1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
#
# pycairo/cairocffi-based glyph-vector example - Copyright 2017 Hin-Tak Leung
# Distributed under the terms of the new BSD license.
#
# rewrite of the numply,matplotlib-based example from Nicolas P. Rougier
# - The code is incomplete and over-simplified, as it ignores the 3rd order
# bezier curve bit when intepolating between off-curve points.
# This is only correct for truetype fonts (which only use 2nd order bezier curves).
# - Also it seems to assume the first point is always on curve; this is
# unusual but legal.
#
# Can cope with well-behaved Postscript/CFF fonts too.
#
# -----------------------------------------------------------------------------
'''
Show how to access glyph outline description.
'''
from freetype import *
# using Matrix class from Cairo, instead of FreeType's
from cairo import Context, ImageSurface, FORMAT_ARGB32, Matrix
# use math.pi for drawing circles
import math
if __name__ == '__main__':
import numpy
from PIL import Image
# Replacement for Path enums:
STOP, MOVETO, LINETO, CURVE3, CURVE4 = 0, 1, 2, 3, 4
face = Face('./Vera.ttf')
face.set_char_size( 48*64 )
face.load_char('S')
slot = face.glyph
outline = slot.outline
points = numpy.array(outline.points, dtype=[('x',float), ('y',float)])
x, y = points['x'], points['y']
cbox = outline.get_cbox()
surface = ImageSurface(FORMAT_ARGB32,
(cbox.xMax - cbox.xMin)//4 + 20,
(cbox.yMax - cbox.yMin)//4 + 20)
ctx = Context(surface)
ctx.scale(0.25,0.25)
ctx.translate(-cbox.xMin + 40,-cbox.yMin + 40)
ctx.transform(Matrix(1,0,0,-1))
ctx.translate(0, -(cbox.yMax + cbox.yMin)) # difference!
Curve_Tag = [FT_Curve_Tag(tag) for tag in outline.tags]
start, end = 0, 0
VERTS, CODES = [], []
# Iterate over each contour
ctx.set_source_rgb(0.5,0.5,0.5)
for i in range(len(outline.contours)):
end = outline.contours[i]
ctx.move_to(outline.points[start][0],outline.points[start][1])
for j in range(start, end+1):
point = outline.points[j]
ctx.line_to(point[0],point[1])
#back to origin
ctx.line_to(outline.points[start][0], outline.points[start][1])
start = end+1
ctx.fill_preserve()
ctx.set_source_rgb(0,1,0)
ctx.stroke()
start, end = 0, 0
for i in range(len(outline.contours)):
end = outline.contours[i]
ctx.new_path()
ctx.set_source_rgb(0,0,1)
for j in range(start, end+1):
if ( Curve_Tag[j] == FT_Curve_Tag_On ):
point = outline.points[j]
ctx.move_to(point[0],point[1])
ctx.arc(point[0], point[1], 40, 0, 2 * math.pi)
ctx.fill()
ctx.new_path()
ctx.set_source_rgb(1,0,0)
for j in range(start, end+1):
if ( Curve_Tag[j] != FT_Curve_Tag_On ):
point = outline.points[j]
ctx.move_to(point[0],point[1])
ctx.arc(point[0], point[1], 10, 0, 2 * math.pi)
ctx.fill()
points = outline.points[start:end+1]
points.append(points[0])
tags = outline.tags[start:end+1]
tags.append(tags[0])
segments = [ [points[0],], ]
for j in range(1, len(points) ):
segments[-1].append(points[j])
if ( FT_Curve_Tag( tags[j] ) == FT_Curve_Tag_On ) and j < (len(points)-1):
segments.append( [points[j],] )
verts = [points[0], ]
codes = [MOVETO,]
tags.pop()
for segment in segments:
if len(segment) == 2:
verts.extend(segment[1:])
codes.extend([LINETO])
elif len(segment) == 3:
verts.extend(segment[1:])
codes.extend([CURVE3, CURVE3])
elif ( len(segment) == 4 ) \
and ( FT_Curve_Tag(tags[1]) == FT_Curve_Tag_Cubic ) \
and ( FT_Curve_Tag(tags[2]) == FT_Curve_Tag_Cubic ):
verts.extend(segment[1:])
codes.extend([CURVE4, CURVE4, CURVE4])
else:
# Intepolation code
verts.append(segment[1])
codes.append(CURVE3)
for i in range(1,len(segment)-2):
A,B = segment[i], segment[i+1]
C = ((A[0]+B[0])/2.0, (A[1]+B[1])/2.0)
verts.extend([ C, B ])
codes.extend([ CURVE3, CURVE3])
verts.append(segment[-1])
codes.append(CURVE3)
[tags.pop() for x in range(len(segment) - 1)]
VERTS.extend(verts)
CODES.extend(codes)
start = end+1
ctx.new_path()
ctx.set_source_rgba(1,1,0, 0.5)
i = 0
while (i < len(CODES)):
if (CODES[i] == MOVETO):
ctx.move_to(VERTS[i][0],VERTS[i][1])
i += 1
elif (CODES[i] == LINETO):
ctx.line_to(VERTS[i][0],VERTS[i][1])
i += 1
elif (CODES[i] == CURVE3):
ctx.curve_to(VERTS[i][0],VERTS[i][1],
VERTS[i+1][0],VERTS[i+1][1], # undocumented
VERTS[i+1][0],VERTS[i+1][1])
i += 2
elif (CODES[i] == CURVE4):
ctx.curve_to(VERTS[i][0],VERTS[i][1],
VERTS[i+1][0],VERTS[i+1][1],
VERTS[i+2][0],VERTS[i+2][1])
i += 3
ctx.fill()
surface.flush()
surface.write_to_png("glyph-vector-cairo.png")
Image.open("glyph-vector-cairo.png").show()
|