File: crypto_test.go

package info (click to toggle)
fscrypt 0.3.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,064 kB
  • sloc: sh: 970; makefile: 159; ansic: 84
file content (681 lines) | stat: -rw-r--r-- 17,942 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
/*
 * crypto_test.go - tests for the crypto package
 *
 * Copyright 2017 Google Inc.
 * Author: Joe Richey (joerichey@google.com)
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */

package crypto

import (
	"bytes"
	"compress/zlib"
	"crypto/aes"
	"crypto/sha256"
	"encoding/hex"
	"fmt"
	"io"
	"os"
	"testing"

	"github.com/google/fscrypt/metadata"
)

// Reader that always returns the same byte
type ConstReader byte

func (r ConstReader) Read(b []byte) (n int, err error) {
	for i := range b {
		b[i] = byte(r)
	}
	return len(b), nil
}

// Makes a key of the same repeating byte
func makeKey(b byte, n int) (*Key, error) {
	return NewFixedLengthKeyFromReader(ConstReader(b), n)
}

var (
	fakeSalt     = bytes.Repeat([]byte{'a'}, metadata.SaltLen)
	fakePassword = []byte("password")

	fakeValidPolicyKey, _ = makeKey(42, metadata.PolicyKeyLen)
	fakeWrappingKey, _    = makeKey(17, metadata.InternalKeyLen)
)

// As the passphrase hashing function clears the passphrase, we need to make
// a new passphrase key for each test
func fakePassphraseKey() (*Key, error) {
	return NewFixedLengthKeyFromReader(bytes.NewReader(fakePassword), len(fakePassword))
}

// Values for test cases pulled from argon2 command line tool.
// To generate run:
//
//	echo "password" | argon2 "aaaaaaaaaaaaaaaa" -id -t <t> -m <m> -p <p> -l 32
//
// where costs.Time = <t>, costs.Memory = 2^<m>, and costs.Parallelism = <p>.
type hashTestCase struct {
	costs   *metadata.HashingCosts
	hexHash string
}

var hashTestCases = []hashTestCase{
	{
		costs:   &metadata.HashingCosts{Time: 1, Memory: 1 << 10, Parallelism: 1},
		hexHash: "a66f5398e33761bf161fdf1273e99b148f07d88d12d85b7673fddd723f95ec34",
	},
	// Make sure we maintain our backwards compatible behavior, where
	// Parallelism is truncated to 8-bits unless TruncationFixed is true.
	{
		costs:   &metadata.HashingCosts{Time: 1, Memory: 1 << 10, Parallelism: 257},
		hexHash: "a66f5398e33761bf161fdf1273e99b148f07d88d12d85b7673fddd723f95ec34",
	},
	{
		costs:   &metadata.HashingCosts{Time: 10, Memory: 1 << 10, Parallelism: 1},
		hexHash: "5fa2cb89db1f7413ba1776258b7c8ee8c377d122078d28fe1fd645c353787f50",
	},
	{
		costs:   &metadata.HashingCosts{Time: 1, Memory: 1 << 15, Parallelism: 1},
		hexHash: "f474a213ed14d16ead619568000939b938ddfbd2ac4a82d253afa81b5ebaef84",
	},
	{
		costs:   &metadata.HashingCosts{Time: 1, Memory: 1 << 10, Parallelism: 10},
		hexHash: "b7c3d7a0be222680b5ea3af3fb1a0b7b02b92cbd7007821dc8b84800c86c7783",
	},
	{
		costs:   &metadata.HashingCosts{Time: 1, Memory: 1 << 11, Parallelism: 255},
		hexHash: "d51af3775bbdd0cba31d96fd6d921d9de27f521ceffe667618cd7624f6643071",
	},
	// Adding TruncationFixed shouldn't matter if Parallelism < 256.
	{
		costs:   &metadata.HashingCosts{Time: 1, Memory: 1 << 11, Parallelism: 255, TruncationFixed: true},
		hexHash: "d51af3775bbdd0cba31d96fd6d921d9de27f521ceffe667618cd7624f6643071",
	},
}

// Checks that len(array) == expected
func lengthCheck(name string, array []byte, expected int) error {
	if len(array) != expected {
		return fmt.Errorf("length of %s should be %d", name, expected)
	}
	return nil
}

// Tests the two ways of making keys
func TestMakeKeys(t *testing.T) {
	data := []byte("1234\n6789")

	key1, err := NewKeyFromReader(bytes.NewReader(data))
	switch err {
	case nil:
		defer key1.Wipe()
	case ErrMlockUlimit:
		// Don't fail just because "ulimit -l" is too low.
		t.Skip(err)
	default:
		t.Fatal(err)
	}
	if !bytes.Equal(data, key1.data) {
		t.Error("Key from reader contained incorrect data")
	}

	key2, err := NewFixedLengthKeyFromReader(bytes.NewReader(data), 6)
	if err != nil {
		t.Fatal(err)
	}
	defer key2.Wipe()
	if !bytes.Equal([]byte("1234\n6"), key2.data) {
		t.Error("Fixed length key from reader contained incorrect data")
	}
}

// Tests that wipe succeeds
func TestWipe(t *testing.T) {
	key, err := makeKey(1, 1000)
	if err == ErrMlockUlimit {
		// Don't fail just because "ulimit -l" is too low.
		t.Skip(err)
	}
	if err != nil {
		t.Fatal(err)
	}
	if err := key.Wipe(); err != nil {
		t.Error(err)
	}
}

// Making keys with negative length should fail
func TestInvalidLength(t *testing.T) {
	key, err := NewFixedLengthKeyFromReader(ConstReader(1), -1)
	if err == nil {
		key.Wipe()
		t.Error("Negative lengths should cause failure")
	}
}

// Test making keys of zero length
func TestZeroLength(t *testing.T) {
	key1, err := NewFixedLengthKeyFromReader(os.Stdin, 0)
	if err != nil {
		t.Fatal(err)
	}
	defer key1.Wipe()
	if key1.data != nil {
		t.Error("Fixed length key from reader contained data")
	}

	key2, err := NewKeyFromReader(bytes.NewReader(nil))
	if err != nil {
                if err == ErrMlockUlimit {
			// Don't fail just because "ulimit -l" is too low.
			t.Skip(err)
		}
		t.Fatal(err)
	}
	defer key2.Wipe()
	if key2.data != nil {
		t.Error("Key from empty reader contained data")
	}
}

// Test that enabling then disabling memory locking succeeds even if a key is
// active when the variable changes.
func TestEnableDisableMemoryLocking(t *testing.T) {
	// Mlock on for creation, off for wiping
	key, err := NewRandomKey(metadata.InternalKeyLen)
	UseMlock = false
	defer func() {
		UseMlock = true
	}()

	if err != nil {
                if err == ErrMlockUlimit {
			// Don't fail just because "ulimit -l" is too low.
			t.Skip(err)
		}
		t.Fatal(err)
	}
	if err := key.Wipe(); err != nil {
		t.Error(err)
	}
}

// Test that disabling then enabling memory locking succeeds even if a key is
// active when the variable changes.
func TestDisableEnableMemoryLocking(t *testing.T) {
	// Mlock off for creation, on for wiping
	UseMlock = false
	key2, err := NewRandomKey(metadata.InternalKeyLen)
	UseMlock = true

	if err != nil {
		t.Fatal(err)
	}
	if err := key2.Wipe(); err != nil {
		t.Error(err)
	}
}

// Test making keys long enough that the keys will have to resize
func TestKeyResize(t *testing.T) {
	// Key will have to resize once
	r := io.LimitReader(ConstReader(1), int64(os.Getpagesize())+1)
	key, err := NewKeyFromReader(r)
	if err != nil {
                if err == ErrMlockUlimit {
			// Don't fail just because "ulimit -l" is too low.
			t.Skip(err)
		}
		t.Fatal(err)
	}
	defer key.Wipe()
	for i, b := range key.data {
		if b != 1 {
			t.Fatalf("Byte %d contained invalid data %q", i, b)
		}
	}
}

// Test making keys so long that many resizes are necessary
func TestKeyLargeResize(t *testing.T) {
	// Key will have to resize 7 times
	r := io.LimitReader(ConstReader(1), int64(os.Getpagesize())*65)

	// Turn off Mlocking as the key will exceed the limit on some systems.
	UseMlock = false
	key, err := NewKeyFromReader(r)
	UseMlock = true

	if err != nil {
		t.Fatal(err)
	}
	defer key.Wipe()
	for i, b := range key.data {
		if b != 1 {
			t.Fatalf("Byte %d contained invalid data %q", i, b)
		}
	}
}

// Check that we can create random keys. All this test does to test the
// "randomness" is generate a page of random bytes and attempts compression.
// If the data can be compressed it is probably not very random. This isn't
// intended to be a sufficient test for randomness (which is impossible), but a
// way to catch simple regressions (key is all zeros or contains a repeating
// pattern).
func TestRandomKeyGen(t *testing.T) {
	key, err := NewRandomKey(os.Getpagesize())
	if err != nil {
                if err == ErrMlockUlimit {
			// Don't fail just because "ulimit -l" is too low.
			t.Skip(err)
		}
		t.Fatal(err)
	}
	defer key.Wipe()

	if didCompress(key.data) {
		t.Errorf("Random key (%d bytes) should not be compressible", key.Len())
	}
}

func TestBigKeyGen(t *testing.T) {
	key, err := NewRandomKey(4096 * 4096)
	switch err {
	case nil:
		key.Wipe()
		return
	case ErrMlockUlimit:
		// Don't fail just because "ulimit -l" is too low.
		return
	default:
		t.Fatal(err)
	}
}

// didCompress checks if the given data can be compressed. Specifically, it
// returns true if running zlib on the provided input produces a shorter output.
func didCompress(input []byte) bool {
	var output bytes.Buffer

	w := zlib.NewWriter(&output)
	_, err := w.Write(input)
	w.Close()

	return err == nil && len(input) > output.Len()
}

// Checks that the input arrays are all distinct
func buffersDistinct(buffers ...[]byte) bool {
	for i := 0; i < len(buffers); i++ {
		for j := i + 1; j < len(buffers); j++ {
			if bytes.Equal(buffers[i], buffers[j]) {
				// Different entry, but equal arrays
				return false
			}
		}
	}
	return true
}

// Checks that our cryptographic operations all produce distinct data
func TestKeysAndOutputsDistinct(t *testing.T) {
	data, err := Wrap(fakeWrappingKey, fakeValidPolicyKey)
	if err != nil {
		t.Fatal(err)
	}

	encKey, authKey := stretchKey(fakeWrappingKey)
	defer encKey.Wipe()
	defer authKey.Wipe()

	if !buffersDistinct(fakeWrappingKey.data, fakeValidPolicyKey.data,
		encKey.data, authKey.data, data.IV, data.EncryptedKey, data.Hmac) {
		t.Error("Key wrapping produced duplicate data")
	}
}

// Check that Wrap() works with fixed keys
func TestWrapSucceeds(t *testing.T) {
	data, err := Wrap(fakeWrappingKey, fakeValidPolicyKey)
	if err != nil {
		t.Fatal(err)
	}

	if err = lengthCheck("IV", data.IV, aes.BlockSize); err != nil {
		t.Error(err)
	}
	if err = lengthCheck("Encrypted Key", data.EncryptedKey, metadata.PolicyKeyLen); err != nil {
		t.Error(err)
	}
	if err = lengthCheck("HMAC", data.Hmac, sha256.Size); err != nil {
		t.Error(err)
	}
}

// Checks that applying Wrap then Unwrap gives the original data
func testWrapUnwrapEqual(wrappingKey *Key, secretKey *Key) error {
	data, err := Wrap(wrappingKey, secretKey)
	if err != nil {
		return err
	}

	secret, err := Unwrap(wrappingKey, data)
	if err != nil {
		return err
	}
	defer secret.Wipe()

	if !bytes.Equal(secretKey.data, secret.data) {
		return fmt.Errorf("Got %x after wrap/unwrap with w=%x and s=%x",
			secret.data, wrappingKey.data, secretKey.data)
	}
	return nil
}

// Check that Unwrap(Wrap(x)) == x with fixed keys
func TestWrapUnwrapEqual(t *testing.T) {
	if err := testWrapUnwrapEqual(fakeWrappingKey, fakeValidPolicyKey); err != nil {
		t.Error(err)
	}
}

// Check that Unwrap(Wrap(x)) == x with random keys
func TestRandomWrapUnwrapEqual(t *testing.T) {
	for i := 0; i < 10; i++ {
		wk, err := NewRandomKey(metadata.InternalKeyLen)
		if err != nil {
			t.Fatal(err)
		}
		sk, err := NewRandomKey(metadata.InternalKeyLen)
		if err != nil {
			t.Fatal(err)
		}
		if err = testWrapUnwrapEqual(wk, sk); err != nil {
			t.Error(err)
		}
		wk.Wipe()
		sk.Wipe()
	}
}

// Check that Unwrap(Wrap(x)) == x with differing lengths of secret key
func TestDifferentLengthSecretKey(t *testing.T) {
	wk, err := makeKey(1, metadata.InternalKeyLen)
	if err != nil {
		t.Fatal(err)
	}
	defer wk.Wipe()
	for i := 0; i < 100; i++ {
		sk, err := makeKey(2, i)
		if err != nil {
			t.Fatal(err)
		}
		if err = testWrapUnwrapEqual(wk, sk); err != nil {
			t.Error(err)
		}
		sk.Wipe()
	}
}

// Wrong length of wrapping key should fail
func TestWrongWrappingKeyLength(t *testing.T) {
	_, err := Wrap(fakeValidPolicyKey, fakeWrappingKey)
	if err == nil {
		t.Fatal("using a policy key for wrapping should fail")
	}
}

// Wrong length of unwrapping key should fail
func TestWrongUnwrappingKeyLength(t *testing.T) {
	data, err := Wrap(fakeWrappingKey, fakeWrappingKey)
	if err != nil {
		t.Fatal(err)
	}
	if k, err := Unwrap(fakeValidPolicyKey, data); err == nil {
		k.Wipe()
		t.Fatal("using a policy key for unwrapping should fail")
	}
}

// Wrapping twice with the same keys should give different components
func TestWrapTwiceDistinct(t *testing.T) {
	data1, err := Wrap(fakeWrappingKey, fakeValidPolicyKey)
	if err != nil {
		t.Fatal(err)
	}
	data2, err := Wrap(fakeWrappingKey, fakeValidPolicyKey)
	if err != nil {
		t.Fatal(err)
	}
	if !buffersDistinct(data1.IV, data1.EncryptedKey, data1.Hmac,
		data2.IV, data2.EncryptedKey, data2.Hmac) {
		t.Error("Wrapping same keys twice should give distinct results")
	}
}

// Attempts to Unwrap data with key after altering tweak, should fail
func testFailWithTweak(key *Key, data *metadata.WrappedKeyData, tweak []byte) error {
	tweak[0]++
	key, err := Unwrap(key, data)
	if err == nil {
		key.Wipe()
	}
	tweak[0]--
	return err
}

// Wrapping then unwrapping with different components altered
func TestUnwrapWrongKey(t *testing.T) {
	data, err := Wrap(fakeWrappingKey, fakeValidPolicyKey)
	if err != nil {
		t.Fatal(err)
	}
	if testFailWithTweak(fakeWrappingKey, data, fakeWrappingKey.data) == nil {
		t.Error("using a different wrapping key should make unwrap fail")
	}
}

func TestUnwrapWrongData(t *testing.T) {
	data, err := Wrap(fakeWrappingKey, fakeValidPolicyKey)
	if err != nil {
		t.Fatal(err)
	}
	if testFailWithTweak(fakeWrappingKey, data, data.EncryptedKey) == nil {
		t.Error("changing encryption key should make unwrap fail")
	}
	if testFailWithTweak(fakeWrappingKey, data, data.IV) == nil {
		t.Error("changing IV should make unwrap fail")
	}
	if testFailWithTweak(fakeWrappingKey, data, data.Hmac) == nil {
		t.Error("changing HMAC should make unwrap fail")
	}
}

func TestComputeKeyDescriptorV1(t *testing.T) {
	descriptor, err := ComputeKeyDescriptor(fakeValidPolicyKey, 1)
	if err != nil {
		t.Fatal(err)
	}
	if descriptor != "8290608a029c5aae" {
		t.Errorf("wrong v1 descriptor: %s", descriptor)
	}
}

func TestComputeKeyDescriptorV2(t *testing.T) {
	descriptor, err := ComputeKeyDescriptor(fakeValidPolicyKey, 2)
	if err != nil {
		t.Fatal(err)
	}
	if descriptor != "2139f52bf8386ee99845818ac7e91c4a" {
		t.Errorf("wrong v2 descriptor: %s", descriptor)
	}
}

func TestComputeKeyDescriptorBadVersion(t *testing.T) {
	_, err := ComputeKeyDescriptor(fakeValidPolicyKey, 0)
	if err == nil {
		t.Error("computing key descriptor with bad version should fail")
	}
}

// Run our test cases for passphrase hashing
func TestPassphraseHashing(t *testing.T) {
	pk, err := fakePassphraseKey()
	if err != nil {
		t.Fatal(err)
	}
	defer pk.Wipe()

	for i, testCase := range hashTestCases {
		if err := testCase.costs.CheckValidity(); err != nil {
			t.Errorf("Hash test %d: for costs=%+v hashing failed: %v", i, testCase.costs, err)
			continue
		}
		hash, err := PassphraseHash(pk, fakeSalt, testCase.costs)
		if err != nil {
			t.Errorf("Hash test %d: for costs=%+v hashing failed: %v", i, testCase.costs, err)
			continue
		}
		defer hash.Wipe()

		actual := hex.EncodeToString(hash.data)
		if actual != testCase.hexHash {
			t.Errorf("Hash test %d: for costs=%+v expected hash of %q got %q",
				i, testCase.costs, testCase.hexHash, actual)
		}
	}
}

var badCosts = []*metadata.HashingCosts{
	// Bad Time costs
	{Time: 0, Memory: 1 << 11, Parallelism: 1},
	{Time: 1 << 33, Memory: 1 << 11, Parallelism: 1},
	// Bad Memory costs
	{Time: 1, Memory: 5, Parallelism: 1},
	{Time: 1, Memory: 1 << 33, Parallelism: 1},
	// Bad Parallelism costs
	{Time: 1, Memory: 1 << 11, Parallelism: 0, TruncationFixed: false},
	{Time: 1, Memory: 1 << 11, Parallelism: 0, TruncationFixed: true},
	{Time: 1, Memory: 1 << 11, Parallelism: 256, TruncationFixed: false},
	{Time: 1, Memory: 1 << 11, Parallelism: 256, TruncationFixed: true},
	{Time: 1, Memory: 1 << 11, Parallelism: 257, TruncationFixed: true},
}

func TestBadParameters(t *testing.T) {
	for i, costs := range badCosts {
		if costs.CheckValidity() == nil {
			t.Errorf("Hash test %d: expected error for costs=%+v", i, costs)
		}
	}
}

func BenchmarkWrap(b *testing.B) {
	for n := 0; n < b.N; n++ {
		Wrap(fakeWrappingKey, fakeValidPolicyKey)
	}
}

func BenchmarkUnwrap(b *testing.B) {
	b.StopTimer()

	data, _ := Wrap(fakeWrappingKey, fakeValidPolicyKey)

	b.StartTimer()
	for n := 0; n < b.N; n++ {
		key, err := Unwrap(fakeWrappingKey, data)
		if err != nil {
			b.Fatal(err)
		}
		key.Wipe()
	}
}

func BenchmarkUnwrapNolock(b *testing.B) {
	b.StopTimer()

	UseMlock = false
	defer func() {
		UseMlock = true
	}()
	data, _ := Wrap(fakeWrappingKey, fakeValidPolicyKey)

	b.StartTimer()
	for n := 0; n < b.N; n++ {
		key, err := Unwrap(fakeWrappingKey, data)
		if err != nil {
			b.Fatal(err)
		}
		key.Wipe()
	}
}

func BenchmarkRandomWrapUnwrap(b *testing.B) {
	for n := 0; n < b.N; n++ {
		wk, _ := NewRandomKey(metadata.InternalKeyLen)
		sk, _ := NewRandomKey(metadata.InternalKeyLen)

		testWrapUnwrapEqual(wk, sk)
		// Must manually call wipe here, or test will use too much memory.
		wk.Wipe()
		sk.Wipe()
	}
}

func benchmarkPassphraseHashing(b *testing.B, costs *metadata.HashingCosts) {
	b.StopTimer()

	pk, err := fakePassphraseKey()
	if err != nil {
		b.Fatal(err)
	}
	defer pk.Wipe()

	b.StartTimer()
	for n := 0; n < b.N; n++ {
		hash, err := PassphraseHash(pk, fakeSalt, costs)
		hash.Wipe()
		if err != nil {
			b.Fatal(err)
		}
	}
}

func BenchmarkPassphraseHashing_1MB_1Thread(b *testing.B) {
	benchmarkPassphraseHashing(b,
		&metadata.HashingCosts{Time: 1, Memory: 1 << 10, Parallelism: 1})
}

func BenchmarkPassphraseHashing_1GB_1Thread(b *testing.B) {
	benchmarkPassphraseHashing(b,
		&metadata.HashingCosts{Time: 1, Memory: 1 << 20, Parallelism: 1})
}

func BenchmarkPassphraseHashing_128MB_1Thread(b *testing.B) {
	benchmarkPassphraseHashing(b,
		&metadata.HashingCosts{Time: 1, Memory: 1 << 17, Parallelism: 1})
}

func BenchmarkPassphraseHashing_128MB_8Thread(b *testing.B) {
	benchmarkPassphraseHashing(b,
		&metadata.HashingCosts{Time: 1, Memory: 1 << 17, Parallelism: 8})
}

func BenchmarkPassphraseHashing_128MB_8Pass(b *testing.B) {
	benchmarkPassphraseHashing(b,
		&metadata.HashingCosts{Time: 8, Memory: 1 << 17, Parallelism: 1})
}