1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
/*============================================================================
This source file is an extension to the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2b, written for Bochs (x86 achitecture simulator)
floating point emulation.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) the source code for the derivative work includes prominent notice that
the work is derivative, and (2) the source code includes prominent notice with
these four paragraphs for those parts of this code that are retained.
=============================================================================*/
/*============================================================================
* Written for Bochs (x86 achitecture simulator) by
* Stanislav Shwartsman [sshwarts at sourceforge net]
* ==========================================================================*/
#define FLOAT128
#define USE_estimateDiv128To64
#include "softfloatx80.h"
#include "softfloat-round-pack.h"
#include "fpu_constant.h"
#include "softfloat.h"
static const floatx80 floatx80_one = packFloatx80(0, 0x3fff, BX_CONST64(0x8000000000000000));
/* reduce trigonometric function argument using 128-bit precision
M_PI approximation */
static Bit64u argument_reduction_kernel(Bit64u aSig0, int Exp, Bit64u *zSig0, Bit64u *zSig1)
{
Bit64u term0, term1, term2;
Bit64u aSig1 = 0;
shortShift128Left(aSig1, aSig0, Exp, &aSig1, &aSig0);
Bit64u q = estimateDiv128To64(aSig1, aSig0, FLOAT_PI_HI);
mul128By64To192(FLOAT_PI_HI, FLOAT_PI_LO, q, &term0, &term1, &term2);
sub128(aSig1, aSig0, term0, term1, zSig1, zSig0);
while ((Bit64s)(*zSig1) < 0) {
--q;
add192(*zSig1, *zSig0, term2, 0, FLOAT_PI_HI, FLOAT_PI_LO, zSig1, zSig0, &term2);
}
*zSig1 = term2;
return q;
}
static int reduce_trig_arg(int expDiff, int &zSign, Bit64u &aSig0, Bit64u &aSig1)
{
Bit64u term0, term1, q = 0;
if (expDiff < 0) {
shift128Right(aSig0, 0, 1, &aSig0, &aSig1);
expDiff = 0;
}
if (expDiff > 0) {
q = argument_reduction_kernel(aSig0, expDiff, &aSig0, &aSig1);
}
else {
if (FLOAT_PI_HI <= aSig0) {
aSig0 -= FLOAT_PI_HI;
q = 1;
}
}
shift128Right(FLOAT_PI_HI, FLOAT_PI_LO, 1, &term0, &term1);
if (! lt128(aSig0, aSig1, term0, term1))
{
int lt = lt128(term0, term1, aSig0, aSig1);
int eq = eq128(aSig0, aSig1, term0, term1);
if ((eq && (q & 1)) || lt) {
zSign = !zSign;
++q;
}
if (lt) sub128(FLOAT_PI_HI, FLOAT_PI_LO, aSig0, aSig1, &aSig0, &aSig1);
}
return (int)(q & 3);
}
#define SIN_ARR_SIZE 11
#define COS_ARR_SIZE 11
static float128 sin_arr[SIN_ARR_SIZE] =
{
PACK_FLOAT_128(0x3fff000000000000, 0x0000000000000000), /* 1 */
PACK_FLOAT_128(0xbffc555555555555, 0x5555555555555555), /* 3 */
PACK_FLOAT_128(0x3ff8111111111111, 0x1111111111111111), /* 5 */
PACK_FLOAT_128(0xbff2a01a01a01a01, 0xa01a01a01a01a01a), /* 7 */
PACK_FLOAT_128(0x3fec71de3a556c73, 0x38faac1c88e50017), /* 9 */
PACK_FLOAT_128(0xbfe5ae64567f544e, 0x38fe747e4b837dc7), /* 11 */
PACK_FLOAT_128(0x3fde6124613a86d0, 0x97ca38331d23af68), /* 13 */
PACK_FLOAT_128(0xbfd6ae7f3e733b81, 0xf11d8656b0ee8cb0), /* 15 */
PACK_FLOAT_128(0x3fce952c77030ad4, 0xa6b2605197771b00), /* 17 */
PACK_FLOAT_128(0xbfc62f49b4681415, 0x724ca1ec3b7b9675), /* 19 */
PACK_FLOAT_128(0x3fbd71b8ef6dcf57, 0x18bef146fcee6e45) /* 21 */
};
static float128 cos_arr[COS_ARR_SIZE] =
{
PACK_FLOAT_128(0x3fff000000000000, 0x0000000000000000), /* 0 */
PACK_FLOAT_128(0xbffe000000000000, 0x0000000000000000), /* 2 */
PACK_FLOAT_128(0x3ffa555555555555, 0x5555555555555555), /* 4 */
PACK_FLOAT_128(0xbff56c16c16c16c1, 0x6c16c16c16c16c17), /* 6 */
PACK_FLOAT_128(0x3fefa01a01a01a01, 0xa01a01a01a01a01a), /* 8 */
PACK_FLOAT_128(0xbfe927e4fb7789f5, 0xc72ef016d3ea6679), /* 10 */
PACK_FLOAT_128(0x3fe21eed8eff8d89, 0x7b544da987acfe85), /* 12 */
PACK_FLOAT_128(0xbfda93974a8c07c9, 0xd20badf145dfa3e5), /* 14 */
PACK_FLOAT_128(0x3fd2ae7f3e733b81, 0xf11d8656b0ee8cb0), /* 16 */
PACK_FLOAT_128(0xbfca6827863b97d9, 0x77bb004886a2c2ab), /* 18 */
PACK_FLOAT_128(0x3fc1e542ba402022, 0x507a9cad2bf8f0bb) /* 20 */
};
/* 0 <= x <= pi/4 */
BX_CPP_INLINE float128 poly_sin(float128 x, float_status_t &status)
{
// 3 5 7 9 11 13 15
// x x x x x x x
// sin (x) ~ x - --- + --- - --- + --- - ---- + ---- - ---- =
// 3! 5! 7! 9! 11! 13! 15!
//
// 2 4 6 8 10 12 14
// x x x x x x x
// = x * [ 1 - --- + --- - --- + --- - ---- + ---- - ---- ] =
// 3! 5! 7! 9! 11! 13! 15!
//
// 3 3
// -- 4k -- 4k+2
// p(x) = > C * x > 0 q(x) = > C * x < 0
// -- 2k -- 2k+1
// k=0 k=0
//
// 2
// sin(x) ~ x * [ p(x) + x * q(x) ]
//
return OddPoly(x, sin_arr, SIN_ARR_SIZE, status);
}
/* 0 <= x <= pi/4 */
BX_CPP_INLINE float128 poly_cos(float128 x, float_status_t &status)
{
// 2 4 6 8 10 12 14
// x x x x x x x
// cos (x) ~ 1 - --- + --- - --- + --- - ---- + ---- - ----
// 2! 4! 6! 8! 10! 12! 14!
//
// 3 3
// -- 4k -- 4k+2
// p(x) = > C * x > 0 q(x) = > C * x < 0
// -- 2k -- 2k+1
// k=0 k=0
//
// 2
// cos(x) ~ [ p(x) + x * q(x) ]
//
return EvenPoly(x, cos_arr, COS_ARR_SIZE, status);
}
BX_CPP_INLINE void sincos_invalid(floatx80 *sin_a, floatx80 *cos_a, floatx80 a)
{
if (sin_a) *sin_a = a;
if (cos_a) *cos_a = a;
}
BX_CPP_INLINE void sincos_tiny_argument(floatx80 *sin_a, floatx80 *cos_a, floatx80 a)
{
if (sin_a) *sin_a = a;
if (cos_a) *cos_a = floatx80_one;
}
static floatx80 sincos_approximation(int neg, float128 r, Bit64u quotient, float_status_t &status)
{
if (quotient & 0x1) {
r = poly_cos(r, status);
neg = 0;
} else {
r = poly_sin(r, status);
}
floatx80 result = float128_to_floatx80(r, status);
if (quotient & 0x2)
neg = ! neg;
if (neg)
floatx80_chs(result);
return result;
}
// =================================================
// FSINCOS Compute sin(x) and cos(x)
// =================================================
//
// Uses the following identities:
// ----------------------------------------------------------
//
// sin(-x) = -sin(x)
// cos(-x) = cos(x)
//
// sin(x+y) = sin(x)*cos(y)+cos(x)*sin(y)
// cos(x+y) = sin(x)*sin(y)+cos(x)*cos(y)
//
// sin(x+ pi/2) = cos(x)
// sin(x+ pi) = -sin(x)
// sin(x+3pi/2) = -cos(x)
// sin(x+2pi) = sin(x)
//
int fsincos(floatx80 a, floatx80 *sin_a, floatx80 *cos_a, float_status_t &status)
{
Bit64u aSig0, aSig1 = 0;
Bit32s aExp, zExp, expDiff;
int aSign, zSign;
int q = 0;
// handle unsupported extended double-precision floating encodings
if (floatx80_is_unsupported(a)) {
goto invalid;
}
aSig0 = extractFloatx80Frac(a);
aExp = extractFloatx80Exp(a);
aSign = extractFloatx80Sign(a);
/* invalid argument */
if (aExp == 0x7FFF) {
if ((Bit64u) (aSig0<<1)) {
sincos_invalid(sin_a, cos_a, propagateFloatx80NaN(a, status));
return 0;
}
invalid:
float_raise(status, float_flag_invalid);
sincos_invalid(sin_a, cos_a, floatx80_default_nan);
return 0;
}
if (aExp == 0) {
if (aSig0 == 0) {
sincos_tiny_argument(sin_a, cos_a, a);
return 0;
}
float_raise(status, float_flag_denormal);
/* handle pseudo denormals */
if (! (aSig0 & BX_CONST64(0x8000000000000000)))
{
float_raise(status, float_flag_inexact);
if (sin_a)
float_raise(status, float_flag_underflow);
sincos_tiny_argument(sin_a, cos_a, a);
return 0;
}
normalizeFloatx80Subnormal(aSig0, &aExp, &aSig0);
}
zSign = aSign;
zExp = FLOATX80_EXP_BIAS;
expDiff = aExp - zExp;
/* argument is out-of-range */
if (expDiff >= 63)
return -1;
float_raise(status, float_flag_inexact);
if (expDiff < -1) { // doesn't require reduction
if (expDiff <= -68) {
a = packFloatx80(aSign, aExp, aSig0);
sincos_tiny_argument(sin_a, cos_a, a);
return 0;
}
zExp = aExp;
}
else {
q = reduce_trig_arg(expDiff, zSign, aSig0, aSig1);
}
/* **************************** */
/* argument reduction completed */
/* **************************** */
/* using float128 for approximation */
float128 r = normalizeRoundAndPackFloat128(0, zExp-0x10, aSig0, aSig1, status);
if (aSign) q = -q;
if (sin_a) *sin_a = sincos_approximation(zSign, r, q, status);
if (cos_a) *cos_a = sincos_approximation(zSign, r, q+1, status);
return 0;
}
int fsin(floatx80 &a, float_status_t &status)
{
return fsincos(a, &a, 0, status);
}
int fcos(floatx80 &a, float_status_t &status)
{
return fsincos(a, 0, &a, status);
}
// =================================================
// FPTAN Compute tan(x)
// =================================================
//
// Uses the following identities:
//
// 1. ----------------------------------------------------------
//
// sin(-x) = -sin(x)
// cos(-x) = cos(x)
//
// sin(x+y) = sin(x)*cos(y)+cos(x)*sin(y)
// cos(x+y) = sin(x)*sin(y)+cos(x)*cos(y)
//
// sin(x+ pi/2) = cos(x)
// sin(x+ pi) = -sin(x)
// sin(x+3pi/2) = -cos(x)
// sin(x+2pi) = sin(x)
//
// 2. ----------------------------------------------------------
//
// sin(x)
// tan(x) = ------
// cos(x)
//
int ftan(floatx80 &a, float_status_t &status)
{
Bit64u aSig0, aSig1 = 0;
Bit32s aExp, zExp, expDiff;
int aSign, zSign;
int q = 0;
// handle unsupported extended double-precision floating encodings
if (floatx80_is_unsupported(a)) {
goto invalid;
}
aSig0 = extractFloatx80Frac(a);
aExp = extractFloatx80Exp(a);
aSign = extractFloatx80Sign(a);
/* invalid argument */
if (aExp == 0x7FFF) {
if ((Bit64u) (aSig0<<1))
{
a = propagateFloatx80NaN(a, status);
return 0;
}
invalid:
float_raise(status, float_flag_invalid);
a = floatx80_default_nan;
return 0;
}
if (aExp == 0) {
if (aSig0 == 0) return 0;
float_raise(status, float_flag_denormal);
/* handle pseudo denormals */
if (! (aSig0 & BX_CONST64(0x8000000000000000)))
{
float_raise(status, float_flag_inexact | float_flag_underflow);
return 0;
}
normalizeFloatx80Subnormal(aSig0, &aExp, &aSig0);
}
zSign = aSign;
zExp = FLOATX80_EXP_BIAS;
expDiff = aExp - zExp;
/* argument is out-of-range */
if (expDiff >= 63)
return -1;
float_raise(status, float_flag_inexact);
if (expDiff < -1) { // doesn't require reduction
if (expDiff <= -68) {
a = packFloatx80(aSign, aExp, aSig0);
return 0;
}
zExp = aExp;
}
else {
q = reduce_trig_arg(expDiff, zSign, aSig0, aSig1);
}
/* **************************** */
/* argument reduction completed */
/* **************************** */
/* using float128 for approximation */
float128 r = normalizeRoundAndPackFloat128(0, zExp-0x10, aSig0, aSig1, status);
float128 sin_r = poly_sin(r, status);
float128 cos_r = poly_cos(r, status);
if (q & 0x1) {
r = float128_div(cos_r, sin_r, status);
zSign = ! zSign;
} else {
r = float128_div(sin_r, cos_r, status);
}
a = float128_to_floatx80(r, status);
if (zSign)
floatx80_chs(a);
return 0;
}
|