1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
#include <map>
class MlfbAlgorithm {
public:
MlfbAlgorithm(const mpz_class& initialNumber,
const vector<vector<Exponent> >& terms,
const Degree** degrees,
/*TranspositionTable& transpositionTable,*/
bool printProgress = false):
_dim(terms[0].size()),
_maximumDegreeSeen(0),
_printProgress(printProgress),
_degrees(degrees),
_handler(_dim, terms),
_solution(_dim),
_callCounts(_dim),
_lastProgressPos(0) {
ExternalTerm b(_handler);
SortedTermList termList(_handler);
recurse(b, -initialNumber, termList);
//*
for (int i = 0; i < _dim; ++i)
cout << "Level " << i + 1 << " had "
<< _callCounts[i] << " calls. " << endl;
//*/
}
Degree getCalculatedFrobeniusNumber() {
return _maximumDegreeSeen;
}
private:
vector<ExternalTerm> bs;
void recurse(const ExternalTerm& b, const Degree& degree, const SortedTermList& terms) {
ASSERT(!terms.empty());
int position = terms.position();
++_callCounts[position];
if (position == _dim - 2) {
baseCase(b, degree, terms);
return;
}
//cout << " at " << position << "with b="<<b<<endl << terms;
if (canSkipDueToUpperBound(terms, degree))
return;
ExternalTerm newB(b);
// Set up [it, terms), which is the range we will search through.
SortedTermList::iterator termsEnd = terms.end();
SortedTermList::iterator it = terms.begin();
terms.getFirstLarger(b[position], it);
/*
cout << "starting from ";
_handler.write(&*it, cout);
cout << "with b=" << b << endl;//*/
// Set up the list of terms for the level of recursion lower than
// this. We will incrementally update this list.
SortedTermList nextTerms(b, _handler, position + 1);
nextTerms.clearAndSetParent(terms);
SortedTermList::iterator toAddEnd =
terms.copyTermsWithLeadingZeroInto(nextTerms);
Degree newDegree;
for (; it != termsEnd; ++it) {
if (_printProgress && terms.position() <= 1)
printProgress(terms, it);
// Does not change entries prior to position, so we can keep
//using newB in later iterations without resetting it to b.
_handler.lcm(newB, b, &*it, position);
newB.setExponent(position, _handler.getExponent(&*it, position) - 1);
newDegree = degree + _degrees[position][newB[position]];
_solution[position] = &*it;
SortedTermList::iterator toAddBegin = toAddEnd;
terms.getFirstLarger(newB[position], toAddEnd);
nextTerms.insert(toAddBegin, toAddEnd);
if (!(newB == b)) {
SortedTermList nextTermsOpt(nextTerms.begin().getPointer(),
nextTerms.end().getPointer(),
nextTerms, newB);
recurse(newB, newDegree, nextTermsOpt);
} else {
recurse(newB, newDegree, nextTerms);
}
}
}
void baseCase(const ExternalTerm& b, const Degree& degree, const SortedTermList& terms) {
#ifdef PROFILE
if ((int)terms.size() == -1) {
baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);
baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);
baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);
baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);
baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);
}
#endif
//cout << "at basecase." << terms << endl;
ASSERT(!terms.empty());
int position = terms.position();
SortedTermList::iterator termsEnd = terms.end();
SortedTermList::iterator term = terms.begin();
SortedTermList::iterator nextTerm = term;
++nextTerm;
ExternalTerm newB(b);
Degree newDegree;
while (nextTerm != termsEnd) {
ASSERT(_handler.getExponent(&*nextTerm, position) > 0);
ASSERT(_handler.getExponent(&*term, position + 1) > 0);
newB.setExponent(position,
_handler.getExponent(&*nextTerm, position) - 1);
newB.setExponent(position + 1,
_handler.getExponent(&*term, position + 1) - 1);
_solution[position] = &*nextTerm;
_solution[position + 1] = &*term;
newDegree = degree +
_degrees[position][newB[position]] +
_degrees[position + 1][newB[position + 1]];
registerSolution(newB, newDegree);
++term;
++nextTerm;
}
}
void improveB(ExternalTerm& b, const SortedTermList& terms) {
int position = terms.position() + 1;
ExternalTerm lcm(b);
SortedTermList::iterator end = terms.end();
for (SortedTermList::iterator it = terms.begin(); it != end; ++it)
_handler.lcm(lcm, lcm, &*it, position);
vector<ExternalTerm> gcds;
gcds.reserve(_dim);
for (int i = 0; i < _dim; ++i)
gcds.push_back(lcm);
for (SortedTermList::iterator it = terms.begin(); it != end; ++it) {
for (int i = position; i < _dim; ++i) {
Exponent exponent = _handler.getExponent(&*it, i);
if (exponent > b[i])
_handler.gcd(gcds[i], gcds[i], &*it, position);
}
}
for (int i = position; i < _dim; ++i) {
gcds[i][i] -= 1;
_handler.lcm(b, b, gcds[i].getTerm(), position);
}
}
bool canSkipDueToUpperBound(const SortedTermList& terms, const Degree& degree) {
int position = terms.position();
if (position > _dim - 3)
return false;
ExternalTerm lcm(_handler);
SortedTermList::iterator end = terms.end();
for (SortedTermList::iterator it = terms.begin(); it != end; ++it)
_handler.lcm(lcm, lcm, &*it, position);
Degree upperBound = degree;
for (int i = position; i < _dim; ++i) {
ASSERT(lcm[i] > 0);
upperBound += _degrees[i][lcm[i] - 1];
}
if (upperBound <= _maximumDegreeSeen)
return true;
if (false) { // too expensive to compute due to GMP being called
Degree maxMinLoss = 0; // loss of degree
for (SortedTermList::iterator it = terms.begin(); it != end; ++it) {
Degree minLoss = -1;
for (int i = position; i < _dim; ++i) {
Degree loss = _degrees[i][lcm[i] - 1] - _degrees[i][_handler.getExponent(&*it, i)];
if (minLoss == -1 || loss < minLoss)
minLoss = loss;
}
if (minLoss > maxMinLoss)
maxMinLoss = minLoss;
}
if (upperBound - maxMinLoss <= _maximumDegreeSeen)
return true;
}
// This works almost as well while being much faster to compute.
// It is still too expensive a bound.
if (false) {
SortedTermList::iterator bestCandidate = end;
int maxMinValue = -1;
for (SortedTermList::iterator it = terms.begin(); it != end; ++it) {
int minValue = -1;
for (int i = position; i < _dim; ++i) {
int value = lcm[i] - _handler.getExponent(&*it, i);
if (minValue == -1 || value < minValue) {
minValue = value;
}
}
if (maxMinValue == -1 || minValue > maxMinValue) {
maxMinValue = minValue;
bestCandidate = it;
}
}
ASSERT(bestCandidate != end);
Degree minLoss = -1;
for (int i = position; i < _dim; ++i) {
Degree loss = _degrees[i][lcm[i] - 1] -
_degrees[i][_handler.getExponent(&*bestCandidate, i)];
if (minLoss == -1 || loss < minLoss)
minLoss = loss;
}
if (upperBound - minLoss <= _maximumDegreeSeen)
return true;
}
return false;
}
void registerSolution(const ExternalTerm& b, const Degree& degree) {
//cout << "solution: " << b << endl;
++_callCounts[_dim - 1];
//static map<ExternalTerm, vector<const Term*> > seen;
//static int co = 0, dupCo = 0;
// if (!seen[b].empty()) {
/*
cout << "!!!!!!!!!!!!" << endl;
cout << "solution " << b;
cout << " attained by two different label vectors." << endl;
cout << "vector1:" << endl;
for (unsigned int i = 0; i < seen[b].size(); ++i) {
cout << i + 1 << ": ";
_handler.write(seen[b][i], cout);
cout << endl;
}
cout << "vector2:" << endl;
for (unsigned int i = 0; i < _solution.size(); ++i) {
cout << i + 1 << ": ";
_handler.write(_solution[i], cout);
cout << endl;
}
exit(0);
*/
// ++dupCo;
//}
// seen[b] = _solution;
//++co;
//cout << co << ' ' << dupCo << ' '<< ((double)dupCo)/ co << '\n';
if (degree > _maximumDegreeSeen)
_maximumDegreeSeen = degree;
}
void printProgress(const SortedTermList& terms,
SortedTermList::iterator it) {
// Do not print progress more than once every 5 seconds.
if (terms.position() >= _lastProgressPos && _progressTimer.getSeconds() < 5)
return;
_progressTimer.reset();
_lastProgressPos = terms.position();
// begin is the place we actually start the work from.
SortedTermList::iterator begin = terms.begin();
terms.getFirstLarger(0, begin);
int doneCount = distance(begin, it);
int all = terms.size() - distance(terms.begin(), begin);
double doneRatio = ((double)doneCount)/all;
cout << "At level=" << terms.position() << ": "
<< setprecision(3)
<< doneCount << '/' << all << '='
<< doneRatio * 100.0 << "% done in " << _timer << '.' << endl;
}
int _dim;
Degree _maximumDegreeSeen;
bool _printProgress;
const Degree** _degrees;
Timer _timer;
Timer _progressTimer;
TermHandler _handler;
vector<const Term*> _solution;
// TranspositionTable& _transpositionTable;
vector<int> _callCounts;
int _lastProgressPos;
};
// returns the maximal id in this position.
inline Exponent compressRange(const vector<vector<mpz_class> >& input,
vector<vector<Exponent> >& output,
const mpz_class& degree,
Degree*& precomputedDegrees,
int position) {
// Collect the exponents.
vector<mpz_class> exponents;
for (unsigned int i = 0; i < input.size(); ++i)
exponents.push_back(input[i][position]);
// Sort the exponents and remove duplicates.
sort(exponents.begin(), exponents.end());
vector<mpz_class>::iterator uniqueEnd =
unique(exponents.begin(), exponents.end());
exponents.erase(uniqueEnd, exponents.end());
// Construct a map from the exponent values that we will need to
// look at to the id numbers we will be working on from now on.
//
// The set of id numbers must be such that every exponent that
// appears has an id. Also, each exponent minus one must have an id,
// as the partial solution will use such values. The ids must have
// the same sorted order as the numbers they are ids for.
//
// This of course makes it impossible to see how much an entry
// should contribute towards the degree just from looking at the id,
// so we must precompute the degree that corresponds to each id.
map<mpz_class, int> rangeReduction;
rangeReduction[0] = 0;
precomputedDegrees = new Degree[exponents.size() * 2 + 1];
precomputedDegrees[0] = 0;
// range is the largest id we have assigned so far.
unsigned int range = 0;
mpz_class lastExponent = 0;
ASSERT(exponents[0] == 0);
for (unsigned int i = 1; i < exponents.size(); ++i) {
const mpz_class& exponent = exponents[i];
// We must only assign exponent - 1 a new id if
// we have not already done so.
if (exponent > lastExponent + 1) {
++range;
rangeReduction[exponent - 1] = range;
precomputedDegrees[range] = (exponent - 1) * degree;
}
++range;
rangeReduction[exponent] = range;
precomputedDegrees[range] = exponent * degree;
lastExponent = exponent;
}
// Apply the range compression map.
for (unsigned int i = 0; i < input.size(); ++i)
output[i][position] = rangeReduction[input[i][position]];
return range;
}
inline mpz_class computeFrobeniusNumber(const vector<vector<mpz_class> >& terms,
const vector<mpz_class>& degrees,
bool printProgress = false) {
ASSERT(!terms.empty());
if (degrees.size() == 2)
return degrees[0] * degrees[1] - degrees[0] - degrees[1];
// Before we can use MlfbAlgorithm, we need to compress the range of
// the inputs so that we are sure the exponents will fit in 32 bits.
unsigned int dimension = terms[0].size();
vector<vector<Exponent> > rangeReducedTerms(terms.size());
for (unsigned int i = 0; i < terms.size(); ++i)
rangeReducedTerms[i].resize(dimension);
Degree** precomputedDegrees = new Degree*[dimension];
// TranspositionTable transpositionTable(dimension);
for (unsigned int position = 0; position < dimension; ++position) {
/*Exponent range = */compressRange(terms,
rangeReducedTerms,
degrees[position + 1],
precomputedDegrees[position],
position);
// transpositionTable.setRange(position, range);
}
// Now we can use MlfbAlgorithm with the compressed range.
MlfbAlgorithm algo(degrees[0],
rangeReducedTerms,
(const Degree**)precomputedDegrees,
// transpositionTable,
printProgress);
// Clean up the allocated memory.
for (unsigned int i = 0; i < dimension; ++i)
delete[] precomputedDegrees[i];
delete[] precomputedDegrees;
return algo.getCalculatedFrobeniusNumber();
}
|