1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Frown --- An LALR(k) parser generator for Haskell 98 %
% Copyright (C) 2001-2005 Ralf Hinze %
% %
% This program is free software; you can redistribute it and/or modify %
% it under the terms of the GNU General Public License (version 2) as %
% published by the Free Software Foundation. %
% %
% This program is distributed in the hope that it will be useful, %
% but WITHOUT ANY WARRANTY; without even the implied warranty of %
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %
% GNU General Public License for more details. %
% %
% You should have received a copy of the GNU General Public License %
% along with this program; see the file COPYING. If not, write to %
% the Free Software Foundation, Inc., 59 Temple Place - Suite 330, %
% Boston, MA 02111-1307, USA. %
% %
% Contact information %
% Email: Ralf Hinze <ralf@cs.uni-bonn.de> %
% Homepage: http://www.informatik.uni-bonn.de/~ralf/ %
% Paper mail: Dr. Ralf Hinze %
% Institut für Informatik III %
% Universität Bonn %
% Römerstraße 164 %
% 53117 Bonn, Germany %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%-------------------------------= --------------------------------------------
\section{|Standard.lhs|}
%-------------------------------= --------------------------------------------
> module Standard ( generate )
> where
> import Atom
> import Haskell
> import Grammar hiding ( prec )
> import qualified Grammar as G
> import Convert
> import LR0 hiding ( fromList )
> import Lookahead
> import Case
> import qualified OrdUniqListSet as Set
> import qualified SearchTree as ST
> import Options
> import Base
> import Generate
> import Data.Char
> import System.IO
> import Data.Maybe
> import Prelude hiding ( lookup )
Characteristics.
%
\begin{description}
\item[required] --
\item[unsupported] --
\end{description}
%
Possible optimization: transitions |s_i >- t -> s_j| such that |s_i|
has only shifts and |t| has no semantic values can be omitted.
%-------------------------------= --------------------------------------------
\subsection{Helper functions}
%-------------------------------= --------------------------------------------
> {-
NEU: für die optimierten Reduktionen.
> ntArgsOf v ctx = args (pattern v)
> where
> args (Case e [(p, e')]) = Case e [(p, args e')]
> args e = ctx (map fst (quotesOf e))
> -}
%-------------------------------= --------------------------------------------
\subsection{Generate Haskell code}
%-------------------------------= --------------------------------------------
> generate :: [Flag] -> [(Symbol, State)] -> GotoTable -> BranchTable -> IO [Decl]
> generate opts entries edges table
> = do verb "* Generating Haskell code ... (--code=standard)"
> return decls
> where
> verb = verbose opts
The stack data type.
> decls = [ DataDecl stack_tcon (
> (unCon empty_con, [])
> : [ (unCon (con_s_s e), stack_tcon : typesOf v)
> | e@(s, v, s') <- edges ]) ]
The data type of nonterminals. This data type is required if there are
multiple entry points into the parser (that is, multiple start
symbols).
> ++ [ Empty
> , DataDecl nonterminal_tcon
> [ (unCon (ntName n), typesOf n) | (n, _) <- entries ] ]
The parsers for the start symbols.
> ++ concat [ Empty
> : [ Sig [unVar (globalNTName n)]
> ([ x_tcon | not lexFlag ] <->> result_tcon <$> [Tuple (typesOf n)])
> | sigFlag ]
> ++ [funbind (globalNTName n <$> [tr_var | not lexFlag])
> (next_n s (empty_con) False <>>=>
> Fun [ntName n <$> genVars n]
> (hsReturn <$> [Tuple (genVars n)]))]
> | (n, s) <- entries ]
The |parse_i| functions.
> ++ concat [ [ Empty ]
>-- , AComment ["state " ++ show (snumber s) ++ reportConflicts cases ++ " "] ]
> ++ [ Sig [unVar (parse_var s)]
> ([x_tcon, stack_tcon] <->> result_tcon <$> [nonterminal_tcon])
> | sigFlag ]
>--OLD Sig [unVar (parse_var s)] (Con "Monad" <$> [Var "m"] <=>>
>--OLD ([x_tcon, stack_tcon] <->> Var "m" <$> [nonterminal_tcon]))
Problems with supplying the type signatures: for parsers with a
monadic lexer we don't know the type (for instance, `|Lex a|' or
`|Lex m a|' which requires a constraint on `|m|').
> ++ genParse_n s cases
> | (s, cases) <- ST.toList table ]
The |impossible| function (final failure).
> ++ (if backtrFlag then
> [ Empty ]
> ++ [ Sig [unVar impossible_var]
> ([x_tcon] <->> result_tcon <$> [nonterminal_tcon])
> | sigFlag ]
> ++ [ funbind (notpossible x_var) (
> hsFail <$> [stringLiteral "\"The `impossible' happened.\""])]
> else
> [])
Options and settings.
> trFlag = Trace `elem` opts
> lexFlag = Lexer `elem` opts
> expFlag = Expected `elem` opts
> backtrFlag = Backtrack `elem` opts
> sigFlag = Signature False `elem` opts || Signature True `elem` opts
>
> x_var = if lexFlag then t_var else ts_var
> x_tcon = if lexFlag then terminal_tcon else List [terminal_tcon]
Generate code.
> genParse_n s (ReduceN as)
> = reduces as Nothing ++ [ impossibleCase s | backtrFlag ]
> genParse_n s (TokenCase es bs la)
> = concat [ topLevel s e (Just t) | (t, e) <- es ]
> ++ catchall s bs la
> genParse_n _ _ = impossible "Standard.genParse_n"
>
> topLevel _s (Shift1 e) _ = [shift e False]
> topLevel _s (ReduceN rs) t= reduces rs t
> topLevel _s (ShiftReduce e b) _
> = [shift e backtrFlag <||> caseexpr b]
> topLevel s b t = [funbind (parse_n s st_var (genAnoPat t)) (caseexpr b)]
>
> caseexpr (Shift1 e) = shiftRHS e -- this must be an error-correcting transition
> caseexpr (ReduceN rs) = switch st_var ([ (genStack (stack r), reduceRHS r) | r <- rs ]
> ++ [ (anon, notpossible x_var) | backtrFlag ])
> caseexpr (ReduceReduce rs)= foldr1 (<|>) [ switch st_var ([ (genStack (stack r), reduceRHS r)]
> ++ [(anon, frown (Set.empty))]) | r <- rs ] -- TODO: pass set of expected tokens
> caseexpr (TokenCase es bs la) -- does not work with a monadic lexer
> = switch tr_var ([ ( genNewPat x False, caseexpr t)
> | (x, t) <- es ]
> ++ [(anon, catchallRHS bs la)])
> caseexpr _ = impossible "Standard.caseexpr"
Code for shift actions. NB `|insert|' shift actions (which are akin to
epsilon transitions) must be treated specially (no input is consumed).
> shift e@(s, t, _) flag = funbind (parse_n s st_var (genNewPat t flag)) (shiftRHS e)
>
> shiftRHS e@(s, t, s') = trace
> (hsPutStrLn <$>
> [stringLiteral ("\"shift " ++ smangle s ++ " (\"")
> <++> hsShow <$> [fresh t]
> <++> stringLiteral ("\") " ++ smangle s' ++ "\"")])
> (next_n s' (con_s_s e <$> (st_var : genVars t)) (modifier t == Insert))
>
> next_n s st errCorr
> | errCorr = parse_n s st x_var
> | lexFlag = hsGet <>>=> Fun [t'_var] (parse_n s st t'_var)
> | otherwise = parse_n s st tr_var
Generate input pattern for shift action (the as patterns are only
required if the rhs includes reductions).
> genNewPat v flag
> | lexFlag = asPat' t_var (fresh v)
> | isNewEOF (pattern v)= asPat' ts_var (asPat tr_var hsNil)
> | otherwise = asPat' ts_var (fresh v <:> tr_var)
> where asPat' x p
> | flag = asPat x p
> | otherwise = p
Code for reduce actions.
> reduces rs x = [ reduce r x | r <- rs ]
>
> reduce r x = funbind (parse_n (current r) (genStack (stack r)) (genAnoPat x))
> (reduceRHS r)
>
> reduceRHS (Reduce _st e@(_s, v, s') _ _ i)
> | isStart v = trace
> (hsPutStrLn <$> [stringLiteral "\"accept\""])
> (evaluate (argsOf v) (\ args -> hsReturn <$> [ntName v <$> args]))
> | otherwise = trace traceReduce
> (evaluate (argsOf v) (\ args ->
> proceed_n s' (con_s_s e <$> (st_var : args))))
> where
> traceReduce = hsPutStrLn <$> [stringLiteral ("\"reduce by " ++ show i ++ "\"")]
>
> proceed_n s st' = parse_n s st' x_var
> reduceRHS _ = impossible "Standard.reduceRHS"
Generate input pattern for reduce action with anonymous variables (to
avoid name capture).
> genAnoPat Nothing = x_var
> genAnoPat (Just v)
> | lexFlag = asPat t_var (anonymous v)
> | isNewEOF (pattern v)= asPat ts_var (asPat tr_var hsNil)
> | otherwise = asPat ts_var (anonymous v <:> tr_var)
Generate stack pattern for reduce action.
> genStack Nil = st_var
> genStack (st :> e@(_, v, _))
> = con_s_s e <$> (genStack st : argsOf v)
Tracing.
> trace tr e
> | trFlag = tr <>>> e
> | otherwise = e
The catchall case; if we have any |Insert| transitions we use these.
> catchall s bs la = [ funbind (parse_n s st_var x_var) (catchallRHS bs la) ]
>
> catchallRHS bs la = if null bs then frown la else foldr1 (<|>) (map caseexpr bs)
>
> impossibleCase s = funbind (parse_n s st_var x_var) (notpossible x_var)
>
> frown la
> | expFlag = hsFrown <$> [expected la, x_var]
> | otherwise = hsFrown <$> [x_var]
Possibly generate a backtracking parser.
> FunBind lhs rhs <||> alt = FunBind lhs (rhs <|> alt)
> _ <||> _ = impossible "Standard.<||>"
> e1 <|> e2
> | backtrFlag = Infix e1 (ident "`mplus`") e2
> | otherwise = e1
Names.
> parse_n i st ts = parse_var i <$> [ts, st]
> notpossible ts = impossible_var <$> [ts]
> parse_var i = wrap_var ("parse_" ++ smangle i)
> impossible_var = wrap_var "impossible"
> stack_tcon = wrap_con "Stack"
> empty_con = wrap_con "Empty"
> nonterminal_tcon = wrap_con "Nonterminal"
> st_var = wrap_var "st"
> ts_var = wrap_var "ts"
> tr_var = wrap_var "tr"
> t_var = wrap_var "t"
> t'_var = wrap_var "t'"
> con_s_s (s, _v, s') = wrap_con ("T_" ++ smangle s ++ "_" ++ smangle s')
> globalNTName v = var (string (name v))
> ntName v = wrap_con (string (name v))
> wrap s = prefix opts ++ s ++ suffix opts
> wrap_var s = var (wrap s)
> wrap_con s = con (wrap s)
|