File: matrix.fs

package info (click to toggle)
fsharp 3.1.1.26%2Bdfsg2-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 59,244 kB
  • ctags: 4,190
  • sloc: cs: 13,398; ml: 1,098; sh: 399; makefile: 293; xml: 82
file content (2563 lines) | stat: -rwxr-xr-x 113,243 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
// (c) Microsoft Corporation 2005-2009. 

//----------------------------------------------------------------------------
// An implementation of generic dense and sparse matrix types.
//
// Overview and suffix documentation
//    _GU  = generic unspecialized (Matrix<T>, Vector<T> etc.) 
//    _GUA = generic unspecialized op on (underlying) array
//    _DS  = Double specialized (Matrix<float> = matrix, Vector<float> = vector etc.)
//
//    DM   = dense matrix
//    SM   = sparse matrix
//    V    = vector (dense)
//    RV   = row vector (dense)


namespace Microsoft.FSharp.Math

    #nowarn "60" // implementations in augmentations
    #nowarn "69" // implementations in augmentations

    open Microsoft.FSharp.Math
    open System
    open System.Globalization
    open System.Collections
    open System.Collections.Generic
    open System.Diagnostics
    type permutation = int -> int


//=========================================================================
// (c) Microsoft Corporation 2005-2009. 
//=========================================================================

    [<AutoOpen>]
    module Helpers = 
        let sparseNYI() = failwith "this operation is not supported on sparse matrices"
        let sparseNotMutable() = failwith "sparse matrices are not mutable"
        
        [<RequiresExplicitTypeArguments>]
        let opsdata<'T> = GlobalAssociations.TryGetNumericAssociation<'T>()
        
        [<Literal>]
        let DenseMaxDisplay = 50
        [<Literal>]
        let VectorMaxDisplay = 100
    
    
    /// The value stored for the dictionary of numeric operations. If none is present then this indicates
    /// no operations are known for this type.
    type OpsData<'T> = INumeric<'T> option

    type DenseMatrix<'T>(opsData : OpsData<'T>, values : 'T[,]) = 
        member m.OpsData =  opsData
        member m.Values =  values
        member m.NumRows = values.GetLength(0)
        member m.NumCols = values.GetLength(1)

        member m.ElementOps = 
            match opsData with 
            | None -> raise (new System.NotSupportedException("The element type carried by this matrix does not support numeric operations"))
            | Some a -> a

        member m.Item
           with get (i,j) = values.[i,j]
           and  set (i,j) x = values.[i,j] <- x



    type SparseMatrix<'T>(opsData : OpsData<'T>, sparseValues : 'T array, sparseRowOffsets : int array, ncols:int, columnValues: int array) = 
        member m.OpsData = opsData; 
        member m.NumCols = ncols
        member m.NumRows = sparseRowOffsets.Length - 1
        member m.SparseColumnValues = columnValues
        member m.SparseRowOffsets =  sparseRowOffsets (* nrows + 1 elements *)
        member m.SparseValues =  sparseValues

        member m.ElementOps = 
              match opsData with 
              | None -> raise (new System.NotSupportedException("The element type carried by this matrix does not support numeric operations"))
              | Some a -> a

        member m.MinIndexForRow i = m.SparseRowOffsets.[i]
        member m.MaxIndexForRow i = m.SparseRowOffsets.[i+1]
              

        member m.Item 
            with get (i,j) = 
                let imax = m.NumRows
                let jmax = m.NumCols
                if j < 0 || j >= jmax || i < 0 || i >= imax then raise (new System.ArgumentOutOfRangeException()) else
                let kmin = m.MinIndexForRow i
                let kmax = m.MaxIndexForRow i
                let rec loopRow k =
                    (* note: could do a binary chop here *)
                    if k >= kmax then m.ElementOps.Zero else
                    let j2 = columnValues.[k]
                    if j < j2 then m.ElementOps.Zero else
                    if j = j2 then sparseValues.[k] else 
                    loopRow (k+1)
                loopRow kmin

#if FX_NO_DEBUG_DISPLAYS
#else
    [<System.Diagnostics.DebuggerDisplay("{DebugDisplay}")>]
#endif
    [<StructuredFormatDisplay("matrix {StructuredDisplayAsArray}")>]
    [<CustomEquality; CustomComparison>]
    //[<System.Diagnostics.DebuggerTypeProxy(typedefof<MatrixDebugView<_>>)>]
    type Matrix<'T> = 
        | DenseRepr of DenseMatrix<'T>
        | SparseRepr of SparseMatrix<'T>
        interface System.IComparable
        interface IStructuralComparable
        interface IStructuralEquatable
        interface IEnumerable<'T> 
        interface IEnumerable

        member m.ElementOps = match m with DenseRepr mr -> mr.ElementOps | SparseRepr mr -> mr.ElementOps
        member m.NumRows    = match m with DenseRepr mr -> mr.NumRows    | SparseRepr mr ->  mr.NumRows
        member m.NumCols    = match m with DenseRepr mr -> mr.NumCols    | SparseRepr mr ->  mr.NumCols

        member m.Item 
            with get (i,j) = 
                match m with 
                | DenseRepr dm -> dm.[i,j]
                | SparseRepr sm -> sm.[i,j]
            and set (i,j) x = 
              match m with 
              | DenseRepr dm -> dm.[i,j] <- x
              | SparseRepr _ -> sparseNotMutable()


#if FX_NO_DEBUG_DISPLAYS
#else
        [<DebuggerBrowsable(DebuggerBrowsableState.Collapsed)>]
#endif
        member m.IsDense = match m with DenseRepr _ -> true | SparseRepr _ -> false

#if FX_NO_DEBUG_DISPLAYS
#else
        [<DebuggerBrowsable(DebuggerBrowsableState.Collapsed)>]
#endif
        member m.IsSparse = match m with DenseRepr _ -> false | SparseRepr _ -> true

#if FX_NO_DEBUG_DISPLAYS
#else
        [<DebuggerBrowsable(DebuggerBrowsableState.Collapsed)>]
#endif
        member m.InternalSparseColumnValues = match m with DenseRepr _ -> invalidOp "not a sparse matrix" | SparseRepr mr -> mr.SparseColumnValues

#if FX_NO_DEBUG_DISPLAYS
#else
        [<DebuggerBrowsable(DebuggerBrowsableState.Collapsed)>]
#endif
        member m.InternalSparseRowOffsets = match m with DenseRepr _ -> invalidOp "not a sparse matrix" | SparseRepr mr -> mr.SparseRowOffsets

#if FX_NO_DEBUG_DISPLAYS
#else
        [<DebuggerBrowsable(DebuggerBrowsableState.Collapsed)>]
#endif
        member m.InternalSparseValues = match m with DenseRepr _ -> invalidOp "not a sparse matrix" | SparseRepr mr -> mr.SparseValues

#if FX_NO_DEBUG_DISPLAYS
#else
        [<DebuggerBrowsable(DebuggerBrowsableState.Collapsed)>]
#endif
        member m.InternalDenseValues = match m with DenseRepr mr -> mr.Values | SparseRepr _ -> invalidOp "not a dense matrix"

#if FX_NO_DEBUG_DISPLAYS
#else
    [<System.Diagnostics.DebuggerDisplay("{DebugDisplay}")>]
#endif
#if FX_NO_DEBUG_PROXIES
#else
    [<System.Diagnostics.DebuggerTypeProxy(typedefof<RowVectorDebugView<_>>)>]
#endif
    [<StructuredFormatDisplay("rowvec {StructuredDisplayAsArray}")>]
    [<Sealed>]
    type RowVector<'T>(opsRV : INumeric<'T> option, arrRV : 'T array ) =
        interface System.IComparable
        interface IStructuralComparable
        interface IStructuralEquatable 


#if FX_NO_DEBUG_DISPLAYS
#else
        [<DebuggerBrowsable(DebuggerBrowsableState.Collapsed)>]
#endif
        member x.InternalValues = arrRV
        member x.Values = arrRV
        member x.OpsData = opsRV
        
        
        interface IEnumerable<'T> with 
            member x.GetEnumerator() = (arrRV :> seq<_>).GetEnumerator()
        interface IEnumerable  with 
            member x.GetEnumerator() = (arrRV :> IEnumerable).GetEnumerator()

        member x.Length = arrRV.Length
        member x.NumCols = arrRV.Length
        member x.ElementOps = 
            match opsRV with 
            | None -> raise (new System.NotSupportedException("The element type carried by this row vector does not support numeric operations"))
            | Some a -> a

        member v.Item
           with get i = arrRV.[i]
           and  set i x = arrRV.[i] <- x

    and 
        [<Sealed>]
        RowVectorDebugView<'T>(v: RowVector<'T>)  =  

#if FX_NO_DEBUG_DISPLAYS
#else
             [<System.Diagnostics.DebuggerBrowsable(System.Diagnostics.DebuggerBrowsableState.RootHidden)>]
#endif
             member x.Items = v |> Seq.truncate 1000 |> Seq.toArray 

#if FX_NO_DEBUG_DISPLAYS
#else
    [<System.Diagnostics.DebuggerDisplay("{DebugDisplay}")>]
#endif
#if FX_NO_DEBUG_PROXIES
#else
    [<System.Diagnostics.DebuggerTypeProxy(typedefof<VectorDebugView<_>>)>]
#endif
    [<StructuredFormatDisplay("vector {StructuredDisplayAsArray}")>]
    [<Sealed>]
    type Vector<'T>(opsV : INumeric<'T> option, arrV : 'T array) =

#if FX_NO_DEBUG_DISPLAYS
#else
        [<DebuggerBrowsable(DebuggerBrowsableState.Collapsed)>]
#endif
        member x.InternalValues = arrV
        member x.Values = arrV
        member x.OpsData = opsV
        interface System.IComparable
        interface IStructuralComparable
        interface IStructuralEquatable 

        interface IEnumerable<'T> with 
            member x.GetEnumerator() = (arrV :> seq<_>).GetEnumerator()
        interface IEnumerable  with 
            member x.GetEnumerator() = (arrV :> IEnumerable).GetEnumerator()
        

        member m.Length = arrV.Length
        member m.NumRows = arrV.Length
        member m.ElementOps = 
            match opsV with 
            | None -> raise (new System.NotSupportedException("The element type carried by this vector does not support numeric operations"))
            | Some a -> a
        member v.Item
           with get i = arrV.[i]
           and  set i x = arrV.[i] <- x

#if FX_NO_DEBUG_PROXIES
#else
    and 
        [<Sealed>]
        VectorDebugView<'T>(v: Vector<'T>)  =  

             [<System.Diagnostics.DebuggerBrowsable(System.Diagnostics.DebuggerBrowsableState.RootHidden)>]
             member x.Items = v |> Seq.truncate 1000 |> Seq.toArray 
#endif


    /// Implementations of operations that will work for any type
    module GenericImpl = 

        type OpsData<'T> = INumeric<'T> option

        let opsOfOpsData (d : OpsData<'T>)  =
             match d with 
             | None -> raise (new System.NotSupportedException("The element type '"+(typeof<'T>).ToString()+"' carried by this vector or matrix does not support numeric operations (i.e. does not have a registered numeric association)"))
             | Some a -> a

        let getNormOps (ops:INumeric<'T>) = 
            match box ops with
              | :? INormFloat<'T> as ops -> ops
              | _ -> raise (new System.NotSupportedException("The element type '"+(typeof<'T>.ToString())+"' carried by this vector or matrix does not support the INormFloat<_> operation (i.e. does not have a registered numeric association that supports this type)"))

        let mkDenseMatrixGU ops arr = DenseMatrix(ops,arr)
        let mkRowVecGU ops arr = RowVector(ops, arr)
        let mkVecGU ops arr = Vector(ops,arr)

        let inline getArray2D  (arrDM : _[,]) i j   = arrDM.[i,j]
        let inline setArray2D  (arrDM  : _[,]) i j x = arrDM.[i,j] <- x

        let inline createArray m = Array.zeroCreate m

        let inline createArray2D m n = Array2D.zeroCreate m n

        let inline assignArray2D m n f arr =  
            for i = 0 to m - 1 do 
                for j = 0 to n - 1 do 
                    (arr  : _[,]).[i,j] <- f i j

        let inline assignConstArray2D m n x arr =  
            for i = 0 to m - 1 do 
                for j = 0 to n - 1 do 
                    (arr  : _[,]).[i,j] <- x

        let inline assignDenseMatrixGU f (a:DenseMatrix<_>) = 
            assignArray2D a.NumRows a.NumCols f a.Values
        
        let inline assignArray m f (arr : _[]) = 
            for i = 0 to m - 1 do 
                arr.[i] <- f i

        let inline assignConstArray m x (arr : _[]) = 
            for i = 0 to m - 1 do 
                arr.[i] <- x

        let inline assignVecGU f (a:Vector<_>) = 
            assignArray a.NumRows f a.Values
        
        let inline assignRowVecGU f (a:RowVector<_>) = 
            assignArray a.NumCols f a.Values
        
        let createConstDenseMatrixGU ops m n x = 
            let arr = createArray2D m n 
            assignConstArray2D m n x arr;
            DenseMatrix(ops,arr)
        
        let createConstRowVecGU ops m x = 
            let arr = createArray m 
            assignConstArray m x arr;
            mkRowVecGU ops arr
        
        let createConstVecGU ops m x = 
            let arr = createArray m 
            assignConstArray m x arr;
            mkVecGU ops arr


        let inline createDenseMatrixGU ops m n f = (* inline eliminates unknown f call *)
            let arr = createArray2D m n 
            assignArray2D m n f arr;
            DenseMatrix(ops,arr)
        
        let createRowVecGU ops m f = 
            let arr = createArray m 
            assignArray m f arr;
            mkRowVecGU ops arr
        
        let inline createVecGU ops m f = (* inline eliminates unknown f call *)
            let arr = createArray m 
            assignArray m f arr;
            mkVecGU ops arr

        /// Create a matrix from a sparse sequence 
        let initSparseMatrixGU maxi maxj ops s = 

            (* nb. could use sorted dictionary but that is in System.dll *)
            let tab = Array.create maxi null
            let count = ref 0
            for (i,j,v) in s do
                if i < 0 || i >= maxi || j <0 || j >= maxj then failwith "initial value out of range";
                count := !count + 1;
                let tab2 = 
                    match tab.[i] with 
                    | null -> 
                        let tab2 = new Dictionary<_,_>(3) 
                        tab.[i] <- tab2;
                        tab2
                    | tab2 -> tab2
                tab2.[j] <- v
            // optimize this line....
            let offsA =  
               let rowsAcc = Array.zeroCreate (maxi + 1)
               let mutable acc = 0 
               for i = 0 to maxi-1 do 
                  rowsAcc.[i] <- acc;
                  acc <- match tab.[i] with 
                          | null -> acc
                          | tab2 -> acc+tab2.Count
               rowsAcc.[maxi] <- acc;
               rowsAcc
               
            let colsA,valsA = 
               let colsAcc = new ResizeArray<_>(!count)
               let valsAcc = new ResizeArray<_>(!count)
               for i = 0 to maxi-1 do 
                  match tab.[i] with 
                  | null -> ()
                  | tab2 -> tab2 |> Seq.toArray |> Array.sortBy (fun kvp -> kvp.Key) |> Array.iter (fun kvp -> colsAcc.Add(kvp.Key); valsAcc.Add(kvp.Value));
               colsAcc.ToArray(), valsAcc.ToArray()

            SparseMatrix(opsData=ops, sparseValues=valsA, sparseRowOffsets=offsA, ncols=maxj, columnValues=colsA)
        
        let zeroizeDenseMatrixGUA arr  m n : DenseMatrix<'T> = 
            let opsData = opsdata<'T> 
            let ops = opsOfOpsData opsData 
            let zero = ops.Zero 
            assignArray2D m n (fun _ _ -> zero) arr;
            DenseMatrix(opsData,arr)

        let zeroizeArray opsData arr m  = 
            let ops = opsOfOpsData opsData 
            let zero = ops.Zero 
            assignArray m (fun _ -> zero) arr

        let zeroizeVecGUA arr m  : Vector<'T> = 
            let opsData = opsdata<'T> 
            zeroizeArray opsData arr m;
            mkVecGU opsData arr

        let zeroizeRowVecGUA arr m  : RowVector<'T> = 
            let opsData = opsdata<'T> 
            zeroizeArray opsData arr m;
            mkRowVecGU opsData arr

        let listDenseMatrixGU ops xss =
            let m = List.length xss
            match xss with 
            | [] -> invalidArg "xss" "unexpected empty list"
            | h :: t -> 
              let n = List.length h
              if not (List.forall (fun xs -> List.length xs=n) t) then invalidArg "xss" "the lists are not all of the same length";
              let values = Array2D.zeroCreate m n
              List.iteri (fun i rw -> List.iteri (fun j x -> values.[i,j] <- x) rw) xss;
              DenseMatrix(ops,values)
        
        let listRowVecGU ops xs = mkRowVecGU ops (Array.ofList xs) 
        let listVecGU ops xs = mkVecGU ops (Array.ofList xs) 

        let seqDenseMatrixGU ops xss = listDenseMatrixGU ops (xss |> Seq.toList |> List.map Seq.toList)
        let seqVecGU  ops xss = listVecGU ops (xss |> Seq.toList)
        let seqRowVecGU ops xss = listRowVecGU ops (xss |> Seq.toList)

        let inline binaryOpDenseMatrixGU f (a:DenseMatrix<_>) (b:DenseMatrix<_>) = (* pointwise binary operator *)
            let nA = a.NumCols
            let mA = a.NumRows
            let nB = b.NumCols 
            let mB = b.NumRows
            if nA<>nB || mA<>mB then invalidArg "a" "the two matrices do not have compatible dimensions";
            let arrA = a.Values 
            let arrB = b.Values 
            createDenseMatrixGU a.OpsData mA nA (fun i j -> f (getArray2D arrA i j) (getArray2D arrB i j))


        let nonZeroEntriesSparseMatrixGU  (a:SparseMatrix<_>) = 
            // This is heavily used, and this version is much faster than
            // the sequence operators.
            let entries = new ResizeArray<_>(a.SparseColumnValues.Length)
            let imax = a.NumRows
            let ops = a.ElementOps 
            let zero = ops.Zero
            for i in 0 .. imax - 1 do
              let kmin = a.MinIndexForRow i
              let kmax = a.MaxIndexForRow i
              for k in kmin .. kmax - 1 do
                  let j = a.SparseColumnValues.[k]
                  let v = a.SparseValues.[k]
                  if not (ops.Equals(v,zero)) then
                    entries.Add((i,j,v))
            (entries :> seq<_>)

        let nonzeroEntriesDenseMatrixGU  (a:DenseMatrix<_>) = 
            let imax = a.NumRows
            let jmax = a.NumCols
            let ops = a.ElementOps 
            let zero = ops.Zero
            seq { for i in 0 .. imax - 1 do 
                    for j in 0 .. jmax - 1 do 
                        let v = a.[i,j] 
                        if not (ops.Equals(v, zero)) then
                             yield (i,j,v) }


        // pointwise operation on two sparse matrices. f must be zero-zero-preserving, i.e. (f 0 0 = 0) 
        let binaryOpSparseMatrixGU f (a:SparseMatrix<_>) (b:SparseMatrix<_>) = 
            let ops = a.ElementOps 
            let zero = ops.Zero
            let imax1 = a.NumRows  
            let imax2 = b.NumRows
            let jmax1 = a.NumCols
            let jmax2 = b.NumCols
            if imax1 <> imax2 || jmax1 <> jmax2 then invalidArg "b" "the two matrices do not have compatible dimensions";
            let imin = 0
            let imax = imax1
            let jmax = jmax1
            let rowsR = Array.zeroCreate (imax+1)
            let colsR = new ResizeArray<_>(max a.SparseColumnValues.Length b.SparseColumnValues.Length)
            let valsR = new ResizeArray<_>(max a.SparseValues.Length b.SparseValues.Length)
            let rec loopRows i  = 
                rowsR.[i] <- valsR.Count;            
                if i >= imax1 then () else
                let kmin1 = a.MinIndexForRow i
                let kmax1 = a.MaxIndexForRow i 
                let kmin2 = b.MinIndexForRow i
                let kmax2 = b.MaxIndexForRow i
                let rec loopRow k1 k2  =
                    if k1 >= kmax1 && k2 >= kmax2 then () else
                    let j1 = if k1 >= kmax1 then jmax else a.SparseColumnValues.[k1]
                    let j2 = if k2 >= kmax2 then jmax else b.SparseColumnValues.[k2]
                    let v1 = if j1 <= j2 then a.SparseValues.[k1] else zero
                    let v2 = if j2 <= j1 then b.SparseValues.[k2] else zero
                    let jR = min j1 j2
                    let vR = f v1 v2
                    (* if vR <> zero then  *)
                    colsR.Add(jR);
                    valsR.Add(vR);
                    loopRow (if j1 <= j2 then k1+1 else k1) (if j2 <= j1 then k2+1 else k2)
                loopRow kmin1 kmin2;
                loopRows (i+1) 
            loopRows imin;
            SparseMatrix(opsData= a.OpsData, 
                         sparseRowOffsets=rowsR, 
                         ncols= a.NumCols, 
                         columnValues=colsR.ToArray(), 
                         sparseValues=valsR.ToArray())

        let inline binaryOpRowVecGU f (a:RowVector<_>) (b:RowVector<_>) = (* pointwise binary operator *)
            let mA = a.NumCols
            let mB = b.NumCols
            if mA<>mB then invalidArg "b" "the two vectors do not have compatible dimensions"
            createRowVecGU a.OpsData mA (fun i -> f a.[i] b.[i])

        let inline binaryOpVecGU f (a:Vector<_>) (b:Vector<_>) = (* pointwise binary operator *)
            let mA = a.NumRows
            let mB = b.NumRows
            if mA<>mB then invalidArg "b" "the two vectors do not have compatible dimensions"
            createVecGU a.OpsData mA (fun i -> f a.[i] b.[i])

        let inline unaryOpDenseMatrixGU f (a:DenseMatrix<_>) =
            let nA = a.NumCols 
            let mA = a.NumRows 
            let arrA = a.Values 
            createDenseMatrixGU a.OpsData mA nA (fun i j -> f (getArray2D arrA i j))

        let inline unaryOpRowVecGU f (a:RowVector<_>) =
            let mA = a.NumCols
            let arrA = a.Values 
            createRowVecGU a.OpsData mA (fun j -> f arrA.[j])

        let inline unaryOpVectorGU f (a:Vector<_>) =
            let mA = a.NumRows 
            let arrA = a.Values 
            createVecGU a.OpsData mA (fun i -> f arrA.[i])

        let unaryOpSparseGU f (a:SparseMatrix<_>) = (* pointwise zero-zero-preserving binary operator (f 0 = 0) *)
            SparseMatrix(opsData=a.OpsData,
                         sparseRowOffsets=Array.copy a.SparseRowOffsets, 
                         columnValues=Array.copy a.SparseColumnValues, 
                         sparseValues=Array.map f a.SparseValues, 
                         ncols=a.NumCols)

        // Strictly speaking, sparse arrays are non mutable so no copy is ever needed. But implementing it *)
        // anyway in case we move to mutability *)
        let copySparseGU (a:SparseMatrix<_>) = 
            SparseMatrix(opsData=a.OpsData,
                         sparseRowOffsets=Array.copy a.SparseRowOffsets, 
                         columnValues=Array.copy a.SparseColumnValues,
                         sparseValues=Array.copy a.SparseValues, 
                         ncols=a.NumCols)

        let addDenseMatrixGU  (a:DenseMatrix<_>)  b = let ops = a.ElementOps in binaryOpDenseMatrixGU (fun x y -> ops.Add(x, y)) a b
        let addSparseMatrixGU (a:SparseMatrix<_>) b = let ops = a.ElementOps in binaryOpSparseMatrixGU (fun x y -> ops.Add(x, y)) a b
        let addRowVecGU       (a:RowVector<_>)    b = let ops = a.ElementOps in binaryOpRowVecGU (fun x y -> ops.Add(x, y)) a b
        let addVecGU          (a:Vector<_>)       b = let ops = a.ElementOps in binaryOpVecGU  (fun x y -> ops.Add(x, y)) a b 

        let subDenseMatrixGU  (a:DenseMatrix<_>)  b = let ops = a.ElementOps in binaryOpDenseMatrixGU (fun x y -> ops.Subtract(x, y)) a b
        let subSparseMatrixGU (a:SparseMatrix<_>) b = let ops = a.ElementOps in binaryOpSparseMatrixGU (fun x y -> ops.Subtract(x, y)) a b
        let subRowVecGU       (a:RowVector<_>)    b = let ops = a.ElementOps in binaryOpRowVecGU (fun x y -> ops.Subtract(x, y)) a b
        let subVecGU          (a:Vector<_>)       b = let ops = a.ElementOps in binaryOpVecGU  (fun x y -> ops.Subtract(x, y)) a b 

        ///Point-wise multiplication 
        let cptMulDenseMatrixGU  (a:DenseMatrix<_>)  b = let ops = a.ElementOps in binaryOpDenseMatrixGU  (fun x y -> ops.Multiply(x, y)) a b
        let cptMulSparseMatrixGU (a:SparseMatrix<_>) b = let ops = a.ElementOps in binaryOpSparseMatrixGU  (fun x y -> ops.Multiply(x, y)) a b
        let cptMulRowVecGU       (a:RowVector<_>)    b = let ops = a.ElementOps in binaryOpRowVecGU (fun x y -> ops.Multiply(x, y)) a b
        let cptMulVecGU          (a:Vector<_>)       b = let ops = a.ElementOps in binaryOpVecGU  (fun x y -> ops.Multiply(x, y)) a b

        let cptMaxDenseMatrixGU  (a:DenseMatrix<_>) b = binaryOpDenseMatrixGU  max a b
        let cptMinDenseMatrixGU  (a:DenseMatrix<_>) b = binaryOpDenseMatrixGU  min a b
        let cptMaxSparseMatrixGU (a:SparseMatrix<_>) b = binaryOpSparseMatrixGU  max a b
        let cptMinSparseMatrixGU (a:SparseMatrix<_>) b = binaryOpSparseMatrixGU  min a b

        let cptMaxVecGU (a:Vector<_>) b = binaryOpVecGU max a b
        let cptMinVecGU (a:Vector<_>) b = binaryOpVecGU min a b

        let add (ops : INumeric<'T>) x y = ops.Add(x,y) 
        let sub (ops : INumeric<'T>) x y = ops.Subtract(x,y) 
        let mul (ops : INumeric<'T>) x y = ops.Multiply(x,y) 

        let inline foldR f z (a,b) = 
            let mutable res = z in
            for i = a to b do
                res <- f res i
            res

        let inline sumfR f (a,b) =
            let mutable res = 0.0 
            for i = a to b do
                res <- res + f i
            res
          

        let inline sumRGU (ops : INumeric<_>) f r = 
            let zero = ops.Zero 
            r |> foldR (fun z k -> add ops z (f k)) zero

        let genericMulDenseMatrix (a:DenseMatrix<_>) (b:DenseMatrix<_>) =
            let nA = a.NumCols 
            let mA = a.NumRows
            let nB = b.NumCols 
            let mB = b.NumRows
            if nA<>mB then invalidArg "b" "the two matrices do not have compatible dimensions"
            let ops = a.ElementOps 
            let arrA = a.Values 
            let arrB = b.Values 
            createDenseMatrixGU a.OpsData mA nB
              (fun i j -> (0,nA - 1) |> sumRGU ops (fun k -> mul ops (getArray2D arrA i k) (getArray2D arrB k j)))

        let debug = false
        
        // SParse matrix multiplication algorithm. inline to get specialization at the 'double' type
        let inline genericMulSparse zero add mul (a:SparseMatrix<_>) (b:SparseMatrix<_>) =
            let nA = a.NumCols
            let mA = a.NumRows
            let nB = b.NumCols 
            let mB = b.NumRows
            if nA<>mB then invalidArg "b" "the two matrices do not have compatible dimensions"
            let C = new ResizeArray<_>()
            let jC = new ResizeArray<_>()
            let MA1 = mA + 1 
            let offsAcc = Array.zeroCreate MA1
            let index = Array.zeroCreate mA
            let temp = Array.create mA zero
            let ptr = new Dictionary<_,_>(11)
            if debug then printf "start, #items in result = %d, #offsAcc = %d, mA = %d\n" jC.Count offsAcc.Length mA;

            let mutable mlast = 0
            for i = 0 to mA-1 do
                if debug then printf "i = %d, mlast = %d\n" i mlast;
                offsAcc.[i] <- mlast
                
                let kmin1 = a.MinIndexForRow i
                let kmax1 = a.MaxIndexForRow i
                if kmin1 < kmax1 then 
                    let mutable itemp = 0
                    let mutable ptrNeedsClear = true // clear the ptr table on demand. 
                    for j = kmin1 to kmax1 - 1 do
                        if debug then printf "  j = %d\n" j;
                        let ja_j = a.SparseColumnValues.[j]
                        let kmin2 = b.MinIndexForRow ja_j
                        let kmax2 = b.MaxIndexForRow ja_j
                        for k = kmin2 to kmax2 - 1 do
                            let jb_k = b.SparseColumnValues.[k]
                            if debug then printf "    i = %d, j = %d, k = %d, ja_j = %d, jb_k = %d\n" i j k ja_j jb_k;
                            let va = a.SparseValues.[j] 
                            let vb = b.SparseValues.[k]
                            if debug then printf "    va = %O, vb = %O\n" va vb;
                            let summand = mul va vb
                            if debug then printf "    summand = %O\n" summand;
                            if ptrNeedsClear then (ptr.Clear();ptrNeedsClear <- false);

                            if not (ptr.ContainsKey(jb_k)) then
                                if debug then printf "    starting entry %d\n" jb_k;
                                ptr.[jb_k] <- itemp
                                let ptr_jb_k = itemp
                                temp.[ptr_jb_k] <- summand
                                index.[ptr_jb_k] <- jb_k
                                itemp <- itemp + 1
                            else
                                if debug then printf "    adding to entry %d\n" jb_k;
                                let ptr_jb_k = ptr.[jb_k]
                                temp.[ptr_jb_k] <- add temp.[ptr_jb_k] summand
                        done
                    done
                    if itemp > 0 then 
                        // Sort by index. 
                        // REVIEW: avoid the allocations here
                        let sorted = (temp.[0..itemp-1],index.[0..itemp-1]) ||> Array.zip 
                        Array.sortInPlaceBy (fun (_,idx) -> idx) sorted
                        for s = 0 to itemp-1 do
                            let (v,idx) = sorted.[s]
                            if debug then printf "  writing value %O at index %d to result matrix\n" v idx;
                            C.Add(v)
                            jC.Add(idx)
                        if debug then printf " itemp = %d, mlast = %d\n" itemp mlast;
                        mlast <- mlast + itemp 
            done
            offsAcc.[mA] <- mlast;
            if debug then printf "done, #items in result = %d, #offsAcc = %d, mA = %d\n" jC.Count offsAcc.Length mA;
            SparseMatrix(opsData = a.OpsData,
                         sparseRowOffsets=offsAcc,
                         ncols= nB,
                         columnValues=jC.ToArray(),
                         sparseValues=C.ToArray())

        let mulSparseMatrixGU (a: SparseMatrix<_>) b =
            let ops = a.ElementOps 
            let zero = ops.Zero
            genericMulSparse zero (add ops) (mul ops) a b


        let mulRowVecVecGU (a:RowVector<_>) (b:Vector<_>) =
            let mA = a.NumCols 
            let nB = b.NumRows 
            if mA<>nB then invalidArg "b" "the two vectors do not have compatible dimensions"
            let ops = a.ElementOps 
            (0,mA - 1) |> sumRGU ops (fun k -> mul ops a.[k] b.[k])

        let rowvecDenseMatrixGU (x:RowVector<_>) = createDenseMatrixGU x.OpsData 1         x.NumCols (fun _ j -> x.[j]) 
        let vectorDenseMatrixGU (x:Vector<_>)    = createDenseMatrixGU x.OpsData  x.NumRows 1         (fun i _ -> x.[i]) 

        let mulVecRowVecGU a b = genericMulDenseMatrix (vectorDenseMatrixGU a) (rowvecDenseMatrixGU b)

        let mulRowVecDenseMatrixGU (a:RowVector<_>) (b:DenseMatrix<_>) =
            let    nA = a.NumCols 
            let nB = b.NumCols
            let mB = b.NumRows 
            if nA<>mB then invalidArg "b" "the two vectors do not have compatible dimensions"
            let ops = a.ElementOps 
            let arrA = a.Values 
            let arrB = b.Values 
            createRowVecGU a.OpsData nB 
              (fun j -> (0,nA - 1) |> sumRGU ops (fun k -> mul ops arrA.[k] (getArray2D arrB k j)))

        let mulDenseMatrixVecGU (a:DenseMatrix<_>) (b:Vector<_>) =
            let nA = a.NumCols 
            let mA = a.NumRows 
            let mB    = b.NumRows
            if nA<>mB then invalidArg "b" "the two inputs do not have compatible dimensions"
            let ops = b.ElementOps 
            let arrA = a.Values 
            let arrB = b.Values 
            createVecGU b.OpsData mA
              (fun i -> (0,nA - 1) |> sumRGU ops (fun k -> mul ops (getArray2D arrA i k) arrB.[k]))

        let mulSparseVecGU (a:SparseMatrix<_>) (b:Vector<_>) =
            let nA = a.NumCols 
            let mA = a.NumRows 
            let mB    = b.NumRows 
            if nA<>mB then invalidArg "b" "the two inputs do not have compatible dimensions"
            let ops = b.ElementOps 
            let zero = ops.Zero
            createVecGU b.OpsData mA (fun i -> 
                let mutable acc = zero
                for k = a.MinIndexForRow i to a.MaxIndexForRow i - 1 do
                    let j = a.SparseColumnValues.[k]
                    let v = a.SparseValues.[k] 
                    acc <- add ops acc (mul ops v b.[j]);
                acc)

        let mulRVSparseMatrixGU (a:RowVector<_>) (b:SparseMatrix<_>) =
            let nA = b.NumCols
            let mA = b.NumRows 
            let mB    = a.NumCols 
            if mA<>mB then invalidArg "b" "the two inputs do not have compatible dimensions"
            let ops = b.ElementOps 
            let arr = createArray nA 
            zeroizeArray a.OpsData arr nA;
            for i = 0 to mA - 1 do
                for k = b.MinIndexForRow i to b.MaxIndexForRow i - 1 do
                    let j = b.SparseColumnValues.[k]
                    let v = b.SparseValues.[k] 
                    arr.[j] <- add ops arr.[j] (mul ops a.[i] v)
            mkRowVecGU a.OpsData arr


        let scaleDenseMatrixGU  k (a:DenseMatrix<_>)  = let ops = a.ElementOps in unaryOpDenseMatrixGU (fun x -> ops.Multiply(k,x)) a
        let scaleRowVecGU       k (a:RowVector<_>)    = let ops = a.ElementOps in unaryOpRowVecGU (fun x -> ops.Multiply(k,x)) a
        let scaleVecGU          k (a:Vector<_>)       = let ops = a.ElementOps in unaryOpVectorGU  (fun x -> ops.Multiply(k,x)) a
        let scaleSparseMatrixGU k (a:SparseMatrix<_>) = let ops = a.ElementOps in unaryOpSparseGU (fun x -> ops.Multiply(k,x)) a
        let negDenseMatrixGU  (a:DenseMatrix<_>)  = let ops = a.ElementOps in unaryOpDenseMatrixGU (fun x -> ops.Negate(x)) a
        let negRowVecGU       (a:RowVector<_>)    = let ops = a.ElementOps in unaryOpRowVecGU (fun x -> ops.Negate(x)) a
        let negVecGU          (a:Vector<_>)       = let ops = a.ElementOps in unaryOpVectorGU  (fun x -> ops.Negate(x)) a
        let negSparseMatrixGU (a:SparseMatrix<_>) = let ops = a.ElementOps in unaryOpSparseGU (fun x -> ops.Negate(x)) a

        let mapDenseMatrixGU f (a : DenseMatrix<'T>) : DenseMatrix<'T> = 
            let arrA = a.Values 
            createDenseMatrixGU a.OpsData a.NumRows a.NumCols (fun i j -> f (getArray2D arrA i j))

        let mapVecGU f (a:Vector<_>) = 
            let mA= a.NumRows
            createVecGU a.OpsData mA (fun i -> f a.[i])

        let copyDenseMatrixGU (a : DenseMatrix<'T>) : DenseMatrix<'T> = 
            let arrA = a.Values 
            createDenseMatrixGU a.OpsData a.NumRows a.NumCols (fun i j -> getArray2D arrA i j)

        let copyVecGU (a:Vector<_>) = 
            createVecGU a.OpsData a.NumRows (fun i -> a.[i])

        let copyRowVecGU (a:RowVector<_>) = 
            createRowVecGU a.OpsData a.NumCols (fun i -> a.[i])

        let toDenseSparseMatrixGU (a:SparseMatrix<_>) = 
            createDenseMatrixGU a.OpsData a.NumRows a.NumCols  (fun i j -> a.[i,j])
          
        let mapiDenseMatrixGU f (a: DenseMatrix<'T>) : DenseMatrix<'T> = 
            let arrA = a.Values 
            createDenseMatrixGU a.OpsData a.NumRows a.NumCols (fun i j -> f i j (getArray2D arrA i j))

        let mapiRowVecGU f (a:RowVector<_>) = 
            createRowVecGU a.OpsData a.NumCols (fun i -> f i a.[i])

        let mapiVecGU f (a:Vector<_>) = 
            createVecGU a.OpsData a.NumRows (fun i -> f i a.[i])

        let permuteVecGU (p:permutation) (a:Vector<_>) = 
            createVecGU a.OpsData a.NumRows (fun i -> a.[p i])

        let permuteRowVecGU (p:permutation) (a:RowVector<_>) = 
            createRowVecGU a.OpsData a.NumCols (fun i -> a.[p i])

        let inline inplace_mapiDenseMatrixGU f (a:DenseMatrix<_>) = 
            let arrA = a.Values 
            assignDenseMatrixGU (fun i j -> f i j (getArray2D arrA i j)) a

        let inline inplace_mapiRowVecGU f (a:RowVector<_>) = 
            assignRowVecGU (fun i -> f i a.[i]) a

        let inline inplace_mapiVecGU f (a:Vector<_>) = 
            assignVecGU (fun i -> f i a.[i]) a

        let inline foldDenseMatrixGU f z (a:DenseMatrix<_>) =
            let nA = a.NumCols 
            let mA = a.NumRows
            let arrA = a.Values 
            let mutable acc = z
            for i = 0 to mA-1 do
                for j = 0 to nA-1 do 
                   acc <- f acc (getArray2D arrA i j)
            acc
        
        let inline foldVecGU f z (a:Vector<_>) =
            let mutable acc = z
            for i = 0 to a.NumRows-1 do acc <- f acc a.[i]
            acc
        
        let inline foldiDenseMatrixGU f z (a:DenseMatrix<_>) =
            let nA = a.NumCols 
            let mA = a.NumRows
            let arrA = a.Values 
            let mutable acc = z
            for i = 0 to mA-1 do
                for j = 0 to nA-1 do 
                   acc <- f i j acc (getArray2D arrA i j)
            acc
        
        let inline foldiVecGU f z (a:Vector<_>) =
            let mA = a.NumRows
            let mutable acc = z
            for i = 0 to mA-1 do acc <- f i acc a.[i]
            acc
        
        let rec forallR f (n,m) = (n > m) || (f n && forallR f (n+1,m))
        let rec existsR f (n,m) = (n <= m) && (f n || existsR f (n+1,m))
        
        let foralliDenseMatrixGU pred (a:DenseMatrix<_>) =
            let nA = a.NumCols 
            let mA = a.NumRows
            let arrA = a.Values 
            (0,mA-1) |> forallR  (fun i ->
            (0,nA-1) |> forallR  (fun j ->
            pred i j (getArray2D arrA i j)))

        let foralliVecGU pred (a:Vector<_>) =
            let mA = a.NumRows
            (0,mA-1) |> forallR  (fun i ->
            pred i a.[i])

        let existsiDenseMatrixGU pred (a:DenseMatrix<_>) =
            let nA = a.NumCols 
            let mA = a.NumRows
            let arrA = a.Values 
            (0,mA-1) |> existsR (fun i ->
            (0,nA-1) |> existsR (fun j ->
            pred i j (getArray2D arrA i j)))

        let existsiVecGU pred (a:Vector<_>) =
            let mA = a.NumRows
            (0,mA-1) |> existsR (fun i ->
            pred i a.[i])

        let sumDenseMatrixGU  (a:DenseMatrix<_>) = 
            let ops = a.ElementOps 
            foldDenseMatrixGU (fun acc aij -> add ops acc aij) ops.Zero a

        let sumSparseMatrixGU  (a:SparseMatrix<_>) = 
            let ops = a.ElementOps 
            a |> nonZeroEntriesSparseMatrixGU |> Seq.fold (fun acc (_,_,aij) -> add ops acc aij) ops.Zero

        let sumVecGU (a:Vector<_>) = 
            let ops = a.ElementOps 
            foldVecGU (fun acc ai -> add ops acc ai) ops.Zero a

        let prodDenseMatrixGU (a:DenseMatrix<_>) = 
            let ops = a.ElementOps 
            foldDenseMatrixGU (fun acc aij -> mul ops acc aij) ops.One a

        let prodSparseMatrixGU  (a:SparseMatrix<_>) = a |> toDenseSparseMatrixGU |> prodDenseMatrixGU

        let inline fold2DenseMatrixGU f z (a:DenseMatrix<_>) (b:DenseMatrix<_>) =
            let nA = a.NumCols 
            let mA = a.NumRows
            let nB = b.NumCols 
            let mB = b.NumRows
            if nA <> nB || mA <> mB then invalidArg "b" "the two matrices do not have compatible dimensions"
            let arrA = a.Values 
            let arrB = b.Values 
            let mutable acc = z
            for i = 0 to mA-1 do
                for j = 0 to nA-1 do 
                   acc <- f acc (getArray2D arrA i j) (getArray2D arrB i j)
            acc

        let inline fold2VecGU f z (a:Vector<_>) (b:Vector<_>) =
            let mA = a.NumRows
            let mB = b.NumRows
            if  mA <> mB then invalidArg "b" "the two vectors do not have compatible dimensions"
            let mutable acc = z
            for i = 0 to mA-1 do acc <- f acc a.[i] b.[i]
            acc

        let dotDenseMatrixGU (a:DenseMatrix<_>) b =
            let ops = a.ElementOps 
            fold2DenseMatrixGU (fun z va vb -> add ops z (mul ops va vb)) ops.Zero a b

        let dotVecGU (a:Vector<_>) b =
            let ops =   a.ElementOps
            let zero = ops.Zero 
            fold2VecGU  (fun z va vb -> add ops z (mul ops va vb)) zero a b 

        let normDenseMatrixGU (a:DenseMatrix<_>) = 
            let normOps = getNormOps a.ElementOps
            foldDenseMatrixGU (fun z aij -> z + ((normOps.Norm aij)**2.0)) 0.0 a |> sqrt

        let normSparseMatrixGU (a:SparseMatrix<_>) = 
            let normOps = getNormOps a.ElementOps
            a |> nonZeroEntriesSparseMatrixGU |> Seq.fold (fun acc (_,_,aij) -> acc + ((normOps.Norm aij)**2.0)) 0.0 |> sqrt

        let inplaceAddDenseMatrixGU  (a:DenseMatrix<_>) (b:DenseMatrix<_>) = 
            let ops = a.ElementOps 
            let arrB = b.Values 
            inplace_mapiDenseMatrixGU  (fun i j x -> add ops x (getArray2D arrB i j)) a
        
        let inplaceAddVecGU  (a:Vector<_>) (b:Vector<_>) = 
            let ops = a.ElementOps 
            inplace_mapiVecGU  (fun i x   -> add ops x b.[i]) a

        let inplaceAddRowVecGU (a:RowVector<_>) (b:Vector<_>) = 
            let ops = a.ElementOps 
            inplace_mapiRowVecGU (fun i x   -> add ops x b.[i]) a

        let inplaceSubDenseMatrixGU  (a:DenseMatrix<_>) (b:DenseMatrix<_>) = 
            let ops = a.ElementOps 
            let arrB = b.Values 
            inplace_mapiDenseMatrixGU  (fun i j x -> sub ops x (getArray2D  arrB i j)) a

        let inplaceSubVecGU (a:Vector<_>) (b:Vector<_>) = 
            let ops = a.ElementOps
            inplace_mapiVecGU  (fun i x   -> sub ops x b.[i]) a

        let inplaceSubRowVecGU (a:RowVector<_>) (b:Vector<_>) = 
            let ops = a.ElementOps 
            inplace_mapiRowVecGU (fun i x   -> sub ops x b.[i]  ) a

        let inplaceCptMulDenseMatrixGU  (a:DenseMatrix<_>) (b:DenseMatrix<_>) = 
            let ops = a.ElementOps 
            let arrB = b.Values 
            inplace_mapiDenseMatrixGU  (fun i j x -> mul ops x (getArray2D  arrB i j)) a

        let inplaceCptMulVecGU (a:Vector<_>) (b:Vector<_>) = 
            let ops = a.ElementOps  
            inplace_mapiVecGU  (fun i x   -> mul ops x b.[i]) a

        let inplaceCptMulRowVecGU (a:RowVector<_>) (b:Vector<_>) = 
            let ops = a.ElementOps 
            inplace_mapiRowVecGU (fun i x   -> mul ops x b.[i]  ) a

        let inplaceScaleDenseMatrixGU  x (a:DenseMatrix<_>) = 
            let ops = a.ElementOps 
            inplace_mapiDenseMatrixGU  (fun _ _ y -> ops.Multiply(x,y)) a

        let inplaceScaleVecGU  x (a:Vector<_>) = 
            let ops = a.ElementOps  
            inplace_mapiVecGU  (fun _ y   -> ops.Multiply(x,y)) a

        let inplaceScaleRowVecGU x (a:RowVector<_>) = 
            let ops = a.ElementOps 
            inplace_mapiRowVecGU (fun _ y   -> ops.Multiply(x,y)) a


        let wrapList (pre,mid,post,trim) show l = 
            let post = if trim then "; ..." + post else post
            match l with 
            | []    -> [pre;post]
            | [x]   -> [pre;show x;post]
            | x::xs -> [pre;show x] @ (List.collect (fun x -> [mid;show x]) xs) @ [post]

        let showItem opsData  x = 
            try 
              let ops = opsOfOpsData opsData 
              ops.ToString(x,"g10",System.Globalization.CultureInfo.InvariantCulture) 
            with :? System.NotSupportedException -> (box x).ToString()
        
        let mapR f (n,m) = if m < n then [] else List.init (m-n+1) (fun i -> f (n+i))

        let primShowDenseMatrixGU (sepX,sepR) (a : DenseMatrix<'e>) =
            let nA = min a.NumCols DenseMaxDisplay
            let mA = min a.NumRows DenseMaxDisplay
            let ops = a.OpsData 
            let showLine i = wrapList ("[",";","]", a.NumCols > nA) (showItem ops) ((0,nA-1) |> mapR  (fun j -> a.[i,j])) |> Array.ofList |> System.String.Concat
            wrapList (string nA + " " + string mA + "matrix [",";"+sepX,"]"+sepR, a.NumRows > mA) showLine [0..mA-1] |> Array.ofList |> System.String.Concat

        let showDenseMatrixGU     m = primShowDenseMatrixGU ("\n","\n") m
        let debugShowDenseMatrixGU m = primShowDenseMatrixGU (""  ,""  ) m
        
        let showVecGU s (a : Vector<_>) =
            let mA = min a.NumRows VectorMaxDisplay
            let ops = a.OpsData 
            wrapList (s+" [",";","]",a.NumRows > mA) (showItem ops) ((0,mA-1) |> mapR  (fun i -> a.[i])) |> Array.ofList |> System.String.Concat 

        let showRowVecGU s (a : RowVector<_>) =
            let mA = min a.NumCols VectorMaxDisplay
            let ops = a.OpsData 
            wrapList (s+" [",";","]",a.NumCols > mA) (showItem ops) ((0,mA-1) |> mapR  (fun i -> a.[i])) |> Array.ofList |> System.String.Concat 


    /// Implementations of operations specific to floating point types
    module DoubleImpl = 

        module GU = GenericImpl
        open Instances
        
        // Element type OpsData
        //type elem = float
        let zero = 0.0
        let one  = 1.0
        let inline sub (x:float) (y:float) = x - y
        let inline add (x:float) (y:float) = x + y
        let inline mul (x:float) (y:float) = x * y
        let inline neg (x:float) = -x

        // Specialized: these know the relevant set of 
        // ops without doing a table lookup based on runtime type
        let FloatOps = Some (FloatNumerics :> INumeric<float>)
        let inline initDenseMatrixDS m n f = GU.createDenseMatrixGU FloatOps m n f
        let inline createRowVecDS m f      = GU.createRowVecGU      FloatOps m f
        let inline createVecDS m f         = GU.createVecGU         FloatOps m f
        let inline mkDenseMatrixDS  arr    = GU.mkDenseMatrixGU     FloatOps arr
        let inline mkRowVecDS arr          = GU.mkRowVecGU          FloatOps arr
        let inline mkVecDS  arr            = GU.mkVecGU             FloatOps arr
        let inline listDenseMatrixDS  ll   = GU.listDenseMatrixGU   FloatOps ll
        let inline listRowVecDS l          = GU.listRowVecGU        FloatOps l
        let inline listVecDS  l            = GU.listVecGU           FloatOps l
        let inline seqDenseMatrixDS  ll    = GU.seqDenseMatrixGU    FloatOps ll
        let inline seqRowVecDS l           = GU.seqRowVecGU         FloatOps l
        let inline seqVecDS  l             = GU.seqVecGU            FloatOps l

        let constDenseMatrixDS  m n x      = GU.createDenseMatrixGU  FloatOps m n (fun _ _ -> x)
        let constRowVecDS m x              = GU.createRowVecGU FloatOps m   (fun _ -> x)
        let constVecDS  m x                = GU.createVecGU  FloatOps m   (fun _ -> x)
        let scalarDenseMatrixDS   x        = constDenseMatrixDS  1 1 x 
        let scalarRowVecDS  x              = constRowVecDS 1   x 
        let scalarVecDS   x                = constVecDS  1   x 

        // Beware - when compiled with non-generic code createArray2D creates an array of null values,
        // not zero values. Hence the optimized version can only be used when compiling with generics.
        let inline zeroDenseMatrixDS m n = 
          let arr = GU.createArray2D m n 
          GU.mkDenseMatrixGU FloatOps arr
        // Specialized: these inline down to the efficient loops we need
        let addDenseMatrixDS     a b = GU.binaryOpDenseMatrixGU  add a b
        let addSparseDS     a b = GU.binaryOpSparseMatrixGU  add a b
        let addRowVecDS    a b = GU.binaryOpRowVecGU add a b
        let addVecDS     a b = GU.binaryOpVecGU  add a b
        let subDenseMatrixDS     a b = GU.binaryOpDenseMatrixGU  sub a b 
        let subSparseDS     a b = GU.binaryOpSparseMatrixGU  sub a b 
        let mulSparseDS     a b = GU.genericMulSparse zero add mul a b
        let subRowVecDS    a b = GU.binaryOpRowVecGU sub a b 
        let subVecDS     a b = GU.binaryOpVecGU  sub a b 
        let cptMulDenseMatrixDS  a b = GU.binaryOpDenseMatrixGU  mul a b
        let cptMulSparseDS  a b = GU.binaryOpSparseMatrixGU  mul a b
        let cptMulRowVecDS a b = GU.binaryOpRowVecGU mul a b
        let cptMulVecDS  a b = GU.binaryOpVecGU  mul a b
        type smatrix = SparseMatrix<float>
        type dmatrix = DenseMatrix<float>
        type vector = Vector<float>
        type rowvec = RowVector<float>
        let cptMaxDenseMatrixDS  (a:dmatrix) (b:dmatrix) = GU.binaryOpDenseMatrixGU  max a b
        let cptMinDenseMatrixDS  (a:dmatrix) (b:dmatrix) = GU.binaryOpDenseMatrixGU  min a b
        let cptMaxSparseDS  (a:smatrix) (b:smatrix) = GU.binaryOpSparseMatrixGU  max a b
        let cptMinSparseDS  (a:smatrix) (b:smatrix) = GU.binaryOpSparseMatrixGU  min a b
        let cptMaxVecDS  (a:vector) (b:vector) = GU.binaryOpVecGU  max a b
        let cptMinVecDS  (a:vector) (b:vector) = GU.binaryOpVecGU  min a b

        // Don't make any mistake about these ones re. performance.
        let mulDenseMatrixDS (a:dmatrix) (b:dmatrix) =
            let nA = a.NumCols 
            let mA = a.NumRows
            let nB = b.NumCols 
            let mB = b.NumRows
            if nA<>mB then invalidArg "b" "the two matrices do not have compatible dimensions"
            let arr = GU.createArray2D mA nB 
            let arrA = a.Values 
            let arrB = b.Values 
            for i = 0 to mA - 1 do 
                for j = 0 to nB - 1 do 
                    let mutable r = 0.0 
                    for k = 0 to mB - 1 do 
                        r <- r + mul (GU.getArray2D arrA i k) (GU.getArray2D arrB k j)
                    GU.setArray2D arr i j r
            mkDenseMatrixDS arr

        let mulRowVecDenseMatrixDS (a:rowvec) (b:dmatrix) =
            let nA = a.NumCols 
            let nB = b.NumCols 
            let mB = b.NumRows
            if nA<>mB then invalidArg "b" "the two inputs do not have compatible dimensions"
            let arr = Array.zeroCreate nB 
            let arrA = a.Values 
            let arrB = b.Values 
            for j = 0 to nB - 1 do 
                let mutable r = 0.0 
                for k = 0 to mB - 1 do 
                    r <- r + mul arrA.[k] (GU.getArray2D arrB k j)
                arr.[j] <- r
            mkRowVecDS arr

        let mulDenseMatrixVecDS (a:dmatrix) (b:vector) =
            let nA = a.NumCols 
            let mA = a.NumRows
            let mB = b.NumRows 
            if nA<>mB then invalidArg "b" "the two inputs do not have compatible dimensions"
            let arr = Array.zeroCreate mA 
            let arrA = a.Values 
            let arrB = b.Values 
            for i = 0 to mA - 1 do 
                let mutable r = 0.0 
                for k = 0 to nA - 1 do 
                    r <- r + mul (GU.getArray2D arrA i k) arrB.[k]
                arr.[i] <- r
            mkVecDS arr

        let mulRowVecVecDS (a:rowvec) (b:vector) =
            let nA = a.NumCols 
            let mB = b.NumRows 
            if nA<>mB then invalidArg "b" "the two vectors do not have compatible dimensions"
            let arrA = a.Values 
            let arrB = b.Values 
            let mutable r = 0.0 
            for k = 0 to nA - 1 do 
                r <- r + mul arrA.[k] arrB.[k]
            r

        let rowvecDenseMatrixDS (x:rowvec) = initDenseMatrixDS 1          x.NumCols (fun _ j -> x.[j]) 
        let vectorDenseMatrixDS (x:vector) = initDenseMatrixDS x.NumRows  1         (fun i _ -> x.[i]) 
        let mulVecRowVecDS a b = mulDenseMatrixDS (vectorDenseMatrixDS a) (rowvecDenseMatrixDS b) 

        let scaleDenseMatrixDS   k m = GU.unaryOpDenseMatrixGU  (fun x -> mul k x) m
        let scaleSparseDS   k m = GU.unaryOpSparseGU  (fun x -> mul k x) m
        let scaleRowVecDS  k m = GU.unaryOpRowVecGU (fun x -> mul k x) m
        let scaleVecDS   k m = GU.unaryOpVectorGU  (fun x -> mul k x) m
        let negDenseMatrixDS     m   = GU.unaryOpDenseMatrixGU  (fun x -> neg x) m
        let negSparseDS     m   = GU.unaryOpSparseGU  (fun x -> neg x) m
        let negRowVecDS    m   = GU.unaryOpRowVecGU (fun x -> neg x) m
        let negVecDS     m   = GU.unaryOpVectorGU  (fun x -> neg x) m

        let traceDenseMatrixDS (a:dmatrix) =
            let nA = a.NumCols 
            let mA = a.NumRows
            if nA<>mA then invalidArg "a" "expected a square matrix";
            let arrA = a.Values 
            (0,nA-1) |> GU.sumfR (fun i -> GU.getArray2D arrA i i) 

        let sumDenseMatrixDS  a = GU.foldDenseMatrixGU add zero a
        let sumVecDS   a = GU.foldVecGU  add zero a
        let prodDenseMatrixDS a = GU.foldDenseMatrixGU mul one  a
        let prodVecDS  a = GU.foldVecGU  mul one  a

        let dotDenseMatrixDS a b = GU.fold2DenseMatrixGU (fun z va vb -> add z (mul va vb)) zero a b
        let dotVecDS a b = GU.fold2VecGU (fun z va vb -> add z (mul va vb)) zero a b
        let sumfDenseMatrixDS  f m = GU.foldDenseMatrixGU (fun acc aij -> add acc (f aij)) zero m
        let normDenseMatrixDS m = sqrt (sumfDenseMatrixDS (fun x -> x*x) m)

        let inplaceAddDenseMatrixDS  a (b:DenseMatrix<_>) = let arrB = b.Values  in GU.inplace_mapiDenseMatrixGU  (fun i j x -> x + GU.getArray2D arrB i j) a
        let inplaceAddVecDS    a (b:Vector<_>) = let arrB = b.Values  in GU.inplace_mapiVecGU  (fun i x   -> x + arrB.[i]) a
        let inplace_addRowVecDS a (b:RowVector<_>) = let arrB = b.Values in GU.inplace_mapiRowVecGU (fun i x   -> x + arrB.[i]) a
        let inplaceSubDenseMatrixDS  a (b:DenseMatrix<_>) = let arrB = b.Values  in GU.inplace_mapiDenseMatrixGU  (fun i j x -> x - GU.getArray2D  arrB i j) a
        let inplaceSubVecDS  a (b:Vector<_>) = let arrB = b.Values  in GU.inplace_mapiVecGU  (fun i x   -> x - arrB.[i]) a
        let inplace_subRowVecDS a (b:RowVector<_>) = let arrB = b.Values in GU.inplace_mapiRowVecGU (fun i x   -> x - arrB.[i]) a
        let inplaceCptMulDenseMatrixDS  a (b:DenseMatrix<_>) = let arrB = b.Values  in GU.inplace_mapiDenseMatrixGU  (fun i j x -> x * GU.getArray2D arrB i j) a
        let inplaceCptMulVecDS  a (b:Vector<_>) = let arrB = b.Values  in GU.inplace_mapiVecGU  (fun i x   -> x * arrB.[i]) a
        let inplace_cptMulRowVecDS a (b:RowVector<_>) = let arrB = b.Values in GU.inplace_mapiRowVecGU (fun i x   -> x * arrB.[i]) a
        let inplaceScaleDenseMatrixDS  (a:float) b = GU.inplace_mapiDenseMatrixGU  (fun _ _ x -> a * x) b
        let inplaceScaleVecDS  (a:float) b = GU.inplace_mapiVecGU  (fun _ x   -> a * x) b
        let inplace_scaleRowVecDS (a:float) b = GU.inplace_mapiRowVecGU (fun _ x   -> a * x) b



    /// Generic operations that, when used on floating point types, use the specialized versions in DoubleImpl
    module SpecializedGenericImpl = 

        open Microsoft.FSharp.Math.Instances
        open Microsoft.FSharp.Math.GlobalAssociations

        module GU = GenericImpl
        module DS = DoubleImpl

          
        type smatrix = SparseMatrix<float>
        type dmatrix = DenseMatrix<float>
        type vector = Vector<float>
        type rowvec = RowVector<float>
        let inline dense x = DenseRepr(x)
        let inline sparse x = SparseRepr(x)
        let inline createMx  ops rows columns f = GU.createDenseMatrixGU ops rows columns f |> dense
        let inline createVx  ops m f   = GU.createVecGU ops m f
        let inline createRVx ops m f   = GU.createRowVecGU ops m f

        let nonZeroEntriesM a   = 
            match a with 
            | DenseRepr a -> GU.nonzeroEntriesDenseMatrixGU a 
            | SparseRepr a -> GU.nonZeroEntriesSparseMatrixGU a 

        /// Merge two sorted sequences
        let mergeSorted cf (s1: seq<'T>) (s2: seq<'b>) =
            seq { use e1 = s1.GetEnumerator()
                  use e2 = s2.GetEnumerator()
                  let havee1 = ref (e1.MoveNext())
                  let havee2 = ref (e2.MoveNext())
                  while !havee1 || !havee2 do
                    if !havee1 && !havee2 then
                        let v1 = e1.Current
                        let v2 = e2.Current
                        let c = cf v1 v2 
                        if c < 0 then 
                            do havee1 := e1.MoveNext()
                            yield Some(v1),None
                        elif c = 0 then
                            do havee1 := e1.MoveNext()
                            do havee2 := e2.MoveNext()
                            yield Some(v1),Some(v2)
                        else 
                            do havee2 := e2.MoveNext()
                            yield (None,Some(v2))
                    elif !havee1 then 
                        let v1 = e1.Current
                        do havee1 := e1.MoveNext()
                        yield (Some(v1),None)
                    else 
                        let v2 = e2.Current
                        do havee2 := e2.MoveNext()
                        yield (None,Some(v2)) }

        /// Non-zero entries from two sequences
        let mergedNonZeroEntriesM  (a:Matrix<_>) (b:Matrix<_>) = 
            let ops = a.ElementOps 
            let zero = ops.Zero
            mergeSorted (fun (i1,j1,_) (i2,j2,_) -> let c = compare i1 i2 in if c <> 0 then c else compare j1 j2) (nonZeroEntriesM a) (nonZeroEntriesM b)
            |> Seq.map (function | Some(i,j,v1),Some(_,_,v2) -> (v1,v2)
                                 | Some(i,j,v1),None         -> (v1,zero)
                                 | None,        Some(i,j,v2) -> (zero,v2)
                                 | None,        None          -> failwith "unreachable")


        
        // Creation
        let listM    xss : Matrix<'T>    = GU.listDenseMatrixGU opsdata<'T> xss |> dense
        let listV    xss : Vector<'T>    = GU.listVecGU         opsdata<'T> xss
        let listRV   xss : RowVector<'T> = GU.listRowVecGU      opsdata<'T> xss

        let arrayM    xss : Matrix<'T>    = GU.mkDenseMatrixGU  opsdata<'T> (Array2D.copy xss) |> dense
        let arrayV    xss : Vector<'T>    = GU.mkVecGU          opsdata<'T> (Array.copy xss)
        let arrayRV   xss : RowVector<'T> = GU.mkRowVecGU       opsdata<'T> (Array.copy xss)

        let seqM    xss : Matrix<'T>    = GU.seqDenseMatrixGU   opsdata<'T> xss |> dense
        let seqV    xss : Vector<'T>    = GU.seqVecGU           opsdata<'T> xss
        let seqRV   xss : RowVector<'T> = GU.seqRowVecGU        opsdata<'T> xss

        let initM  m n f : Matrix<'T>    = GU.createDenseMatrixGU opsdata<'T> m n f |> dense
        let initRV m   f : RowVector<'T> = GU.createRowVecGU      opsdata<'T> m   f
        let initV  m   f : Vector<'T>    = GU.createVecGU         opsdata<'T> m   f

        let constM  m n x : Matrix<'T>    = GU.createConstDenseMatrixGU opsdata<'T> m n x |> dense
        let constRV m   x : RowVector<'T> = GU.createConstRowVecGU      opsdata<'T> m   x
        let constV  m   x : Vector<'T>    = GU.createConstVecGU         opsdata<'T> m   x

        let inline inplaceAssignM  f a = 
            match a with 
            | SparseRepr _ -> sparseNotMutable()
            | DenseRepr a -> GU.assignDenseMatrixGU  f a
        let inline assignV  f a = GU.assignVecGU  f a

        let coerce2 x = unbox(box(x))
        let loosenDM (x: dmatrix) : DenseMatrix<_>  = coerce2 x
        let loosenSM (x: smatrix) : SparseMatrix<_> = coerce2 x
        let loosenV  (x: vector)  : Vector<_>       = coerce2 x
        let loosenRV (x: rowvec)  : RowVector<_>    = coerce2 x
        let loosenF  (x: float)   : 'T              = coerce2 x

        let tightenDM (x: DenseMatrix<_>)  : dmatrix = coerce2 x
        let tightenSM (x: SparseMatrix<_>) : smatrix = coerce2 x
        let tightenV  (x: Vector<_>)       : vector  = coerce2 x
        let tightenRV (x: RowVector<_>)    : rowvec  = coerce2 x
        let tightenF  (x: 'T)              : float   = coerce2 x

        let zeroM m n = 
            let arr = GU.createArray2D m n
            // This is quite performance critical
            // Avoid assigining zeros into the array
            match box arr with 
            | :? (float[,])   as arr -> GU.mkDenseMatrixGU DS.FloatOps arr |> loosenDM |> dense
            | _ -> 
            GU.zeroizeDenseMatrixGUA arr m n  |> dense

        let zeroV m  : Vector<'T> = 
            let arr = GU.createArray m 
            // Avoid assigining zeros into the array
            match box (arr: 'T[]) with 
            | :? (float[])   as arr -> GU.mkVecGU DS.FloatOps arr |> loosenV
            | _ -> 
            GU.zeroizeVecGUA arr m

        let zeroRV m  : RowVector<'T> = 
            let arr = GU.createArray m 
            // Avoid assigining zeros into the array
            match box (arr: 'T[]) with 
            | :? (float[])   as arr -> GU.mkRowVecGU DS.FloatOps arr |> loosenRV
            | _ -> 
            GU.zeroizeRowVecGUA arr m
            
        let initNumericM m n f   = 
            let arr = GU.createArray2D m n 
            let opsData = opsdata<'T> 
            let ops = GU.opsOfOpsData opsData 
            GU.assignArray2D m n (f ops) arr;
            GU.mkDenseMatrixGU opsData arr |> dense

        let identityM m   = 
            let arr = GU.createArray2D m m 
            // This is quite performance critical
            // Avoid assigining zeros into the array
            match box arr with 
            | :? (float[,])   as arr -> 
                for i = 0 to m - 1 do 
                   arr.[i,i] <- 1.0 
                GU.mkDenseMatrixGU DS.FloatOps arr |> loosenDM |> dense
            | _ -> 
            let opsData = opsdata<'T> 
            let ops = GU.opsOfOpsData opsData 
            let zero = ops.Zero 
            let one = ops.One 
            GU.assignArray2D m m (fun i j -> if i = j then one else zero) arr;
            GU.mkDenseMatrixGU opsData arr |> dense

        let createNumericV m f  : Vector<'T> = 
            let arr = GU.createArray m 
            let opsData = opsdata<'T> 
            let ops = GU.opsOfOpsData opsData 
            GU.assignArray m (f ops) arr;
            GU.mkVecGU opsData arr
            
        let scalarM   x = constM 1 1 x 
        let scalarRV  x = constRV 1 x 
        let scalarV   x = constV 1 x 

        let diagnM (v:Vector<_>) n = 
            let ops = v.ElementOps
            let zero = ops.Zero 
            let nV = v.NumRows + (if n < 0 then -n else n) 
            createMx v.OpsData nV nV (fun i j -> if i+n=j then v.[i] else zero)

        let diagM v = diagnM v 0

        let constDiagM  n x : Matrix<'T> = 
            let opsData = opsdata<'T> 
            let ops = GU.opsOfOpsData opsData 
            let zero = ops.Zero 
            createMx opsData n n (fun i j -> if i=j then x else zero) 

        // Note: we drop sparseness on pointwise multiplication of sparse and dense.
        let inline binaryOpM opDenseDS opDenseGU opSparseDS opSparseMatrixGU a b = 
            match a,b with 
            | DenseRepr a,DenseRepr b -> 
                match box a with 
                | (:? dmatrix as a) -> opDenseDS   a (tightenDM b) |> loosenDM |> dense
                | _                 -> opDenseGU a b                           |> dense
            | SparseRepr a,SparseRepr b ->
                match box a with 
                | (:? smatrix as a) -> opSparseDS a (tightenSM b) |> loosenSM |> sparse
                | _                 -> opSparseMatrixGU a b                         |> sparse
            | SparseRepr a, DenseRepr b     -> opDenseGU (GU.toDenseSparseMatrixGU a) b         |> dense
            | DenseRepr  a, SparseRepr b    -> opDenseGU a (GU.toDenseSparseMatrixGU b)         |> dense

        let inline unaryOpM opDenseDS opDenseGU opSparseDS opSparseMatrixGU  b = 
            match b with 
            | DenseRepr b -> 
                match box b with 
                | (:? dmatrix as b)  -> opDenseDS b |> loosenDM |> dense
                | _                  -> opDenseGU b             |> dense
            | SparseRepr b ->             
                match box b with 
                | (:? smatrix as b) -> opSparseDS b |> loosenSM |> sparse
                | _                 -> opSparseMatrixGU b             |> sparse

        let inline floatUnaryOpM opDenseDS opDenseGU opSparseDS opSparseMatrixGU  b = 
            match b with 
            | DenseRepr b -> 
                match box b with 
                | (:? dmatrix as b)  -> opDenseDS b |> loosenF
                | _                  -> opDenseGU b             
            | SparseRepr b ->             
                match box b with 
                | (:? smatrix as b) -> opSparseDS b |> loosenF 
                | _                 -> opSparseMatrixGU b             

        let addM a b = binaryOpM DS.addDenseMatrixDS GU.addDenseMatrixGU DS.addSparseDS GU.addSparseMatrixGU a b
        let subM a b = binaryOpM DS.subDenseMatrixDS GU.subDenseMatrixGU DS.subSparseDS GU.subSparseMatrixGU a b
        let mulM a b = binaryOpM DS.mulDenseMatrixDS GU.genericMulDenseMatrix DS.mulSparseDS GU.mulSparseMatrixGU a b
        let cptMulM a b = binaryOpM DS.cptMulDenseMatrixDS GU.cptMulDenseMatrixGU DS.cptMulSparseDS GU.cptMulSparseMatrixGU a b
        let cptMaxM a b = binaryOpM DS.cptMaxDenseMatrixDS GU.cptMaxDenseMatrixGU DS.cptMaxSparseDS GU.cptMaxSparseMatrixGU a b
        let cptMinM a b = binaryOpM DS.cptMinDenseMatrixDS GU.cptMinDenseMatrixGU DS.cptMinSparseDS GU.cptMinSparseMatrixGU a b

        let addRV a b = 
            match box a with 
            | (:? rowvec as a) -> DS.addRowVecDS a (tightenRV b) |> loosenRV
            | _                -> GU.addRowVecGU a b

        let addV a b = 
            match box a with 
            | (:? vector as a) -> DS.addVecDS a (tightenV b) |> loosenV
            | _                -> GU.addVecGU a b

        let subRV a b = 
            match box a with 
            | (:? rowvec as a) -> DS.subRowVecDS   a (tightenRV b) |> loosenRV
            | _                -> GU.subRowVecGU a b

        let subV a b = 
            match box a with 
            | (:? vector as a) -> DS.subVecDS   a (tightenV b) |> loosenV
            | _                -> GU.subVecGU a b

        let mulRVM a b = 
            match b with 
            | DenseRepr b -> 
                match box a with 
                | (:? rowvec as a) -> DS.mulRowVecDenseMatrixDS   a (tightenDM b) |> loosenRV
                | _                -> GU.mulRowVecDenseMatrixGU a b
            | SparseRepr b -> GU.mulRVSparseMatrixGU a b

        let mulMV a b = 
            match a with 
            | DenseRepr a -> 
                match box a with 
                | (:? dmatrix as a) -> DS.mulDenseMatrixVecDS   a (tightenV b) |> loosenV
                | _                 -> GU.mulDenseMatrixVecGU a b
            | SparseRepr a -> GU.mulSparseVecGU a b 

        let mulRVV a b = 
            match box a with 
            | (:? rowvec as a) -> DS.mulRowVecVecDS   a (tightenV b) |> loosenF
            | _                -> GU.mulRowVecVecGU a b

        let mulVRV a b = 
            match box a with 
            | (:? vector as a) -> DS.mulVecRowVecDS   a (tightenRV b) |> loosenDM |> dense
            | _                -> GU.mulVecRowVecGU a b |> dense

        let cptMulRV a b = 
            match box a with 
            | (:? rowvec as a) -> DS.cptMulRowVecDS   a (tightenRV b) |> loosenRV
            | _                -> GU.cptMulRowVecGU a b

        let cptMulV a b = 
            match box a with 
            | (:? vector as a) -> DS.cptMulVecDS   a (tightenV b) |> loosenV
            | _                -> GU.cptMulVecGU a b

        let cptMaxV a b = 
            match box a with 
            | (:? vector as a) -> DS.cptMaxVecDS   a (tightenV b) |> loosenV
            | _                -> GU.cptMaxVecGU a b

        let cptMinV a b = 
            match box a with 
            | (:? vector as a) -> DS.cptMinVecDS   a (tightenV b) |> loosenV
            | _                -> GU.cptMinVecGU a b

        let scaleM a b = unaryOpM (fun b -> DS.scaleDenseMatrixDS (tightenF a) b) (GU.scaleDenseMatrixGU a)
                                  (fun b -> DS.scaleSparseDS (tightenF a) b) (GU.scaleSparseMatrixGU a) b

        let scaleRV a b = 
            match box b with 
            | (:? rowvec as b)  -> DS.scaleRowVecDS (tightenF a) b |> loosenRV 
            | _                 -> GU.scaleRowVecGU a b

        let scaleV a b = 
            match box b with 
            | (:? vector as b)  -> DS.scaleVecDS (tightenF a) b |> loosenV
            | _                 -> GU.scaleVecGU a b

        let dotM a b = 
            match a,b with 
            | DenseRepr a,DenseRepr b -> 
                match box b with 
                | (:? dmatrix as b)  -> DS.dotDenseMatrixDS   (tightenDM a) b |> loosenF
                | _                  -> GU.dotDenseMatrixGU a b
            | _ ->  
                let ops = a.ElementOps 
                mergedNonZeroEntriesM a b |> Seq.fold (fun z (va,vb) -> GU.add ops z (GU.mul ops va vb)) ops.Zero 

        let dotV a b = 
            match box b with 
            | (:? vector as b)  -> DS.dotVecDS   (tightenV a) b |> loosenF
            | _                 -> GU.dotVecGU a b

        let negM a = unaryOpM DS.negDenseMatrixDS GU.negDenseMatrixGU DS.negSparseDS GU.negSparseMatrixGU a

        let negRV a = 
            match box a with 
            | (:? rowvec as a) -> DS.negRowVecDS a |> loosenRV
            | _               ->  GU.negRowVecGU a

        let negV a = 
            match box a with 
            | (:? vector as a) -> DS.negVecDS a |> loosenV
            | _               ->  GU.negVecGU a

        let traceMGU (a:Matrix<_>) =
            let nA = a.NumCols  
            let mA = a.NumRows 
            if nA<>mA then invalidArg "a" "expected a square matrix";
            let ops = a.ElementOps 
            (0,nA-1) |> GU.sumRGU ops (fun i -> a.[i,i]) 

        let traceM a = floatUnaryOpM DS.traceDenseMatrixDS (dense >> traceMGU) (sparse >> traceMGU) (sparse >> traceMGU) a
        let sumM a = floatUnaryOpM DS.sumDenseMatrixDS GU.sumDenseMatrixGU GU.sumSparseMatrixGU GU.sumSparseMatrixGU a
        let prodM a = floatUnaryOpM DS.prodDenseMatrixDS GU.prodDenseMatrixGU GU.prodSparseMatrixGU GU.prodSparseMatrixGU a
        let normM a = floatUnaryOpM DS.normDenseMatrixDS GU.normDenseMatrixGU GU.normSparseMatrixGU GU.normSparseMatrixGU a

        let opsM a = 
            match a with 
            | DenseRepr a -> a.OpsData 
            | SparseRepr a -> a.OpsData 
        
        let transM a = 
            match a with 
            | DenseRepr a -> 
                // rows of transposed matrix = columns of original matrix and vice versa
                createMx a.OpsData a.NumCols a.NumRows (fun i j -> a.[j,i])
            | SparseRepr a -> 
                a |> GU.nonZeroEntriesSparseMatrixGU  |> Seq.map (fun (i,j,v) -> (j,i,v)) |> GU.initSparseMatrixGU a.NumCols a.NumRows a.OpsData |> sparse
        
        let permuteRows (p: permutation) a =
            match a with
            | DenseRepr a ->
                createMx a.OpsData a.NumRows a.NumCols (fun i j -> a.[p i,j])
            | SparseRepr a ->
                a |> GU.nonZeroEntriesSparseMatrixGU  |> Seq.map (fun (i,j,v) -> (p i,j,v)) |> GU.initSparseMatrixGU a.NumCols a.NumRows a.OpsData |> sparse

        let permuteColumns (p: permutation) a =
            match a with
            | DenseRepr a ->
                createMx a.OpsData a.NumRows a.NumCols (fun i j -> a.[i,p j])
            | SparseRepr a ->
                a |> GU.nonZeroEntriesSparseMatrixGU  |> Seq.map (fun (i,j,v) -> (i,p j,v)) |> GU.initSparseMatrixGU a.NumCols a.NumRows a.OpsData |> sparse

        let transRV (a:RowVector<_>) = 
            createVx a.OpsData  a.NumCols (fun i -> a.[i])

        let transV (a:Vector<_>)  = 
            createRVx a.OpsData a.NumRows (fun i -> a.[i])

        let inplaceAddM a b = 
            match a,b with 
            | DenseRepr a,DenseRepr b -> 
                match box a with 
                | (:? dmatrix as a) -> DS.inplaceAddDenseMatrixDS   a (tightenDM b)
                | _                 -> GU.inplaceAddDenseMatrixGU a b
            | _ -> sparseNotMutable()

        let inplaceAddV a b = 
            match box a with 
            | (:? vector as a) -> DS.inplaceAddVecDS   a (tightenV b)
            | _                -> GU.inplaceAddVecGU a b

        let inplaceSubM a b = 
            match a,b with 
            | DenseRepr a,DenseRepr b -> 
                match box a with 
                | (:? dmatrix as a) -> DS.inplaceSubDenseMatrixDS   a (tightenDM b)
                | _                -> GU.inplaceSubDenseMatrixGU a b
            | _ -> sparseNotMutable()

        let inplaceSubV a b = 
            match box a with 
            | (:? vector as a) -> DS.inplaceSubVecDS   a (tightenV b)
            | _                -> GU.inplaceSubVecGU a b


        let inplaceCptMulM a b = 
            match a,b with 
            | DenseRepr a,DenseRepr b -> 
                match box a with 
                | (:? dmatrix as a) -> DS.inplaceCptMulDenseMatrixDS   a (tightenDM b)
                | _                -> GU.inplaceCptMulDenseMatrixGU a b
            | _ -> sparseNotMutable()

        let inplaceCptMulV a b = 
            match box a with 
            | (:? vector as a) -> DS.inplaceCptMulVecDS   a (tightenV b)
            | _                -> GU.inplaceCptMulVecGU a b

        let inplaceScaleM a b = 
            match b with 
            | DenseRepr b -> 
                match box b with 
                | (:? dmatrix as b)  -> DS.inplaceScaleDenseMatrixDS   (tightenF a) b
                | _                 -> GU.inplaceScaleDenseMatrixGU a b
            | _ -> sparseNotMutable()

        let inplaceScaleV a b = 
            match box b with 
            | (:? vector as b)  -> DS.inplaceScaleVecDS   (tightenF a) b
            | _                 -> GU.inplaceScaleVecGU a b

        let existsM  f a = 
            match a with 
            | SparseRepr _ -> sparseNYI() // note: martin says "run f on a token element if it's not full"
            | DenseRepr a -> GU.existsiDenseMatrixGU  (fun _ _ -> f) a

        let existsV  f a = GU.existsiVecGU  (fun _ -> f) a

        let forallM  f a = 
            match a with 
            | SparseRepr _ -> sparseNYI()
            | DenseRepr a -> GU.foralliDenseMatrixGU  (fun _ _ -> f) a

        let forallV  f a = GU.foralliVecGU  (fun _ -> f) a

        let existsiM  f a = 
            match a with 
            | SparseRepr _ -> sparseNYI()
            | DenseRepr a -> GU.existsiDenseMatrixGU  f a

        let existsiV  f a = GU.existsiVecGU  f a

        let foralliM  f a = 
            match a with 
            | SparseRepr _ -> sparseNYI()
            | DenseRepr a -> GU.foralliDenseMatrixGU  f a

        let foralliV  f a = GU.foralliVecGU  f a

        let mapM  f a = 
            match a with 
            | SparseRepr _ -> sparseNYI()
            | DenseRepr a -> DenseRepr(GU.mapDenseMatrixGU f a)

        let mapV  f a = GU.mapVecGU f a

        let copyM  a = 
            match a with 
            | SparseRepr a -> SparseRepr (GU.copySparseGU a)
            | DenseRepr a -> DenseRepr (GU.copyDenseMatrixGU a)

        let copyV  a = GU.copyVecGU a

        let copyRV  a = GU.copyRowVecGU a

        let mapiM  f a = 
            match a with 
            | SparseRepr _ -> sparseNYI()
            | DenseRepr a -> DenseRepr (GU.mapiDenseMatrixGU f a)

        let mapiV  f a = GU.mapiVecGU f a
        let permuteV p a = GU.permuteVecGU p a
        let permuteRV p a = GU.permuteRowVecGU p a

        let mapiRV  f a = GU.mapiRowVecGU f a

        let toDenseM a = 
            match a with 
            | SparseRepr a -> GU.toDenseSparseMatrixGU a |> dense
            | DenseRepr _ -> a

        let initSparseM i j x : Matrix<'T> = 
            let opsData = opsdata<'T> 
            GU.initSparseMatrixGU i j opsData x |> sparse
          
        let initDenseM i j x : Matrix<'T> = 
            let r = zeroM i j
            x |> Seq.iter (fun (i,j,v) -> r.[i,j] <- v);
            r

        let getDiagnM (a:Matrix<_>) n =
            let nA = a.NumCols 
            let mA = a.NumRows
            if nA<>mA then invalidArg "a" "expected a square matrix";
            let ni = if n < 0 then -n else 0 
            let nj = if n > 0 then  n else 0 
            GU.createVecGU (opsM a) (max (nA-abs(n)) 0) (fun i -> a.[i+ni,i+nj]) 

        let getDiagM  a = getDiagnM a 0

        let inline inplace_mapiM  f a = 
            match a with 
            | SparseRepr _ -> sparseNotMutable()
            | DenseRepr a -> GU.inplace_mapiDenseMatrixGU f a

        let inline inplace_mapiV  f a = GU.inplace_mapiVecGU f a
        
        let inline foldM  f z a = 
            match a with 
            | SparseRepr _ -> sparseNYI()
            | DenseRepr a -> GU.foldDenseMatrixGU f z a

        let inline foldV  f z a = GU.foldVecGU f z a

        let inline foldiM  f z a = 
            match a with 
            | SparseRepr _ -> sparseNYI()
            | DenseRepr a -> GU.foldiDenseMatrixGU f z a

        let inline foldiV  f z a = GU.foldiVecGU f z a

        let compareM (comp: IComparer) (a:Matrix<'T>) (b:Matrix<'T>) = 
            let nA = a.NumCols 
            let mA = a.NumRows 
            let nB = b.NumCols 
            let mB = b.NumRows 
            let c = compare mA mB 
            if c <> 0 then c else
            let c = compare nA nB 
            if c <> 0 then c else
            match a,b with 
            | DenseRepr a, DenseRepr b -> 
              let rec go2 i j = 
                 if j < nA then 
                   let c = comp.Compare( a.[i,j], b.[i,j])
                   if c <> 0 then c else 
                   go2 i (j+1) 
                 else 0 
              let rec go1 i = 
                 if i < mA then 
                   let c = go2 i 0 
                   if c <> 0 then c 
                   else go1 (i+1) 
                 else 0 
              go1 0
            | _ -> 
              match (mergedNonZeroEntriesM a b |> Seq.tryPick (fun (v1,v2) -> let c = comp.Compare(v1,v2) in if c = 0 then None else Some(c))) with
              | None -> 0
              | Some(c) -> c
             
        let equalsM (comp: IEqualityComparer) (a:Matrix<'T>) (b:Matrix<'T>) = 
            let nA = a.NumCols 
            let mA = a.NumRows 
            let nB = b.NumCols 
            let mB = b.NumRows 
            (mA = mB ) && (nA = nB) && 
            match a,b with 
            | DenseRepr a, DenseRepr b -> 
                let rec go2 i j =  j >= nA || (comp.Equals( a.[i,j], b.[i,j]) && go2 i (j+1) )
                let rec go1 i = i >= mA || (go2 i 0  && go1 (i+1))
                go1 0
            | _ -> 
                mergedNonZeroEntriesM a b |> Seq.forall (fun (v1,v2) -> comp.Equals(v1,v2))
             

        let compareV (comp: IComparer) (a:Vector<'T>) (b:Vector<'T>) = 
            let mA = a.NumRows
            let mB = b.NumRows 
            let c = compare mA mB 
            if c <> 0 then c else
            let rec go2 j = 
               if j < mA then 
                 let c = comp.Compare(a.[j],b.[j])
                 if c <> 0 then c else go2 (j+1) 
               else 0 
            go2 0

        let equalsV (comp: IEqualityComparer) (a:Vector<'T>) (b:Vector<'T>) = 
            let mA = a.NumRows
            let mB = b.NumRows 
            (mA = mB) && 
            let rec go2 j = (j >= mA) || (comp.Equals(a.[j],b.[j]) && go2 (j+1))
            go2 0

        let equalsRV (comp: IEqualityComparer) (a:RowVector<'T>) (b:RowVector<'T>) = 
            let mA = a.NumCols 
            let mB = b.NumCols 
            (mA = mB) && 
            let rec go2 j = (j >= mA) || (comp.Equals(a.[j],b.[j]) && go2 (j+1))
            go2 0

        let compareRV (comp: IComparer) (a:RowVector<'T>) (b:RowVector<'T>) = 
            let mA = a.NumCols 
            let mB = b.NumCols 
            let c = compare mA mB 
            if c <> 0 then c else
            let rec go2 j = 
               if j < mA then 
                 let c = comp.Compare(a.[j],b.[j])
                 if c <> 0 then c else go2 (j+1) 
               else 0 
            go2 0

        let inline combineHash x y = (x <<< 1) + y + 631 

        let hashM (comp:IEqualityComparer) (a:Matrix<_>) = 
            let nA = a.NumCols 
            let mA = a.NumRows 
            let acc = hash mA + hash nA
            a |> nonZeroEntriesM |> Seq.truncate 20 |> Seq.fold (fun z v -> combineHash z (comp.GetHashCode v)) acc
          
        let hashV (comp:IEqualityComparer) (a:Vector<_>) = 
            let mA = a.NumRows 
            hash mA +
            (let mutable c = 0 
             for i = 0 to mA - 1 do
                 c <- combineHash c (comp.GetHashCode a.[i])
             c)
          
        let hashRV (comp:IEqualityComparer) (a:RowVector<_>) = 
            let mA = a.NumCols 
            hash mA +
            (let mutable c = 0 
             for i = 0 to mA - 1 do
                 c <- combineHash c (comp.GetHashCode a.[i])
             c)
          
        type range = int * int

        let startR ((a,_) : range)   = a
        let countR ((a,b) : range)   = (b-a)+1
        let idxR    ((a,_) : range) i = a+i
        let inR    ((a,b) : range) i = a <= i && i <= b
        
        let getRowM  (a:Matrix<_>) i = createRVx (opsM a) a.NumCols (fun j -> a.[i,j])
        let selColM  (a:Matrix<_>) j = createVx (opsM a) a.NumRows (fun i -> a.[i,j]) 
        let getRegionV  (a:Vector<_>)    r      = createVx a.OpsData (countR r) (fun i -> a.[idxR r i]) 
        let getRegionRV (a:RowVector<_>) r      = createRVx a.OpsData (countR r) (fun i -> a.[idxR r i]) 

        let getRegionM  a ri rj    = 
            match a with 
            | DenseRepr a -> createMx a.OpsData (countR ri) (countR rj) (fun i j -> a.[idxR ri i, idxR rj j]) 
            | _ -> nonZeroEntriesM a 
                   |> Seq.filter (fun (i,j,_) -> inR ri i && inR rj j) 
                   |> Seq.map (fun (i,j,v) -> (i-startR ri,j-startR rj,v)) 
                   |> initSparseM (countR ri) (countR rj)

        let getColsM (a:Matrix<_>) rj         = getRegionM a (0,a.NumRows - 1) rj
        let getRowsM (a:Matrix<_>) ri         = getRegionM a ri (0,a.NumCols - 1)

        let rowvecM (x:RowVector<_>) = initM 1         x.NumCols (fun _ j -> x.[j]) 
        let vectorM (x:Vector<_>) = initM x.NumRows  1         (fun i _ -> x.[i])  
        let toVectorM x = selColM x 0 
        let toRowVectorM x = getRowM x 0 
        let toScalarM (x:Matrix<_>) = x.[0,0]



//----------------------------------------------------------------------------
// type Matrix<'T> augmentation
//--------------------------------------------------------------------------*)

    type Matrix<'T> with
        static member ( +  )(a: Matrix<'T>,b) = SpecializedGenericImpl.addM a b
        static member ( -  )(a: Matrix<'T>,b) = SpecializedGenericImpl.subM a b
        static member ( *  )(a: Matrix<'T>,b) = SpecializedGenericImpl.mulM a b
        static member ( *  )(a: Matrix<'T>,b : Vector<'T>) = SpecializedGenericImpl.mulMV a b

        static member ( * )((m: Matrix<'T>),k : 'T) = SpecializedGenericImpl.scaleM k m

        static member ( .* )(a: Matrix<'T>,b) = SpecializedGenericImpl.cptMulM a b
        static member ( * )(k,m: Matrix<'T>) = SpecializedGenericImpl.scaleM k m
        static member ( ~- )(m: Matrix<'T>)     = SpecializedGenericImpl.negM m
        static member ( ~+ )(m: Matrix<'T>)     = m

        member m.GetSlice (start1,finish1,start2,finish2) = 
            let start1 = match start1 with None -> 0 | Some v -> v 
            let finish1 = match finish1 with None -> m.NumRows - 1 | Some v -> v 
            let start2 = match start2 with None -> 0 | Some v -> v 
            let finish2 = match finish2 with None -> m.NumCols - 1 | Some v -> v 
            SpecializedGenericImpl.getRegionM m (start1,finish1) (start2,finish2)

        member m.SetSlice (start1,finish1,start2,finish2,vs:Matrix<_>) = 
            let start1 = match start1 with None -> 0 | Some v -> v 
            let finish1 = match finish1 with None -> m.NumRows - 1 | Some v -> v 
            let start2 = match start2 with None -> 0 | Some v -> v 
            let finish2 = match finish2 with None -> m.NumCols - 1 | Some v -> v 
            for i = start1 to finish1  do 
               for j = start2 to finish2 do
                   m.[i,j] <- vs.[i-start1,j-start2]

        override m.ToString() = 
           match m with 
           | DenseRepr m -> GenericImpl.showDenseMatrixGU m
           | SparseRepr _ -> "<sparse>"

        member m.DebugDisplay = 
           let txt = 
               match m with 
               | DenseRepr m -> GenericImpl.debugShowDenseMatrixGU m
               | SparseRepr _ -> "<sparse>"
           new System.Text.StringBuilder(txt)  // return an object with a ToString with the right value, rather than a string. (strings get shown using quotes)

        member m.StructuredDisplayAsArray =  
            let rec layout m = 
                match m with 
                | DenseRepr _ -> box (Array2D.init m.NumRows m.NumCols (fun i j -> m.[i,j]))
                | SparseRepr _ -> (if m.NumRows < 20 && m.NumCols < 20 then layout (SpecializedGenericImpl.toDenseM m) else box(SpecializedGenericImpl.nonZeroEntriesM m))
            layout m
        member m.Dimensions = m.NumRows,m.NumCols

        member m.Transpose = SpecializedGenericImpl.transM m
        member m.PermuteRows (p: permutation) : Matrix<'T> = SpecializedGenericImpl.permuteRows p m
        member m.PermuteColumns (p: permutation) : Matrix<'T> = SpecializedGenericImpl.permuteColumns p m

        interface IEnumerable<'T> with 
            member m.GetEnumerator() = 
               (seq { for i in 0 .. m.NumRows-1 do
                        for j in 0 .. m.NumCols - 1 do 
                            yield m.[i,j] }).GetEnumerator()

        interface IEnumerable with 
            member m.GetEnumerator() =  ((m :> IEnumerable<_>).GetEnumerator() :> IEnumerator)
                                    
        interface System.IComparable with 
             member m.CompareTo(yobj:obj) = SpecializedGenericImpl.compareM LanguagePrimitives.GenericComparer m (yobj :?> Matrix<'T>)
             
        interface IStructuralComparable with
            member m.CompareTo(yobj:obj,comp:System.Collections.IComparer) = SpecializedGenericImpl.compareM comp m (yobj :?> Matrix<'T>)
            
        override m.GetHashCode() = SpecializedGenericImpl.hashM LanguagePrimitives.GenericEqualityComparer m 
        override m.Equals(yobj:obj) = 
            match yobj with 
            | :? Matrix<'T> as m2 -> SpecializedGenericImpl.equalsM LanguagePrimitives.GenericEqualityComparer m m2
            | _ -> false
        
        interface IStructuralEquatable with
            member m.GetHashCode(comp:System.Collections.IEqualityComparer) = SpecializedGenericImpl.hashM comp m
            member m.Equals(yobj:obj,comp:System.Collections.IEqualityComparer) = 
                match yobj with 
                | :? Matrix<'T> as m2 -> SpecializedGenericImpl.equalsM comp m m2
                | _ -> false


//----------------------------------------------------------------------------
// type Vector<'T> augmentation
//--------------------------------------------------------------------------*)

    type Vector<'T> with
        static member ( +  )(a: Vector<'T>,b) = SpecializedGenericImpl.addV a b
        static member ( -  )(a: Vector<'T>,b) = SpecializedGenericImpl.subV a b
        static member ( .* )(a: Vector<'T>,b) = SpecializedGenericImpl.cptMulV a b
        
        static member ( * )(k,m: Vector<'T>) = SpecializedGenericImpl.scaleV k m
        
        static member ( * )(a: Vector<'T>,b) = SpecializedGenericImpl.mulVRV a b
        
        static member ( * )(m: Vector<'T>,k) = SpecializedGenericImpl.scaleV k m
        
        static member ( ~- )(m: Vector<'T>)     = SpecializedGenericImpl.negV m
        static member ( ~+ )(m: Vector<'T>)     = m

        member m.GetSlice (start,finish) = 
            let start = match start with None -> 0 | Some v -> v 
            let finish = match finish with None -> m.NumRows - 1 | Some v -> v 
            SpecializedGenericImpl.getRegionV m (start,finish)

        member m.SetSlice (start,finish,vs:Vector<_>) = 
            let start = match start with None -> 0 | Some v -> v 
            let finish = match finish with None -> m.NumRows - 1 | Some v -> v 
            for i = start to finish  do 
                   m.[i] <- vs.[i-start]


        override m.ToString() = GenericImpl.showVecGU "vector" m

        member m.DebugDisplay = 
            let txt = GenericImpl.showVecGU "vector" m
            new System.Text.StringBuilder(txt)  // return an object with a ToString with the right value, rather than a string. (strings get shown using quotes)

        member m.StructuredDisplayAsArray =  Array.init m.NumRows (fun i -> m.[i])

        member m.Details = m.Values

        member m.Transpose = SpecializedGenericImpl.transV m
        
        member m.Permute (p:permutation) = SpecializedGenericImpl.permuteV p m
      
        interface System.IComparable with 
             member m.CompareTo(y:obj) = SpecializedGenericImpl.compareV LanguagePrimitives.GenericComparer m (y :?> Vector<'T>)
        
        interface IStructuralComparable with
            member m.CompareTo(y:obj,comp:System.Collections.IComparer) = SpecializedGenericImpl.compareV comp m (y :?> Vector<'T>)

        interface IStructuralEquatable with
            member x.GetHashCode(comp) = SpecializedGenericImpl.hashV comp x
            member x.Equals(yobj,comp) = 
                match yobj with 
                | :? Vector<'T> as v2 -> SpecializedGenericImpl.equalsV comp x v2
                | _ -> false

        override x.GetHashCode() = 
            SpecializedGenericImpl.hashV LanguagePrimitives.GenericEqualityComparer x

        override x.Equals(yobj) = 
            match yobj with 
            | :? Vector<'T> as v2 -> SpecializedGenericImpl.equalsV LanguagePrimitives.GenericEqualityComparer x v2
            | _ -> false

//----------------------------------------------------------------------------
// type RowVector<'T> augmentation
//--------------------------------------------------------------------------*)

    type RowVector<'T> with
        static member ( +  )(a: RowVector<'T>,b) = SpecializedGenericImpl.addRV a b
        static member ( -  )(a: RowVector<'T>,b) = SpecializedGenericImpl.subRV a b
        static member ( .* )(a: RowVector<'T>,b) = SpecializedGenericImpl.cptMulRV a b
        static member ( * )(k,v: RowVector<'T>) = SpecializedGenericImpl.scaleRV k v
        
        static member ( * )(a: RowVector<'T>,b: Matrix<'T>) = SpecializedGenericImpl.mulRVM a b
        static member ( * )(a: RowVector<'T>,b:Vector<'T>) = SpecializedGenericImpl.mulRVV a b
        static member ( * )(v: RowVector<'T>,k:'T) = SpecializedGenericImpl.scaleRV k v
        
        static member ( ~- )(v: RowVector<'T>)     = SpecializedGenericImpl.negRV v
        static member ( ~+ )(v: RowVector<'T>)     = v

        member m.GetSlice (start,finish) = 
            let start = match start with None -> 0 | Some v -> v
            let finish = match finish with None -> m.NumCols - 1 | Some v -> v 
            SpecializedGenericImpl.getRegionRV m (start,finish)

        member m.SetSlice (start,finish,vs:RowVector<_>) = 
            let start = match start with None -> 0 | Some v -> v 
            let finish = match finish with None -> m.NumCols - 1 | Some v -> v 
            for i = start to finish  do 
                   m.[i] <- vs.[i-start]

        override m.ToString() = GenericImpl.showRowVecGU "rowvec" m

        member m.DebugDisplay = 
            let txt = GenericImpl.showRowVecGU "rowvec" m
            new System.Text.StringBuilder(txt)  // return an object with a ToString with the right value, rather than a string. (strings get shown using quotes)

        member m.StructuredDisplayAsArray =  Array.init m.NumCols (fun i -> m.[i])

        member m.Details = m.Values

        member m.Transpose = SpecializedGenericImpl.transRV m
        
        member m.Permute (p:permutation) = SpecializedGenericImpl.permuteRV p m
      
        interface System.IComparable with 
            member m.CompareTo(y) = SpecializedGenericImpl.compareRV LanguagePrimitives.GenericComparer m (y :?> RowVector<'T>)
        
        interface IStructuralComparable with
            member m.CompareTo(y,comp) = SpecializedGenericImpl.compareRV comp m (y :?> RowVector<'T>)

        interface IStructuralEquatable with
            member x.GetHashCode(comp) = SpecializedGenericImpl.hashRV comp x
            member x.Equals(yobj,comp) = 
                match yobj with 
                | :? RowVector<'T> as rv2 -> SpecializedGenericImpl.equalsRV comp x rv2
                | _ -> false

        override x.GetHashCode() = 
            SpecializedGenericImpl.hashRV LanguagePrimitives.GenericEqualityComparer x

        override x.Equals(yobj) = 
            match yobj with 
            | :? RowVector<'T> as rv2 -> SpecializedGenericImpl.equalsRV LanguagePrimitives.GenericEqualityComparer x rv2
            | _ -> false

    type matrix = Matrix<float>
    type vector = Vector<float>
    type rowvec = RowVector<float>

    module MRandom = 
        let seed = 99
        let randomGen = new System.Random(seed)
        let float f = randomGen.NextDouble() * f 


    [<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>]
    module Matrix = begin
        
        module Generic = begin

            module MS = SpecializedGenericImpl

            // Accessors
            let get (a:Matrix<_>) i j   = a.[i,j]
            let set (a:Matrix<_>) i j x = a.[i,j] <- x
            
            // Creation
            let ofList    xss      = MS.listM  xss
            let ofSeq     xss      = MS.seqM  xss
            let init  m n f       = MS.initM  m n f
            let ofArray2D (arr: 'T[,])  : Matrix<'T>       = MS.arrayM arr
            let toArray2D (m:Matrix<_>) = Array2D.init m.NumRows m.NumCols (fun i j -> get m i j)
            let initNumeric m n f = MS.initNumericM m n f
            let zero m n            = MS.zeroM m n
            let identity m          = MS.identityM m
            let create  m n x       = MS.constM m n x

            let ofScalar   x        = MS.scalarM x

            let diag v              = MS.diagM v
            let initDiagonal v      = MS.diagM v
            let constDiag   n x     = MS.constDiagM n x
          
            // Operators
            let add a b = MS.addM a b
            let sub a b = MS.subM a b
            let mul a b = MS.mulM a b
            let mulRV a b = MS.mulRVM a b
            let mulV a b = MS.mulMV a b
            let cptMul a b = MS.cptMulM a b
            let cptMax a b = MS.cptMaxM a b
            let cptMin a b = MS.cptMinM a b
            let scale a b = MS.scaleM a b
            let dot a b = MS.dotM a b
            let neg a = MS.negM a 
            let trace a = MS.traceM a
            let sum a = MS.sumM a
            let prod a = MS.prodM a
            let norm a = MS.normM a
            let transpose a = MS.transM a
            let inplaceAdd a b = MS.inplaceAddM a b
            let inplaceSub a b = MS.inplaceSubM a b

            let exists  f a = MS.existsM  f a
            let forall  f a = MS.forallM  f a
            let existsi  f a = MS.existsiM  f a
            let foralli  f a = MS.foralliM  f a
            let map  f a = MS.mapM f a
            let copy a = MS.copyM a
            let mapi  f a = MS.mapiM f a
            let getDiagN  a n = MS.getDiagnM a n
            let getDiag  a = MS.getDiagnM a 0
            let toDense a = MS.toDenseM a 

            let initDense i j a = MS.initDenseM i j a 
            let initSparse i j a = MS.initSparseM i j a 

            let fold  f z a = MS.foldM f z a
            let foldi f z a = MS.foldiM f z a
          
            let compare a b = MS.compareM LanguagePrimitives.GenericComparer a b
            let hash a      = MS.hashM LanguagePrimitives.GenericEqualityComparer a
            let getRow    a i           = MS.getRowM a i
            let getCol    a j           = MS.selColM a j
            let getCols   a i1 i2       = MS.getColsM a (i1,i1+i2-1)
            let getRows   a j1 j2       = MS.getRowsM a (j1,j1+j2-1)
            let getRegion a i1 j1 i2 j2 = MS.getRegionM a (i1,i1+i2-1) (j1,j1+j2-1)
            
            let ofRowVector x = MS.rowvecM x
            let ofVector    x = MS.vectorM x
            let toVector    x = MS.toVectorM x
            let toRowVector x = MS.toRowVectorM x
            let toScalar    x = MS.toScalarM x

            let inplace_assign f a  = MS.inplaceAssignM  f a
            let inplace_cptMul a b = MS.inplaceCptMulM a b
            let inplace_scale a b = MS.inplaceScaleM a b
            let inplace_mapi  f a = MS.inplace_mapiM f a
            let of_rowvec x           = ofRowVector x
            let of_vector x           = ofVector x
            let to_vector x           = toVector x
            let to_rowvec x           = toRowVector x
            let to_scalar x           = toScalar x
            let inplace_add a b       = inplaceAdd a b
            let inplace_sub a b       = inplaceSub a b
            let of_scalar   x         = ofScalar x
            let of_list    xss        = ofList xss
            let of_seq     xss        = ofSeq xss
            let inline of_array2D arr = ofArray2D arr
            let inline to_array2D m   = toArray2D m
            let init_diagonal v       = initDiagonal v
            let to_dense a            = toDense a
            let init_dense i j a      = initDense i j a
            let init_sparse i j a     = initSparse i j a
            let nonzero_entries a     = MS.nonZeroEntriesM a 
         
        end

        module MG = Generic
        module DS = DoubleImpl
        module GU = GenericImpl
        module MS = SpecializedGenericImpl

        // Element type OpsData
        type elem = float

        // Accessors
        let get (a:matrix) i j   = MG.get a i j
        let set (a:matrix) i j x = MG.set a i j x
        
        // Creation
        let init  m n f = DS.initDenseMatrixDS  m n f |> MS.dense 
        let ofList    xss   = DS.listDenseMatrixDS    xss |> MS.dense
        let ofSeq     xss   = DS.seqDenseMatrixDS    xss |> MS.dense
        let diag  (v:vector)   = MG.diag v 
        let initDiagonal  (v:vector)   = MG.diag v 
        let constDiag  n x : matrix  = MG.constDiag n x 
        let create  m n x  = DS.constDenseMatrixDS  m n x |> MS.dense
        let ofScalar x     = DS.scalarDenseMatrixDS x |> MS.dense

        let ofArray2D arr : matrix = MG.ofArray2D arr
        let toArray2D (m : matrix) = MG.toArray2D m

        let getDiagN  (a:matrix) n = MG.getDiagN a n
        let getDiag  (a:matrix) = MG.getDiag a

        // Operators
        let add (a:matrix) (b:matrix) = MS.addM   a b
        let sub (a:matrix) (b:matrix) = MS.subM   a b
        let mul (a:matrix) (b:matrix) = MS.mulM   a b
        let mulV (a:matrix) (b:vector) = MS.mulMV   a b
        let mulRV (a:rowvec) (b:matrix) = MS.mulRVM   a b
        let cptMul (a:matrix) (b:matrix) = MS.cptMulM   a b
        let cptMax (a:matrix) (b:matrix) = MS.cptMaxM a b
        let cptMin (a:matrix) (b:matrix) = MS.cptMinM a b
        let scale a (b:matrix) = MS.scaleM   a b
        let neg (a:matrix)  = MS.negM a
        let trace (a:matrix)  = MS.traceM a
        let transpose  (a:matrix) = MG.transpose a
        let forall f (a:matrix) = MG.forall f a
        let exists  f (a:matrix) = MG.exists f a
        let foralli f (a:matrix) = MG.foralli f a
        let existsi  f (a:matrix) = MG.existsi f a
        let map  f (a:matrix) = MG.map f a
        let copy  (a:matrix) = MG.copy a
        let mapi  f (a:matrix) : matrix = MG.mapi f a
        let fold  f z (a:matrix) = MG.fold f z a
        let foldi  f z (a:matrix) = MG.foldi f z a

        let toDense (a:matrix) = MG.toDense a 
        let initDense i j a : matrix = MG.initDense i j a 
        let initSparse i j a : matrix = MG.initSparse i j a 
        let nonzero_entries (a:matrix) = MG.nonzero_entries a 

        let zero m n  = DS.zeroDenseMatrixDS m n |> MS.dense
        let identity m  : matrix = MG.identity m 
        
        let ones m n  = create m n 1.0
        
        let getRow (a:matrix) i      = MG.getRow a i
        let getCol (a:matrix) j      = MG.getCol a j
        let getCols (a:matrix) i1 i2    = MG.getCols a i1 i2
        let getRows (a:matrix) j1 j2    = MG.getRows a j1 j2
        let getRegion (a:matrix) i1 j1 i2 j2    = MG.getRegion a i1 j1 i2 j2

        let rowRange (a:Matrix<_>) = (0,a.NumRows - 1)
        let colRange (a:Matrix<_>) = (0,a.NumCols - 1)
        let wholeRegion a = (colRange a, rowRange a)
        
        let foldByRow f (z:Vector<'T>) (a:matrix) = 
          colRange a |> GU.foldR (fun z j -> MS.mapiV (fun i z -> f z (get a i j)) z) z
        let foldByCol f (z:RowVector<'T>) (a:matrix) = 
          rowRange a |> GU.foldR (fun z i -> MS.mapiRV (fun j z -> f z (get a i j)) z) z

        let foldRow f (z:'T) (a:matrix) i = 
          colRange a |> GU.foldR (fun (z:'T) j -> f z (get a i j)) z
        let foldCol f (z:'T) (a:matrix) j = 
          rowRange a |> GU.foldR (fun (z:'T) i -> f z (get a i j)) z

        let sum (a:matrix)  = MS.sumM a
        let prod (a:matrix)  = MS.prodM a
        let norm  (a:matrix) = MS.normM  a
        let dot (a:matrix) b = MS.dotM a b

        let cptPow  a y = map (fun x -> x ** y) a
        
        // Functions that only make sense on this type
        let randomize v = map (fun vij -> MRandom.float vij) v      (* res_ij = random [0,vij] values *)

        let ofRowVector x : matrix = MS.rowvecM x
        let ofVector    x : matrix = MS.vectorM x
        let toVector    x : vector = MS.toVectorM x
        let toRowVector x : rowvec = MS.toRowVectorM x
        let toScalar    x : float  = MS.toScalarM x

        let inplaceAdd  (a:matrix) b = MS.inplaceAddM a b
        let inplaceSub  (a:matrix) b = MS.inplaceSubM a b

        // Mutation
        let inplace_assign  f (a:matrix) = MG.inplace_assign f a
        let inplace_mapi  f (a:matrix) = MG.inplace_mapi f a
        let inplace_cptMul (a:matrix) b = MS.inplaceCptMulM a b
        let inplace_scale  a (b:matrix) = MS.inplaceScaleM a b

        let inplace_add  a b = inplaceAdd a b
        let inplace_sub  a b = inplaceSub a b
        let of_rowvec x = ofRowVector x
        let of_vector x = ofVector x
        let to_vector x = toVector x
        let to_rowvec x = toRowVector x
        let to_scalar x = toScalar x
        let inline of_array2D arr  = ofArray2D arr
        let inline to_array2D m = toArray2D m
        let of_list    xss   = ofList xss
        let of_seq     xss   = ofSeq xss
        let init_diagonal v   = initDiagonal   v
        let of_scalar x     = ofScalar x
        let to_dense x = toDense x
        let init_dense i j a = initDense i j a
        let init_sparse i j a = initSparse i j a


    end


//----------------------------------------------------------------------------
// module Vector
//--------------------------------------------------------------------------*)
      
    [<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>]
    module Vector = 

        module Generic = 

            module OpsS = SpecializedGenericImpl

            let get (a:Vector<_>) i   = a.[i]
            let set (a:Vector<_>) i x = a.[i] <- x
            let length (v:Vector<_>) = v.Length
            let ofList    xss   = OpsS.listV xss
            let ofSeq    xss   = OpsS.seqV xss
            let init  m   f = OpsS.initV m f
            let initNumeric  m   f = OpsS.createNumericV m f
            let ofArray arr       = OpsS.arrayV arr
            let toArray (v:Vector<_>) = Array.init v.Length (get v)

            let create  m x   = OpsS.constV m x
            let zero n = OpsS.zeroV n
            let ones n = OpsS.createNumericV n (fun ops _ -> ops.One)
            let ofScalar   x = OpsS.scalarV x
            let add a b = OpsS.addV a b
            let sub a b = OpsS.subV a b
            let mulRVV a b = OpsS.mulRVV a b
            let mulVRV a b = OpsS.mulVRV a b
            let cptMul a b = OpsS.cptMulV a b
            let cptMax a b = OpsS.cptMaxV a b
            let cptMin a b = OpsS.cptMinV a b
            let scale a b = OpsS.scaleV a b
            let dot a b = OpsS.dotV a b
            let neg a = OpsS.negV a 
            let transpose a = OpsS.transV a 
            let inplaceAdd a b = OpsS.inplaceAddV a b
            let inplaceSub a b = OpsS.inplaceSubV a b
            let inplace_cptMul a b = OpsS.inplaceCptMulV a b
            let inplace_scale a b = OpsS.inplaceScaleV a b



            let exists  f a = OpsS.existsV  f a
            let forall  f a = OpsS.forallV  f a
            let existsi  f a = OpsS.existsiV  f a
            let foralli  f a = OpsS.foralliV  f a
            let map  f a = OpsS.mapV f a
            let mapi f a = OpsS.mapiV f a
            let copy a = OpsS.copyV a
            let inplace_mapi  f a = OpsS.inplace_mapiV f a
            let fold  f z a = OpsS.foldV f z a
            let foldi  f z a = OpsS.foldiV f z a
            let compare a b = OpsS.compareV a b
            let hash a = OpsS.hashV a
            let inplace_assign  f a = OpsS.assignV f a
            let sum  (a:Vector<_>) = let ops = a.ElementOps in fold (fun x y -> ops.Add(x,y)) ops.Zero a
            let prod (a:Vector<_>) = let ops = a.ElementOps in fold (fun x y -> ops.Multiply(x,y)) ops.One a
            let norm (a:Vector<_>) = 
                let normOps = GenericImpl.getNormOps a.ElementOps 
                sqrt (fold (fun x y -> x + normOps.Norm(y)**2.0) 0.0 a)

            let of_list    xss  = ofList xss
            let of_seq    xss   = ofSeq xss
            let of_array arr    = ofArray arr
            let to_array v      = toArray v
            let of_scalar   x   = ofScalar x
            let inplace_add a b = inplaceAdd a b
            let inplace_sub a b = inplaceSub a b

        module VG = Generic
        module VecDS = DoubleImpl
        module VecGU = GenericImpl

        let get (a:vector) j   = VG.get a j 
        let set (a:vector) j x = VG.set a j x
        let length (a:vector)     = VG.length a
        let nrows (a:vector)   = VG.length a
        let init  m   f = VecDS.createVecDS  m   f
        let ofArray arr : vector = VG.ofArray arr
        let toArray (m : vector) = VG.toArray m

        type range = int * int
        let countR ((a,b) : range)   = (b-a)+1
        let idxR    ((a,_) : range) i = a+i
        type rangef = float * float * float // start, skip, end
        let countRF ((a,d,b) : rangef)   = System.Convert.ToInt32((b-a)/d) + 1
        //let countRF ((a,d,b) : rangef)   = Float.to_int((b-a)/d) + 1
        let idxRF  ((a,d,b) : rangef) i = System.Math.Min (a + d * float(i),b)

        let range n1 n2    = let r = (n1,n2)   in init (countR  r) (fun i -> float(idxR r i)) 

        let rangef a b c  = let r = (a,b,c) in init (countRF r) (fun i -> idxRF r i)

        let ofList    xs    = VecDS.listVecDS    xs
        let ofSeq    xs    = VecDS.seqVecDS    xs
        let create  m   x  = VecDS.constVecDS  m   x
        let ofScalar x     = VecDS.scalarVecDS x
        let add a b = VecDS.addVecDS   a b
        let sub a b = VecDS.subVecDS   a b
        let mulRVV a b = VecDS.mulRowVecVecDS   a b
        let mulVRV a b = VecDS.mulVecRowVecDS   a b 
        let cptMul a b = VecDS.cptMulVecDS   a b
        let cptMax a b = VecDS.cptMaxVecDS a b
        let cptMin a b = VecDS.cptMinVecDS a b
        let scale a b = VecDS.scaleVecDS   a b
        let neg a  = VecDS.negVecDS a
        let dot a b = VecDS.dotVecDS a b
        let transpose  (a:vector) = VG.transpose a
        let exists  f (a:vector) = VG.exists f a
        let forall  f (a:vector) = VG.forall f a
        let existsi  f (a:vector) = VG.existsi f a
        let foralli  f (a:vector) = VG.foralli f a
        let map  f (a:vector) = VG.map f a
        let copy (a:vector) = VG.copy a
        let mapi  f (a:vector) : vector = VG.mapi f a
        let fold  f z (a:vector) = VG.fold f z a
        let foldi  f z (a:vector) = VG.foldi f z a
        let zero n = create n 0.0
        let ones n = create n 1.0
        let sum a  = VecDS.sumVecDS a
        let prod a   = fold      (fun x y -> x * y) 1.0 a
        let norm  (a:vector) = sqrt (fold (fun x y -> x + y * y) 0.0 a) (* fixed *)
        let cptPow  a y = map  (fun x -> x ** y) a
        let inplace_assign  f (a:vector) = VG.inplace_assign f a
        let inplace_mapi f (a:vector) = VG.inplace_mapi f a
        let inplace_add a b = VecDS.inplaceAddVecDS a b
        let inplace_sub a b = VecDS.inplaceSubVecDS a b
        let inplace_cptMul a b = VecDS.inplaceCptMulVecDS a b
        let inplace_scale a b = VecDS.inplaceScaleVecDS a b  

        let of_array arr   = ofArray arr
        let to_array m     = toArray m
        let of_list    xs  = ofList xs
        let of_seq    xs   = ofSeq xs
        let of_scalar x    = ofScalar x



//----------------------------------------------------------------------------
// module RowVector
//--------------------------------------------------------------------------*)

    [<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>]
    module RowVector = 

        module Generic = 

            module OpsS = SpecializedGenericImpl

            let get (a:RowVector<_>) i          = a.[i]
            let set (a:RowVector<_>) i x        = a.[i] <- x
            let zero n           = OpsS.zeroRV n
            let length (v:RowVector<_>) = v.Length
            let init m   f       = OpsS.initRV m   f
            let create  m x      = OpsS.constRV m x
            let transpose a      = OpsS.transRV a
            let copy a           = OpsS.copyRV a
            let ofList a         = OpsS.listRV a
            let ofArray a        = OpsS.arrayRV a
            let ofSeq a          = OpsS.seqRV a
            let toArray m        = Array.init (length m) (get m)

            let of_list a        = ofList a
            let of_array a       = ofArray a
            let of_seq a         = ofSeq a
            let to_array m       = toArray m


        module RVG = Generic

        let get (a:rowvec) i   = RVG.get a i 
        let set (a:rowvec) i x = RVG.set a i x
        let length (a:rowvec)  = RVG.length a
        let ncols (a:rowvec)   = RVG.length a
        let ofArray arr : rowvec = RVG.ofArray arr
        let toArray (m : rowvec) = RVG.toArray m
        
        let init m   f : rowvec      = RVG.init m   f
        let create m   f : rowvec    = RVG.create m   f
        let zero n = create n 0.0
        let ofList x : rowvec       = RVG.ofList x
        let ofSeq x : rowvec       = RVG.ofSeq x
        let transpose x : vector     = RVG.transpose x
        let copy x : rowvec          = RVG.copy x

        let of_list x    = ofList x
        let of_seq x     = ofSeq x
        let of_array arr = ofArray arr
        let to_array m   = toArray m


    type Matrix<'T> with 
        member x.ToArray2()        = Matrix.Generic.toArray2D x
        member x.ToArray2D()        = Matrix.Generic.toArray2D x

#if FX_NO_DEBUG_DISPLAYS
#else
        [<DebuggerBrowsable(DebuggerBrowsableState.Collapsed)>]
#endif

        member x.NonZeroEntries    = Matrix.Generic.nonzero_entries x
        member x.ToScalar()        = Matrix.Generic.toScalar x
        member x.ToRowVector()     = Matrix.Generic.toRowVector x               
        member x.ToVector()        = Matrix.Generic.toVector x

#if FX_NO_DEBUG_DISPLAYS
#else
        [<DebuggerBrowsable(DebuggerBrowsableState.Collapsed)>]
#endif
        member x.Norm              = Matrix.Generic.norm x

        member x.Column(n)         = Matrix.Generic.getCol x n
        member x.Row(n)            = Matrix.Generic.getRow x n
        member x.Columns (i,ni)    = Matrix.Generic.getCols x i ni
        member x.Rows (j,nj)       = Matrix.Generic.getRows x j nj
        member x.Region(i,j,ni,nj) = Matrix.Generic.getRegion x i j ni nj
        member x.GetDiagonal(i)    = Matrix.Generic.getDiagN x i

#if FX_NO_DEBUG_DISPLAYS
#else
        [<DebuggerBrowsable(DebuggerBrowsableState.Collapsed)>]
#endif
        member x.Diagonal          = Matrix.Generic.getDiag x

        member x.Copy () = Matrix.Generic.copy x


    type Vector<'T> with 
        member x.ToArray() = Vector.Generic.toArray x
        member x.Norm      = Vector.Generic.norm x
        member x.Copy ()   = Vector.Generic.copy x


    type RowVector<'T> with 
        member x.ToArray() = RowVector.Generic.toArray x
        member x.Copy ()   = RowVector.Generic.copy x


    module MatrixTopLevelOperators = 

        let matrix ll = Matrix.ofSeq ll
        let vector l  = Vector.ofSeq  l
        let rowvec l  = RowVector.ofSeq l