1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
#
# pycairo/cairocffi-based glyph-vector-2 example - Copyright 2017 Hin-Tak Leung
# Distributed under the terms of the new BSD license.
#
# rewrite of the numply,matplotlib-based example from Nicolas P. Rougier
# - The code is incomplete and over-simplified, as it ignores the 3rd order
# bezier curve bit when intepolating between off-curve points.
# This is only correct for truetype fonts (which only use 2nd order bezier curves).
# - Also it seems to assume the first point is always on curve; this is
# unusual but legal.
#
# Can cope with well-behaved Postscript/CFF fonts too.
#
# -----------------------------------------------------------------------------
'''
Show how to access glyph outline description.
'''
from freetype import *
# using Matrix class from Cairo, instead of FreeType's
from cairo import Context, SVGSurface, Matrix, SurfacePattern, FILTER_BEST
from bitmap_to_surface import make_image_surface
if __name__ == '__main__':
import numpy
from PIL import Image
# Replacement for Path enums:
STOP, MOVETO, LINETO, CURVE3, CURVE4 = 0, 1, 2, 3, 4
face = Face('./Vera.ttf')
face.set_char_size( 32*64 )
face.load_char('g')
slot = face.glyph
bitmap = face.glyph.bitmap
width = face.glyph.bitmap.width
rows = face.glyph.bitmap.rows
pitch = face.glyph.bitmap.pitch
Z = make_image_surface(bitmap)
outline = slot.outline
points = numpy.array(outline.points, dtype=[('x',float), ('y',float)])
x, y = points['x'], points['y']
bbox = outline.get_cbox()
MARGIN = 10
scale = 3
def Floor64(x):
return (x//64) * 64
def Ceil64(x):
return ((x+63)//64) * 64
width_s = (width * 64)//scale + 2 * MARGIN
height_s = (rows * 64)//scale + 2 * MARGIN
surface = SVGSurface('glyph-vector-2-cairo.svg',
width_s,
height_s)
ctx = Context(surface)
ctx.set_source_rgb(1,1,1)
ctx.paint()
ctx.save()
ctx.scale(1.0/scale,1.0/scale)
ctx.translate(-Floor64(bbox.xMin) + MARGIN * scale,-Floor64(bbox.yMin) + MARGIN * scale)
ctx.transform(Matrix(1,0,0,-1))
ctx.translate(0, -(Ceil64(bbox.yMax) + Floor64(bbox.yMin))) # difference!
start, end = 0, 0
VERTS, CODES = [], []
# Iterate over each contour
for i in range(len(outline.contours)):
end = outline.contours[i]
points = outline.points[start:end+1]
points.append(points[0])
tags = outline.tags[start:end+1]
tags.append(tags[0])
segments = [ [points[0],], ]
for j in range(1, len(points) ):
segments[-1].append(points[j])
if ( FT_Curve_Tag( tags[j] ) == FT_Curve_Tag_On ) and j < (len(points)-1):
segments.append( [points[j],] )
verts = [points[0], ]
codes = [MOVETO,]
tags.pop()
for segment in segments:
if len(segment) == 2:
verts.extend(segment[1:])
codes.extend([LINETO])
elif len(segment) == 3:
verts.extend(segment[1:])
codes.extend([CURVE3, CURVE3])
elif ( len(segment) == 4 ) \
and ( FT_Curve_Tag(tags[1]) == FT_Curve_Tag_Cubic ) \
and ( FT_Curve_Tag(tags[2]) == FT_Curve_Tag_Cubic ):
verts.extend(segment[1:])
codes.extend([CURVE4, CURVE4, CURVE4])
else:
# Interpolating
verts.append(segment[1])
codes.append(CURVE3)
for i in range(1,len(segment)-2):
A,B = segment[i], segment[i+1]
C = ((A[0]+B[0])/2.0, (A[1]+B[1])/2.0)
verts.extend([ C, B ])
codes.extend([ CURVE3, CURVE3])
verts.append(segment[-1])
codes.append(CURVE3)
[tags.pop() for x in range(len(segment) - 1)]
VERTS.extend(verts)
CODES.extend(codes)
start = end+1
# Draw glyph
ctx.new_path()
ctx.set_source_rgba(0.8,0.5,0.8, 1)
i = 0
while (i < len(CODES)):
if (CODES[i] == MOVETO):
ctx.move_to(VERTS[i][0],VERTS[i][1])
i += 1
elif (CODES[i] == LINETO):
ctx.line_to(VERTS[i][0],VERTS[i][1])
i += 1
elif (CODES[i] == CURVE3):
ctx.curve_to(VERTS[i][0],VERTS[i][1],
VERTS[i+1][0],VERTS[i+1][1], # undocumented
VERTS[i+1][0],VERTS[i+1][1])
i += 2
elif (CODES[i] == CURVE4):
ctx.curve_to(VERTS[i][0],VERTS[i][1],
VERTS[i+1][0],VERTS[i+1][1],
VERTS[i+2][0],VERTS[i+2][1])
i += 3
ctx.fill_preserve()
ctx.set_source_rgb(0,0,0)
ctx.set_line_width(6)
ctx.stroke()
ctx.restore()
scale2 = (height_s - 2.0 * MARGIN)/rows
ctx.set_source_surface(Z, 0, 0)
pattern = ctx.get_source()
SurfacePattern.set_filter(pattern, FILTER_BEST)
scalematrix = Matrix()
scalematrix.scale(1.0/scale2, 1.0/scale2)
scalematrix.translate(-( width_s/2.0 - width *scale2 /2.0 ), -MARGIN)
pattern.set_matrix(scalematrix)
ctx.set_source_rgba (0, 0, 0, 0.7)
ctx.mask(pattern)
ctx.fill()
surface.flush()
surface.write_to_png("glyph-vector-2-cairo.png")
surface.finish()
Image.open("glyph-vector-2-cairo.png").show()
|