1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
/*============================================================================
This source file is an extension to the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2b, written for Bochs (x86 achitecture simulator)
floating point emulation.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) the source code for the derivative work includes prominent notice that
the work is derivative, and (2) the source code includes prominent notice with
these four paragraphs for those parts of this code that are retained.
=============================================================================*/
/*============================================================================
* Written for Bochs (x86 achitecture simulator) by
* Stanislav Shwartsman [sshwarts at sourceforge net]
* ==========================================================================*/
#include "softfloatx80.h"
#include "softfloat-round-pack.h"
#include "softfloat-macros.h"
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 16-bit two's complement integer format. The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic - which means in particular that the conversion
| is rounded according to the current rounding mode. If `a' is a NaN or the
| conversion overflows, the integer indefinite value is returned.
*----------------------------------------------------------------------------*/
Bit16s floatx80_to_int16(floatx80 a, float_status_t &status)
{
if (floatx80_is_unsupported(a)) {
float_raise(status, float_flag_invalid);
return int16_indefinite;
}
Bit32s v32 = floatx80_to_int32(a, status);
if ((v32 > 32767) || (v32 < -32768)) {
status.float_exception_flags = float_flag_invalid; // throw away other flags
return int16_indefinite;
}
return (Bit16s) v32;
}
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 16-bit two's complement integer format. The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero. If `a' is a NaN or the conversion overflows, the integer
| indefinite value is returned.
*----------------------------------------------------------------------------*/
Bit16s floatx80_to_int16_round_to_zero(floatx80 a, float_status_t &status)
{
if (floatx80_is_unsupported(a)) {
float_raise(status, float_flag_invalid);
return int16_indefinite;
}
Bit32s v32 = floatx80_to_int32_round_to_zero(a, status);
if ((v32 > 32767) || (v32 < -32768)) {
status.float_exception_flags = float_flag_invalid; // throw away other flags
return int16_indefinite;
}
return (Bit16s) v32;
}
/*----------------------------------------------------------------------------
| Separate the source extended double-precision floating point value `a'
| into its exponent and significand, store the significant back to the
| 'a' and return the exponent. The operation performed is a superset of
| the IEC/IEEE recommended logb(x) function.
*----------------------------------------------------------------------------*/
floatx80 floatx80_extract(floatx80 &a, float_status_t &status)
{
Bit64u aSig = extractFloatx80Frac(a);
Bit32s aExp = extractFloatx80Exp(a);
int aSign = extractFloatx80Sign(a);
if (floatx80_is_unsupported(a))
{
float_raise(status, float_flag_invalid);
a = floatx80_default_nan;
return a;
}
if (aExp == 0x7FFF) {
if ((Bit64u) (aSig<<1))
{
a = propagateFloatx80NaN(a, status);
return a;
}
return packFloatx80(0, 0x7FFF, BX_CONST64(0x8000000000000000));
}
if (aExp == 0)
{
if (aSig == 0) {
float_raise(status, float_flag_divbyzero);
a = packFloatx80(aSign, 0, 0);
return packFloatx80(1, 0x7FFF, BX_CONST64(0x8000000000000000));
}
float_raise(status, float_flag_denormal);
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
}
a.exp = (aSign << 15) + 0x3FFF;
a.fraction = aSig;
return int32_to_floatx80(aExp - 0x3FFF);
}
/*----------------------------------------------------------------------------
| Scales extended double-precision floating-point value in operand `a' by
| value `b'. The function truncates the value in the second operand 'b' to
| an integral value and adds that value to the exponent of the operand 'a'.
| The operation performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
floatx80 floatx80_scale(floatx80 a, floatx80 b, float_status_t &status)
{
Bit32s aExp, bExp;
Bit64u aSig, bSig;
// handle unsupported extended double-precision floating encodings
if (floatx80_is_unsupported(a) || floatx80_is_unsupported(b))
{
float_raise(status, float_flag_invalid);
return floatx80_default_nan;
}
aSig = extractFloatx80Frac(a);
aExp = extractFloatx80Exp(a);
int aSign = extractFloatx80Sign(a);
bSig = extractFloatx80Frac(b);
bExp = extractFloatx80Exp(b);
int bSign = extractFloatx80Sign(b);
if (aExp == 0x7FFF) {
if ((Bit64u) (aSig<<1) || ((bExp == 0x7FFF) && (Bit64u) (bSig<<1)))
{
return propagateFloatx80NaN(a, b, status);
}
if ((bExp == 0x7FFF) && bSign) {
float_raise(status, float_flag_invalid);
return floatx80_default_nan;
}
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
return a;
}
if (bExp == 0x7FFF) {
if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status);
if ((aExp | aSig) == 0) {
if (! bSign) {
float_raise(status, float_flag_invalid);
return floatx80_default_nan;
}
return a;
}
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
if (bSign) return packFloatx80(aSign, 0, 0);
return packFloatx80(aSign, 0x7FFF, BX_CONST64(0x8000000000000000));
}
if (aExp == 0) {
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
if (aSig == 0) return a;
float_raise(status, float_flag_denormal);
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
if (bExp < 0x3FFF)
return normalizeRoundAndPackFloatx80(80, aSign, aExp, aSig, 0, status);
}
if (bExp == 0) {
if (bSig == 0) return a;
float_raise(status, float_flag_denormal);
normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
}
if (bExp > 0x400E) {
/* generate appropriate overflow/underflow */
return roundAndPackFloatx80(80, aSign,
bSign ? -0x3FFF : 0x7FFF, aSig, 0, status);
}
if (bExp < 0x3FFF) return a;
int shiftCount = 0x403E - bExp;
bSig >>= shiftCount;
Bit32s scale = (Bit32s) bSig;
if (bSign) scale = -scale; /* -32768..32767 */
return
roundAndPackFloatx80(80, aSign, aExp+scale, aSig, 0, status);
}
/*----------------------------------------------------------------------------
| Determine extended-precision floating-point number class.
*----------------------------------------------------------------------------*/
float_class_t floatx80_class(floatx80 a)
{
Bit32s aExp = extractFloatx80Exp(a);
Bit64u aSig = extractFloatx80Frac(a);
if(aExp == 0) {
if (aSig == 0)
return float_zero;
/* denormal or pseudo-denormal */
return float_denormal;
}
/* valid numbers have the MS bit set */
if (!(aSig & BX_CONST64(0x8000000000000000)))
return float_SNaN; /* report unsupported as SNaNs */
if(aExp == 0x7fff) {
int aSign = extractFloatx80Sign(a);
if (((Bit64u) (aSig<< 1)) == 0)
return (aSign) ? float_negative_inf : float_positive_inf;
return (aSig & BX_CONST64(0x4000000000000000)) ? float_QNaN : float_SNaN;
}
return float_normalized;
}
/*----------------------------------------------------------------------------
| Compare between two extended precision floating point numbers. Returns
| 'float_relation_equal' if the operands are equal, 'float_relation_less' if
| the value 'a' is less than the corresponding value `b',
| 'float_relation_greater' if the value 'a' is greater than the corresponding
| value `b', or 'float_relation_unordered' otherwise.
*----------------------------------------------------------------------------*/
int floatx80_compare(floatx80 a, floatx80 b, float_status_t &status)
{
float_class_t aClass = floatx80_class(a);
float_class_t bClass = floatx80_class(b);
if (aClass == float_SNaN || aClass == float_QNaN || bClass == float_SNaN || bClass == float_QNaN)
{
float_raise(status, float_flag_invalid);
return float_relation_unordered;
}
if (aClass == float_denormal || bClass == float_denormal) {
float_raise(status, float_flag_denormal);
}
int aSign = extractFloatx80Sign(a);
int bSign = extractFloatx80Sign(b);
if (aClass == float_zero) {
if (bClass == float_zero) return float_relation_equal;
return bSign ? float_relation_greater : float_relation_less;
}
if (bClass == float_zero || aSign != bSign) {
return aSign ? float_relation_less : float_relation_greater;
}
Bit64u aSig = extractFloatx80Frac(a);
Bit32s aExp = extractFloatx80Exp(a);
Bit64u bSig = extractFloatx80Frac(b);
Bit32s bExp = extractFloatx80Exp(b);
if (aClass == float_denormal)
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
if (bClass == float_denormal)
normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
if (aExp == bExp && aSig == bSig)
return float_relation_equal;
int less_than =
aSign ? ((bExp < aExp) || ((bExp == aExp) && (bSig < aSig)))
: ((aExp < bExp) || ((aExp == bExp) && (aSig < bSig)));
if (less_than) return float_relation_less;
return float_relation_greater;
}
/*----------------------------------------------------------------------------
| Compare between two extended precision floating point numbers. Returns
| 'float_relation_equal' if the operands are equal, 'float_relation_less' if
| the value 'a' is less than the corresponding value `b',
| 'float_relation_greater' if the value 'a' is greater than the corresponding
| value `b', or 'float_relation_unordered' otherwise. Quiet NaNs do not cause
| an exception.
*----------------------------------------------------------------------------*/
int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status_t &status)
{
float_class_t aClass = floatx80_class(a);
float_class_t bClass = floatx80_class(b);
if (aClass == float_SNaN || bClass == float_SNaN)
{
/* unsupported reported as SNaN */
float_raise(status, float_flag_invalid);
return float_relation_unordered;
}
if (aClass == float_QNaN || bClass == float_QNaN) {
return float_relation_unordered;
}
if (aClass == float_denormal || bClass == float_denormal) {
float_raise(status, float_flag_denormal);
}
int aSign = extractFloatx80Sign(a);
int bSign = extractFloatx80Sign(b);
if (aClass == float_zero) {
if (bClass == float_zero) return float_relation_equal;
return bSign ? float_relation_greater : float_relation_less;
}
if (bClass == float_zero || aSign != bSign) {
return aSign ? float_relation_less : float_relation_greater;
}
Bit64u aSig = extractFloatx80Frac(a);
Bit32s aExp = extractFloatx80Exp(a);
Bit64u bSig = extractFloatx80Frac(b);
Bit32s bExp = extractFloatx80Exp(b);
if (aClass == float_denormal)
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
if (bClass == float_denormal)
normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
if (aExp == bExp && aSig == bSig)
return float_relation_equal;
int less_than =
aSign ? ((bExp < aExp) || ((bExp == aExp) && (bSig < aSig)))
: ((aExp < bExp) || ((aExp == bExp) && (aSig < bSig)));
if (less_than) return float_relation_less;
return float_relation_greater;
}
|