return;
}
// meddle with the key table so someone reading the disassembly won't be able to get key values unless they're _REALLY_ careful
for(idx=0; idx<NUM_LVL1_KEYS; idx++){
Lvl1_keys[idx] ^= (temp_var >> 2);
}
Encrypt_inited = 1;
}
|