File: applications_performance.cpp

package info (click to toggle)
frugally-deep 0.18.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,036 kB
  • sloc: cpp: 6,680; python: 1,262; makefile: 4; sh: 1
file content (92 lines) | stat: -rw-r--r-- 3,095 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
// Copyright 2016, Tobias Hermann.
// https://github.com/Dobiasd/frugally-deep
// Distributed under the MIT License.
// (See accompanying LICENSE file or at
//  https://opensource.org/licenses/MIT)

#include "fdeep/fdeep.hpp"

int main()
{
    std::vector<std::string> model_paths = {
        // "convnextbase.json",
        // "convnextlarge.json",
        // "convnextsmall.json",
        // "convnexttiny.json",
        // "convnextxlarge.json",
        "densenet121.json",
        "densenet169.json",
        "densenet201.json",
        "efficientnetb0.json",
        "efficientnetb1.json",
        "efficientnetb2.json",
        "efficientnetb3.json",
        "efficientnetb4.json",
        "efficientnetb5.json",
        "efficientnetb6.json",
        "efficientnetb7.json",
        "efficientnetv2b0.json",
        "efficientnetv2b1.json",
        "efficientnetv2b2.json",
        "efficientnetv2b3.json",
        "efficientnetv2l.json",
        "efficientnetv2m.json",
        "efficientnetv2s.json",
        // "inceptionresnetv2.json",
        "inceptionv3.json",
        "mobilenet.json",
        "mobilenetv2.json",
        "nasnetlarge.json",
        "nasnetmobile.json",
        "resnet101.json",
        "resnet101v2.json",
        "resnet152.json",
        "resnet152v2.json",
        "resnet50.json",
        "resnet50v2.json",
        "vgg16.json",
        "vgg19.json",
        "xception.json"
    };

    bool error = false;

    for (const auto& model_path : model_paths) {
        std::cout << "----" << std::endl;
        std::cout << model_path << std::endl;
#ifdef NDEBUG
        try {
            const auto model = fdeep::load_model(model_path, true);
            const std::size_t warm_up_runs = 3;
            const std::size_t test_runs = 5;
            for (std::size_t i = 0; i < warm_up_runs; ++i) {
                const double duration = model.test_speed();
                std::cout << "Forward pass took "
                          << duration << " s." << std::endl;
            }
            double duration_sum = 0;
            std::cout << "Starting performance measurements." << std::endl;
            for (std::size_t i = 0; i < test_runs; ++i) {
                const double duration = model.test_speed();
                duration_sum += duration;
                std::cout << "Forward pass took "
                          << duration << " s." << std::endl;
            }
            const double duration_avg = duration_sum / static_cast<double>(test_runs);
            std::cout << "Forward pass took "
                      << duration_avg << " s on average." << std::endl;
        } catch (const std::exception& e) {
            std::cerr << "ERROR: " << e.what() << std::endl;
            error = true;
        }
#else
        const auto model = fdeep::load_model(model_path, true);
#endif
    }

    if (error) {
        std::cout << "There were errors." << std::endl;
        return 1;
    }
    std::cout << "All imports and test OK." << std::endl;
}