1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
import deptree
class SubTree:
def __init__(self, score, r, edgeLabel):
self.score = score
self.r = r
self.edgeLabel = edgeLabel
self.satisfiedConstraints = set()
class CKYParser:
def __init__(self, numTokens):
self.numTokens = numTokens
self.inDepConstraints = [[] for i in xrange(numTokens + 1)]
self.outDepConstraints = [[] for i in xrange(numTokens + 1)]
self.edgeConstraints = [[[] for i in xrange(numTokens + 1)]
for i in xrange(numTokens + 1)]
def addConstraint(self, c):
if isinstance(c, deptree.HasIncomingRel):
self.inDepConstraints[c.tokenIndex].append(c)
elif isinstance(c, deptree.HasDependency):
self.edgeConstraints[c.tokenIndex][c.headIndex].append(c)
elif isinstance(c, deptree.DependencyDirection):
self.outDepConstraints[c.tokenIndex].append(c)
def bestEdge(self, leftSubTree, rightSubTree, headIndex, depIndex):
if headIndex == 0:
score = 0.0
constraints = set()
for constraint in self.outDepConstraints[depIndex]:
if constraint.direction == constraint.ROOT:
score = constraint.weight
constraints.add(constraint)
assert len(self.edgeConstraints[depIndex][0]) <= 1
label = "ROOT"
for constraint in self.edgeConstraints[depIndex][0]:
score += constraint.weight
constraints.add(constraint)
label = constraint.relType
return label, score, constraints
#headIndex -= 1
#depIndex -= 1
best = None
bestScore = -0.5 #-1
bestConstraints = set()
for edgeConstraint in self.edgeConstraints[depIndex][headIndex]:
score = edgeConstraint.weight
label = edgeConstraint.relType
constraints = set([edgeConstraint])
for constraint in self.inDepConstraints[headIndex]:
if constraint.relType == label and (constraint not in leftSubTree.satisfiedConstraints and constraint not in rightSubTree.satisfiedConstraints):
score += constraint.weight
constraints.add(constraint)
for constraint in self.outDepConstraints[depIndex]:
if ((constraint.direction == constraint.LEFT and headIndex < depIndex) or (constraint.direction == constraint.RIGHT and headIndex > depIndex)) and (constraint not in leftSubTree.satisfiedConstraints and constraint not in rightSubTree.satisfiedConstraints):
score += constraint.weight
constraints.add(constraint)
if score > bestScore:
bestScore = score
best = label
bestConstraints = constraints
return best, bestScore, bestConstraints
def parse(self):
C = {}
for s in xrange(self.numTokens + 1):
for d in ["r", "l"]:
for c in [True, False]:
C[s, s, d, c] = SubTree(0.0, None, None)
for k in xrange(1, self.numTokens + 1 + 1):
for s in xrange(self.numTokens - k + 1):
t = s + k
best = -1, "__" #####None
bestScore = float("-inf") #-1
bestConstraints = None
for r in xrange(s, t):
label, edgeScore, constraints = self.bestEdge(
C[s, r, "r", True],
C[r + 1, t, "l", True],
t, s)
score = C[s, r, "r", True].score + \
C[r + 1, t, "l", True].score + \
edgeScore
if score > bestScore:
bestScore = score
best = r, label
bestConstraints = constraints
C[s, t, "l", False] = SubTree(bestScore, *best)
C[s, t, "l", False].satisfiedConstraints.update(
C[s, best[0], "r", True].satisfiedConstraints)
C[s, t, "l", False].satisfiedConstraints.update(
C[best[0] + 1, t, "l", True].satisfiedConstraints)
C[s, t, "l", False].satisfiedConstraints.update(
bestConstraints)
best = -1, "__" #######None
bestScore = float("-inf") #-1
bestConstraints = None
for r in xrange(s, t):
label, edgeScore, constraints = self.bestEdge(
C[s, r, "r", True],
C[r + 1, t, "l", True],
s, t)
score = C[s, r, "r", True].score + \
C[r + 1, t, "l", True].score + \
edgeScore
if score > bestScore:
bestScore = score
best = r, label
bestConstraints = constraints
C[s, t, "r", False] = SubTree(bestScore, *best)
C[s, t, "r", False].satisfiedConstraints.update(
C[s, best[0], "r", True].satisfiedConstraints)
C[s, t, "r", False].satisfiedConstraints.update(
C[best[0] + 1, t, "l", True].satisfiedConstraints)
C[s, t, "r", False].satisfiedConstraints.update(
bestConstraints)
best = -1 ######None
bestScore = float("-inf") #-1
for r in xrange(s, t):
score = C[s, r, "l", True].score + \
C[r, t, "l", False].score
if score > bestScore:
bestScore = score
best = r
C[s, t, "l", True] = SubTree(bestScore, best, None)
C[s, t, "l", True].satisfiedConstraints.update(
C[s, best, "l", True].satisfiedConstraints)
C[s, t, "l", True].satisfiedConstraints.update(
C[best, t, "l", False].satisfiedConstraints)
best = -1 ####None
bestScore = float("-inf") #-1
for r in xrange(s + 1, t + 1):
score = C[s, r, "r", False].score + \
C[r, t, "r", True].score
if score > bestScore:
bestScore = score
best = r
C[s, t, "r", True] = SubTree(bestScore, best, None)
C[s, t, "r", True].satisfiedConstraints.update(
C[s, best, "r", False].satisfiedConstraints)
C[s, t, "r", True].satisfiedConstraints.update(
C[best, t, "r", True].satisfiedConstraints)
return C
|