1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
R = QQ[x1, x2, x3, x4, x5, x6, x7];
p =
x2^7*x3*x4*x5*x6*x7 +
-x2^7*x3*x4*x5*x6 +
-x2^7*x3*x4*x5*x7 +
x2^7*x3*x4*x5 +
-x2^7*x3*x4*x6*x7 +
x2^7*x3*x4*x6 +
x2^7*x3*x4*x7 +
-x2^7*x3*x4 +
-x2^7*x3*x5*x6*x7 +
x2^7*x3*x5*x6 +
x2^7*x3*x5*x7 +
-x2^7*x3*x5 +
x2^7*x3*x6*x7 +
-x2^7*x3*x6 +
-x2^7*x3*x7 +
x2^7*x3 +
-x2^7*x4*x5*x6*x7 +
x2^7*x4*x5*x6 +
x2^7*x4*x5*x7 +
-x2^7*x4*x5 +
x2^7*x4*x6*x7 +
-x2^7*x4*x6 +
-x2^7*x4*x7 +
x2^7*x4 +
x2^7*x5*x6*x7 +
-x2^7*x5*x6 +
-x2^7*x5*x7 +
x2^7*x5 +
-x2^7*x6*x7 +
x2^7*x6 +
x2^7*x7 +
-x2^7 +
x2^5*x3^2*x4*x5*x6*x7 +
-x2^5*x3^2*x4*x5*x6 +
-x2^5*x3^2*x4*x5*x7 +
x2^5*x3^2*x4*x5 +
-x2^5*x3^2*x4*x6*x7 +
x2^5*x3^2*x4*x6 +
x2^5*x3^2*x4*x7 +
-x2^5*x3^2*x4 +
-x2^5*x3^2*x5*x6*x7 +
x2^5*x3^2*x5*x6 +
x2^5*x3^2*x5*x7 +
-x2^5*x3^2*x5 +
x2^5*x3^2*x6*x7 +
-x2^5*x3^2*x6 +
-x2^5*x3^2*x7 +
x2^5*x3^2 +
-x2^5*x3*x4*x5*x6*x7 +
x2^5*x3*x4*x5*x6 +
x2^5*x3*x4*x5*x7 +
-x2^5*x3*x4*x5 +
x2^5*x3*x4*x6*x7 +
-x2^5*x3*x4*x6 +
-x2^5*x3*x4*x7 +
x2^5*x3*x4 +
x2^5*x3*x5*x6*x7 +
-x2^5*x3*x5*x6 +
-x2^5*x3*x5*x7 +
x2^5*x3*x5 +
-x2^5*x3*x6*x7 +
x2^5*x3*x6 +
x2^5*x3*x7 +
-x2^5*x3 +
x2^2*x3^2*x4*x5*x6^2*x7 +
-x2^2*x3^2*x4*x5*x6^2 +
-x2^2*x3^2*x4*x5*x6*x7 +
x2^2*x3^2*x4*x5*x6 +
-x2^2*x3^2*x4*x6^2*x7 +
x2^2*x3^2*x4*x6^2 +
x2^2*x3^2*x4*x6*x7 +
-x2^2*x3^2*x4*x6 +
-x2^2*x3^2*x5*x6^2*x7 +
x2^2*x3^2*x5*x6^2 +
x2^2*x3^2*x5*x6*x7 +
-x2^2*x3^2*x5*x6 +
x2^2*x3^2*x6^2*x7 +
-x2^2*x3^2*x6^2 +
-x2^2*x3^2*x6*x7 +
x2^2*x3^2*x6 +
x2^2*x3*x4*x5*x6^3*x7 +
-x2^2*x3*x4*x5*x6^3 +
-x2^2*x3*x4*x5*x6^2*x7 +
x2^2*x3*x4*x5*x6^2 +
-x2^2*x3*x4*x6^3*x7 +
x2^2*x3*x4*x6^3 +
x2^2*x3*x4*x6^2*x7 +
-x2^2*x3*x4*x6^2 +
-x2^2*x3*x5*x6^3*x7 +
x2^2*x3*x5*x6^3 +
x2^2*x3*x5*x6^2*x7 +
-x2^2*x3*x5*x6^2 +
x2^2*x3*x6^3*x7 +
-x2^2*x3*x6^3 +
-x2^2*x3*x6^2*x7 +
x2^2*x3*x6^2 +
-x2^2*x4*x5*x6^3*x7 +
x2^2*x4*x5*x6^3 +
x2^2*x4*x5*x6*x7 +
-x2^2*x4*x5*x6 +
x2^2*x4*x6^3*x7 +
-x2^2*x4*x6^3 +
-x2^2*x4*x6*x7 +
x2^2*x4*x6 +
x2^2*x5*x6^3*x7 +
-x2^2*x5*x6^3 +
-x2^2*x5*x6*x7 +
x2^2*x5*x6 +
-x2^2*x6^3*x7 +
x2^2*x6^3 +
x2^2*x6*x7 +
-x2^2*x6 +
-x3^2*x4*x5*x6^2*x7 +
x3^2*x4*x5*x6^2 +
x3^2*x4*x5*x7 +
-x3^2*x4*x5 +
x3^2*x4*x6^2*x7 +
-x3^2*x4*x6^2 +
-x3^2*x4*x7 +
x3^2*x4 +
x3^2*x5*x6^2*x7 +
-x3^2*x5*x6^2 +
-x3^2*x5*x7 +
x3^2*x5 +
-x3^2*x6^2*x7 +
x3^2*x6^2 +
x3^2*x7 +
-x3^2 +
-x3*x4*x5*x6^3*x7 +
x3*x4*x5*x6^3 +
x3*x4*x5*x6^2*x7 +
-x3*x4*x5*x6^2 +
x3*x4*x6^3*x7 +
-x3*x4*x6^3 +
-x3*x4*x6^2*x7 +
x3*x4*x6^2 +
x3*x5*x6^3*x7 +
-x3*x5*x6^3 +
-x3*x5*x6^2*x7 +
x3*x5*x6^2 +
-x3*x6^3*x7 +
x3*x6^3 +
x3*x6^2*x7 +
-x3*x6^2 +
x4*x5*x6^3*x7 +
-x4*x5*x6^3 +
-x4*x5*x7 +
x4*x5 +
-x4*x6^3*x7 +
x4*x6^3 +
x4*x7 +
-x4 +
-x5*x6^3*x7 +
x5*x6^3 +
x5*x7 +
-x5 +
x6^3*x7 +
-x6^3 +
-x7 +
1;
|