1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
#include <boost/bind.hpp>
#include "asserts.hpp"
#include "foreach.hpp"
#include "hex_object.hpp"
#include "hex_tile.hpp"
#include "string_utils.hpp"
#include "variant_utils.hpp"
namespace hex {
basic_hex_tile::basic_hex_tile(const variant node, hex_tile* owner)
: cycle_(0), chance_(node["chance"].as_int(100)), owner_(owner), zorder_(node["zorder"].as_int(-500)),
offset_x_(0), offset_y_(0)
{
ASSERT_LOG(chance_ >= 1 && chance_ <= 100, "Chance must be between 1 and 100, inclusive.");
image_ = node["image"].as_string_default();
if(node.has_key("rect")) {
ASSERT_LOG(node["rect"].num_elements() == 4 && node["rect"].is_list(), "rect must be a list of four(4) integers.");
rect_ = rect::from_coordinates(node["rect"][0].as_int(), node["rect"][1].as_int(), node["rect"][2].as_int(), node["rect"][3].as_int());
}
if(node.has_key("animation")) {
if(node.is_list()) {
nodes_ = node["animation"].as_list();
} else {
nodes_.push_back(node["animation"]);
}
frame_.reset(new frame(nodes_.front()));
}
if(node.has_key("offset")) {
ASSERT_LOG(node["offset"].num_elements() == 2 && node["offset"].is_list(), "Offset field is specified as a list of two(2) elements");
offset_x_ = node["offset"][0].as_int();
offset_y_ = node["offset"][1].as_int();
}
}
basic_hex_tile::~basic_hex_tile()
{}
void basic_hex_tile::draw(int x, int y) const
{
point p(hex_map::get_pixel_pos_from_tile_pos(x,y));
p.x -= offset_x_;
p.y -= offset_y_;
if(frame_) {
frame_->draw(p.x, p.y, true, false, cycle_);
if(++cycle_ >= frame_->duration()) {
cycle_ = 0;
// XXX: here we could do stuff like cycling through animations automatically
// or calling event handlers to grab the next animation to play etc.
}
} else {
graphics::blit_texture(texture_, p.x, p.y, rect_.w(), rect_.h(), 0.0f,
GLfloat(rect_.x())/GLfloat(texture_.width()),
GLfloat(rect_.y())/GLfloat(texture_.height()),
GLfloat(rect_.x2())/GLfloat(texture_.width()),
GLfloat(rect_.y2())/GLfloat(texture_.height()));
}
}
void basic_hex_tile::get_texture()
{
if(!texture_.valid() && !image_.empty()) {
texture_ = graphics::texture::get(image_);
}
}
variant basic_hex_tile::get_value(const std::string& key) const
{
if(key == "self") {
return variant(this);
} else if(key == "type") {
return variant(type());
} else if(key == "owner") {
return variant(owner_);
}
return variant();
}
void basic_hex_tile::set_value(const std::string& key, const variant& value)
{
}
variant basic_hex_tile::write() const
{
// XXX todo
return variant();
}
std::string basic_hex_tile::type() const
{
ASSERT_LOG(owner_ != NULL, "Owner of tile was set to NULL!");
return owner_->type();
}
hex_tile::hex_tile(const std::string& type, variant node)
: type_(type), name_(node["name"].as_string())
{
if(node.has_key("editor_info")) {
ASSERT_LOG(node["editor_info"].is_map(), "Must have editor info map, none found in: " << type_);
editor_info_.name = node["editor_info"]["name"].as_string();
editor_info_.image = node["editor_info"]["image"].as_string();
editor_info_.group = node["editor_info"]["group"].as_string();
editor_info_.type = node["editor_info"]["type"].as_string();
ASSERT_LOG(node["editor_info"]["rect"].num_elements() == 4 && node["editor_info"]["rect"].is_list(), "rect must be a list of four(4) integers.");
editor_info_.image_rect = rect::from_coordinates(node["editor_info"]["rect"][0].as_int(),
node["editor_info"]["rect"][1].as_int(),
node["editor_info"]["rect"][2].as_int(),
node["editor_info"]["rect"][3].as_int());
if(!editor_info_.texture.valid() && !editor_info_.image.empty()) {
editor_info_.texture = graphics::texture::get(editor_info_.image);
}
}
if(node.has_key("variations")) {
ASSERT_LOG(node["variations"].is_list(), "Variations field in \"" << type_ << "\" must be a list type.");
for(size_t i = 0; i < node["variations"].num_elements(); ++i) {
variations_.push_back(basic_hex_tile_ptr(new basic_hex_tile(node["variations"][i], this)));
}
}
if(node.has_key("transitions")) {
ASSERT_LOG(node["transitions"].is_map(), "Transitions field in \"" << type_ << "\" must be a map type.");
foreach(const variant_pair& p, node["transitions"].as_map()) {
ASSERT_LOG(p.second.is_map(), "Inner of transitions of \"" << type_ << "\" must be a map type.");
transition_map tmap;
foreach(const variant_pair& p2, p.second.as_map()) {
std::vector<basic_hex_tile_ptr> v;
if(p2.second.is_list()) {
for(size_t i = 0; i != p2.second.num_elements(); ++i) {
v.push_back(basic_hex_tile_ptr(new basic_hex_tile(p2.second[i], this)));
}
} else {
v.push_back(basic_hex_tile_ptr(new basic_hex_tile(p2.second, this)));
}
tmap[p2.first.as_string()] = v;
}
transitions_[p.first.as_string()] = tmap;
}
}
}
hex_tile::~hex_tile()
{}
transition_map* hex_tile::find_transition(const std::string& key)
{
std::map<std::string, transition_map>::iterator it = transitions_.find(key);
if(it == transitions_.end()) {
return NULL;
}
return &it->second;
}
variant hex_tile::get_transitions()
{
std::vector<variant> v;
std::map<std::string, transition_map>::const_iterator it = transitions_.begin();
while(it != transitions_.end()) {
v.push_back(variant(it->first));
++it;
}
return variant(&v);
}
class transition_map_callable : public game_logic::formula_callable
{
hex_tile_ptr tile_;
transition_map* tm_;
variant get_value(const std::string& key) const
{
transition_map::const_iterator it = tm_->find(key);
if(it == tm_->end()) {
if(key == "values") {
it = tm_->begin();
std::vector<variant> v;
while(it != tm_->end()) {
v.push_back(variant(it->first));
++it;
}
return variant(&v);
}
return variant();
}
int roll = rand() % it->second.size();
it->second[roll]->get_texture();
return variant(it->second[roll].get());
}
void set_value(const std::string& key, const variant& value)
{}
public:
explicit transition_map_callable(const hex_tile& tile, transition_map* tm)
: tile_(const_cast<hex_tile*>(&tile)), tm_(tm)
{}
};
class transition_callable : public game_logic::formula_callable
{
hex_tile_ptr tile_;
variant get_value(const std::string& key) const
{
transition_map* tm = tile_->find_transition(key);
if(tm) {
return variant(new transition_map_callable(*tile_, tm));
}
if(key == "values") {
return tile_->get_transitions();
}
return variant();
}
void set_value(const std::string& key, const variant& value)
{}
public:
explicit transition_callable(const hex_tile& tile)
: tile_(const_cast<hex_tile*>(&tile))
{}
};
class editor_info_callable : public game_logic::formula_callable
{
hex_tile_ptr tile_;
variant get_value(const std::string& key) const
{
if(key == "type") {
return variant(tile_->get_editor_info().type);
} else if(key == "name") {
return variant(tile_->get_editor_info().name);
} else if(key == "image") {
return variant(tile_->get_editor_info().image);
} else if(key == "rect") {
std::vector<variant> v;
v.push_back(variant(tile_->get_editor_info().image_rect.x()));
v.push_back(variant(tile_->get_editor_info().image_rect.y()));
v.push_back(variant(tile_->get_editor_info().image_rect.w()));
v.push_back(variant(tile_->get_editor_info().image_rect.h()));
return variant(&v);
} else if(key == "group") {
return variant(tile_->get_editor_info().group);
}
std::map<variant, variant> m;
m[variant("type")] = variant(tile_->get_editor_info().type);
m[variant("name")] = variant(tile_->get_editor_info().name);
m[variant("image")] = variant(tile_->get_editor_info().image);
m[variant("group")] = variant(tile_->get_editor_info().group);
std::vector<variant> v;
v.push_back(variant(tile_->get_editor_info().image_rect.x()));
v.push_back(variant(tile_->get_editor_info().image_rect.y()));
v.push_back(variant(tile_->get_editor_info().image_rect.w()));
v.push_back(variant(tile_->get_editor_info().image_rect.h()));
m[variant("rect")] = variant(&v);
return variant(&m);
}
void set_value(const std::string& key, const variant& value)
{}
public:
explicit editor_info_callable(const hex_tile& tile)
: tile_(const_cast<hex_tile*>(&tile))
{}
};
variant hex_tile::get_value(const std::string& key) const
{
if(key == "variations") {
} else if(key == "transitions") {
return variant(new transition_callable(*this));
} else if(key == "type") {
return variant(type());
} else if(key == "name") {
return variant(name());
} else if(key == "editor_info") {
return variant(new editor_info_callable(*this));
}
return variant();
}
void hex_tile::set_value(const std::string& key, const variant& value)
{
}
variant hex_tile::write() const
{
// XXX todo
return variant();
}
basic_hex_tile_ptr hex_tile::get_single_tile()
{
// Select a tile from among the variations.
ASSERT_LOG(!variations_.empty(), "No tiles found! " << type());
int roll = rand() % 100;
foreach(const basic_hex_tile_ptr& htp, variations_) {
if(roll < htp->chance()) {
htp->get_texture();
return htp;
}
roll -= htp->chance();
}
// Ideally this shouldn't happen, but we'll just return the front item if it does.
variations_.front()->get_texture();
return variations_.front();
}
void hex_tile::editor_info::draw(int x, int y) const
{
point p(hex_map::get_pixel_pos_from_tile_pos(x,y));
graphics::blit_texture(texture, p.x, p.y, image_rect.w(), image_rect.h(), 0.0f,
GLfloat(image_rect.x())/GLfloat(texture.width()),
GLfloat(image_rect.y())/GLfloat(texture.height()),
GLfloat(image_rect.x2())/GLfloat(texture.width()),
GLfloat(image_rect.y2())/GLfloat(texture.height()));
}
}
|