File: MlfbAlgorithm.cpp2

package info (click to toggle)
frobby 0.9.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,616 kB
  • sloc: cpp: 30,134; sh: 1,184; makefile: 312; ansic: 102; lisp: 10
file content (442 lines) | stat: -rw-r--r-- 13,205 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
#include <map>

class MlfbAlgorithm {
public:
  MlfbAlgorithm(const mpz_class& initialNumber,
		const vector<vector<Exponent> >& terms,
		const Degree** degrees,
		/*TranspositionTable& transpositionTable,*/
		bool printProgress = false):
    _dim(terms[0].size()),
    _maximumDegreeSeen(0),
    _printProgress(printProgress),
    _degrees(degrees),
    _handler(_dim, terms),
    _solution(_dim),
    _callCounts(_dim),
    _lastProgressPos(0) {

    ExternalTerm b(_handler);
    SortedTermList termList(_handler);

    recurse(b, -initialNumber, termList);

    //*
    for (int i = 0; i < _dim; ++i)
      cout << "Level " << i + 1 << " had "
	   << _callCounts[i] << " calls. " << endl;
    //*/
  }

  Degree getCalculatedFrobeniusNumber() {
    return _maximumDegreeSeen;
  }

private:
  vector<ExternalTerm> bs;

  void recurse(const ExternalTerm& b, const Degree& degree, const SortedTermList& terms) {
    ASSERT(!terms.empty());

    int position = terms.position();

    ++_callCounts[position];

    if (position == _dim - 2) {
      baseCase(b, degree, terms);
      return;
    }

    //cout << " at " << position << "with b="<<b<<endl << terms;

    if (canSkipDueToUpperBound(terms, degree))
      return;

    ExternalTerm newB(b);

    // Set up [it, terms), which is the range we will search through.
    SortedTermList::iterator termsEnd = terms.end();
    SortedTermList::iterator it = terms.begin();
    terms.getFirstLarger(b[position], it);

    /*
    cout << "starting from ";
      _handler.write(&*it, cout);
      cout << "with b=" << b << endl;//*/

    // Set up the list of terms for the level of recursion lower than
    // this. We will incrementally update this list.
    SortedTermList nextTerms(b, _handler, position + 1);
    nextTerms.clearAndSetParent(terms);
    SortedTermList::iterator toAddEnd =
      terms.copyTermsWithLeadingZeroInto(nextTerms);    

    Degree newDegree;
    for (; it != termsEnd; ++it) {
      if (_printProgress && terms.position() <= 1)
	printProgress(terms, it);
      
      // Does not change entries prior to position, so we can keep
      //using newB in later iterations without resetting it to b.
      _handler.lcm(newB, b, &*it, position);
      newB.setExponent(position, _handler.getExponent(&*it, position) - 1);

      newDegree = degree + _degrees[position][newB[position]];

      _solution[position] = &*it;

      SortedTermList::iterator toAddBegin = toAddEnd;
      terms.getFirstLarger(newB[position], toAddEnd);
      nextTerms.insert(toAddBegin, toAddEnd);

      if (!(newB == b)) {
	SortedTermList nextTermsOpt(nextTerms.begin().getPointer(),
				    nextTerms.end().getPointer(),
				    nextTerms, newB);
	recurse(newB, newDegree, nextTermsOpt);
      } else {
	recurse(newB, newDegree, nextTerms);
      }
    }
  }

  void baseCase(const ExternalTerm& b, const Degree& degree, const SortedTermList& terms) {
#ifdef PROFILE
    if ((int)terms.size() == -1) {
      baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);
      baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);
      baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);
      baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);
      baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);baseCase(b,degree,terms);
    }
#endif

    //cout << "at basecase." << terms << endl;

    ASSERT(!terms.empty());

    int position = terms.position();

    SortedTermList::iterator termsEnd = terms.end();
    SortedTermList::iterator term = terms.begin();

    SortedTermList::iterator nextTerm = term;
    ++nextTerm;

    ExternalTerm newB(b);
    Degree newDegree;
    while (nextTerm != termsEnd) {
      ASSERT(_handler.getExponent(&*nextTerm, position) > 0);
      ASSERT(_handler.getExponent(&*term, position + 1) > 0);

      newB.setExponent(position,
		       _handler.getExponent(&*nextTerm, position) - 1);
      newB.setExponent(position + 1,
		       _handler.getExponent(&*term, position + 1) - 1);
      _solution[position] = &*nextTerm;
      _solution[position + 1] = &*term;

      newDegree = degree +
	_degrees[position][newB[position]] +
	_degrees[position + 1][newB[position + 1]];

      registerSolution(newB, newDegree);
	
      ++term;
      ++nextTerm;
    }
  }

  void improveB(ExternalTerm& b, const SortedTermList& terms) {
    int position = terms.position() + 1;

    ExternalTerm lcm(b);
    SortedTermList::iterator end = terms.end();
    for (SortedTermList::iterator it = terms.begin(); it != end; ++it)
      _handler.lcm(lcm, lcm, &*it, position);

    vector<ExternalTerm> gcds;
    gcds.reserve(_dim);
    for (int i = 0; i < _dim; ++i)
      gcds.push_back(lcm);

    for (SortedTermList::iterator it = terms.begin(); it != end; ++it) {
      for (int i = position; i < _dim; ++i) {
	Exponent exponent = _handler.getExponent(&*it, i);
	if (exponent > b[i])
	  _handler.gcd(gcds[i], gcds[i], &*it, position);
      }
    }

    for (int i = position; i < _dim; ++i) {
      gcds[i][i] -= 1;
      _handler.lcm(b, b, gcds[i].getTerm(), position);
    }
  }

  bool canSkipDueToUpperBound(const SortedTermList& terms, const Degree& degree) {

    int position = terms.position();

    if (position > _dim - 3)
      return false;

    ExternalTerm lcm(_handler);
    SortedTermList::iterator end = terms.end();
    for (SortedTermList::iterator it = terms.begin(); it != end; ++it)
      _handler.lcm(lcm, lcm, &*it, position);

    Degree upperBound = degree;
    for (int i = position; i < _dim; ++i) {
      ASSERT(lcm[i] > 0);
      upperBound += _degrees[i][lcm[i] - 1];
    }

    if (upperBound <= _maximumDegreeSeen)
      return true;


    if (false) { // too expensive to compute due to GMP being called
      Degree maxMinLoss = 0; // loss of degree
      for (SortedTermList::iterator it = terms.begin(); it != end; ++it) {
	Degree minLoss = -1;
	for (int i = position; i < _dim; ++i) {
	  Degree loss = _degrees[i][lcm[i] - 1] - _degrees[i][_handler.getExponent(&*it, i)];
	  if (minLoss == -1 || loss < minLoss)
	    minLoss = loss;
	}
	if (minLoss > maxMinLoss)
	  maxMinLoss = minLoss;
      }

      if (upperBound - maxMinLoss <= _maximumDegreeSeen)
	return true;
    }

    // This works almost as well while being much faster to compute.
    // It is still too expensive a bound.
    if (false) {
      SortedTermList::iterator bestCandidate = end;
      int maxMinValue = -1;
      for (SortedTermList::iterator it = terms.begin(); it != end; ++it) {
	int minValue = -1;
	for (int i = position; i < _dim; ++i) {
	  int value = lcm[i] - _handler.getExponent(&*it, i);
	  if (minValue == -1 || value < minValue) {
	    minValue = value;
	  }
	}
	if (maxMinValue == -1 || minValue > maxMinValue) {
	  maxMinValue = minValue;
	  bestCandidate = it;
	  
	}
      }
      ASSERT(bestCandidate != end);
	
      Degree minLoss = -1;
      for (int i = position; i < _dim; ++i) {
	Degree loss = _degrees[i][lcm[i] - 1] -
	  _degrees[i][_handler.getExponent(&*bestCandidate, i)];
	if (minLoss == -1 || loss < minLoss)
	  minLoss = loss;
      }
      

      if (upperBound - minLoss <= _maximumDegreeSeen)
	return true;
    }


    return false;
  }

  void registerSolution(const ExternalTerm& b, const Degree& degree) {
    //cout << "solution: " << b << endl;

    ++_callCounts[_dim - 1];

    //static map<ExternalTerm, vector<const Term*> > seen;
	  
    	
    //static int co = 0, dupCo = 0;

    //    if (!seen[b].empty()) {
    /* 
       cout << "!!!!!!!!!!!!" << endl;
       cout << "solution " << b;
       cout << " attained by two different label vectors." << endl;

       cout << "vector1:" << endl;
       for (unsigned int i = 0; i < seen[b].size(); ++i) {
       cout << i + 1 << ": ";
       _handler.write(seen[b][i], cout);
       cout << endl;
       }

       cout << "vector2:" << endl;
       for (unsigned int i = 0; i < _solution.size(); ++i) {
       cout << i + 1 << ": ";
       _handler.write(_solution[i], cout);
       cout << endl;
       }

       exit(0);
    */	
    //      ++dupCo;
    //}


    //    seen[b] = _solution;

    //++co;

    //cout << co << ' ' << dupCo << ' '<< ((double)dupCo)/ co << '\n';
    
    if (degree > _maximumDegreeSeen)
      _maximumDegreeSeen = degree;
  }

  void printProgress(const SortedTermList& terms,
		     SortedTermList::iterator it) {
    // Do not print progress more than once every 5 seconds.
    if (terms.position() >= _lastProgressPos && _progressTimer.getSeconds() < 5)
      return;
    _progressTimer.reset();
    _lastProgressPos = terms.position();

    // begin is the place we actually start the work from.
    SortedTermList::iterator begin = terms.begin();
    terms.getFirstLarger(0, begin);

    int doneCount = distance(begin, it);
    int all = terms.size() - distance(terms.begin(), begin);
    double doneRatio = ((double)doneCount)/all;
    
    cout << "At level=" << terms.position() << ": "
	 << setprecision(3)
	 << doneCount << '/' << all << '='
	 << doneRatio * 100.0 << "% done in " << _timer << '.' << endl;
  }

  int _dim;
  Degree _maximumDegreeSeen;
  bool _printProgress;
  const Degree** _degrees;
  Timer _timer;
  Timer _progressTimer;
  TermHandler _handler;
  vector<const Term*> _solution;
  //  TranspositionTable& _transpositionTable;
  vector<int> _callCounts;
  int _lastProgressPos;
};

// returns the maximal id in this position.
inline Exponent compressRange(const vector<vector<mpz_class> >& input,
			      vector<vector<Exponent> >& output,
			      const mpz_class& degree,
			      Degree*& precomputedDegrees,
			      int position) {
  // Collect the exponents.
  vector<mpz_class> exponents;
  for (unsigned int i = 0; i < input.size(); ++i)
    exponents.push_back(input[i][position]);

  // Sort the exponents and remove duplicates.
  sort(exponents.begin(), exponents.end());
  vector<mpz_class>::iterator uniqueEnd =
    unique(exponents.begin(), exponents.end());
  exponents.erase(uniqueEnd, exponents.end());

  // Construct a map from the exponent values that we will need to
  // look at to the id numbers we will be working on from now on.
  //
  // The set of id numbers must be such that every exponent that
  // appears has an id. Also, each exponent minus one must have an id,
  // as the partial solution will use such values. The ids must have
  // the same sorted order as the numbers they are ids for.
  //
  // This of course makes it impossible to see how much an entry
  // should contribute towards the degree just from looking at the id,
  // so we must precompute the degree that corresponds to each id.
  map<mpz_class, int> rangeReduction;
  rangeReduction[0] = 0;

  precomputedDegrees = new Degree[exponents.size() * 2 + 1];
  precomputedDegrees[0] = 0;

  // range is the largest id we have assigned so far.
  unsigned int range = 0;
  mpz_class lastExponent = 0;

  ASSERT(exponents[0] == 0);
  for (unsigned int i = 1; i < exponents.size(); ++i) {
    const mpz_class& exponent = exponents[i];

    // We must only assign exponent - 1 a new id if 
    // we have not already done so.
    if (exponent > lastExponent + 1) {
      ++range;
      rangeReduction[exponent - 1] = range;
      precomputedDegrees[range] = (exponent - 1) * degree;
    }

    ++range;
    rangeReduction[exponent] = range;
    precomputedDegrees[range] = exponent * degree;

    lastExponent = exponent;
  }

  // Apply the range compression map.
  for (unsigned int i = 0; i < input.size(); ++i)
    output[i][position] = rangeReduction[input[i][position]];

  return range;
}

inline mpz_class computeFrobeniusNumber(const vector<vector<mpz_class> >& terms,
					const vector<mpz_class>& degrees,
					bool printProgress = false) {
  ASSERT(!terms.empty());

  if (degrees.size() == 2)
    return degrees[0] * degrees[1] - degrees[0] - degrees[1];

  // Before we can use MlfbAlgorithm, we need to compress the range of
  // the inputs so that we are sure the exponents will fit in 32 bits.

  unsigned int dimension = terms[0].size();

  vector<vector<Exponent> > rangeReducedTerms(terms.size());
  for (unsigned int i = 0; i < terms.size(); ++i)
    rangeReducedTerms[i].resize(dimension);

  Degree** precomputedDegrees = new Degree*[dimension];

  //  TranspositionTable transpositionTable(dimension);

  for (unsigned int position = 0; position < dimension; ++position) {
    /*Exponent range = */compressRange(terms,
				       rangeReducedTerms,
				       degrees[position + 1],
				       precomputedDegrees[position],
				       position);
    //    transpositionTable.setRange(position, range);
  }

  // Now we can use MlfbAlgorithm with the compressed range.
  MlfbAlgorithm algo(degrees[0],
		     rangeReducedTerms,
		     (const Degree**)precomputedDegrees,
		     //		     transpositionTable,
		     printProgress);

  // Clean up the allocated memory.
  for (unsigned int i = 0; i < dimension; ++i)
    delete[] precomputedDegrees[i];
  delete[] precomputedDegrees;

  return algo.getCalculatedFrobeniusNumber();
}