1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
// (c) Microsoft Corporation. All rights reserved
#nowarn "44" // OK to use the "compiler only" function RangeGeneric
#nowarn "52" // The value has been copied to ensure the original is not mutated by this operation
namespace Microsoft.FSharp.Math
open System
open System.Numerics
open System.Globalization
module BigRationalLargeImpl =
let ZeroI = new BigInteger(0)
let OneI = new BigInteger(1)
let bigint (x:int) = new BigInteger(x)
let ToDoubleI (x:BigInteger) = double x
let ToInt32I (x:BigInteger) = int32 x
open BigRationalLargeImpl
[<CustomEquality; CustomComparison>]
type BigRationalLarge =
| Q of BigInteger * BigInteger // invariants: (p,q) in lowest form, q >= 0
override n.ToString() =
let (Q(p,q)) = n
if q.IsOne then p.ToString()
else p.ToString() + "/" + q.ToString()
static member Hash (Q(ap,aq)) =
// This hash code must be identical to the hash for BigInteger when the numbers coincide.
if aq.IsOne then ap.GetHashCode() else (ap.GetHashCode() <<< 3) + aq.GetHashCode()
override x.GetHashCode() = BigRationalLarge.Hash(x)
static member Equals(Q(ap,aq), Q(bp,bq)) =
BigInteger.(=) (ap,bp) && BigInteger.(=) (aq,bq) // normal form, so structural equality
static member LessThan(Q(ap,aq), Q(bp,bq)) =
BigInteger.(<) (ap * bq,bp * aq)
// note: performance improvement possible here
static member Compare(p,q) =
if BigRationalLarge.LessThan(p,q) then -1
elif BigRationalLarge.LessThan(q,p)then 1
else 0
interface System.IComparable with
member this.CompareTo(obj:obj) =
match obj with
| :? BigRationalLarge as that -> BigRationalLarge.Compare(this,that)
| _ -> invalidArg "obj" "the object does not have the correct type"
override this.Equals(that:obj) =
match that with
| :? BigRationalLarge as that -> BigRationalLarge.Equals(this,that)
| _ -> false
member x.IsNegative = let (Q(ap,_)) = x in sign ap < 0
member x.IsPositive = let (Q(ap,_)) = x in sign ap > 0
member x.Numerator = let (Q(p,_)) = x in p
member x.Denominator = let (Q(_,q)) = x in q
member x.Sign = (let (Q(p,_)) = x in sign p)
static member ToDouble (Q(p,q)) =
ToDoubleI p / ToDoubleI q
static member Normalize (p:BigInteger,q:BigInteger) =
if q.IsZero then
raise (System.DivideByZeroException()) (* throw for any x/0 *)
elif q.IsOne then
Q(p,q)
else
let k = BigInteger.GreatestCommonDivisor(p,q)
let p = p / k
let q = q / k
if sign q < 0 then Q(-p,-q) else Q(p,q)
static member Rational (p:int,q:int) = BigRationalLarge.Normalize (bigint p,bigint q)
static member RationalZ (p,q) = BigRationalLarge.Normalize (p,q)
static member Parse (str:string) =
let len = str.Length
if len=0 then invalidArg "str" "empty string";
let j = str.IndexOf '/'
if j >= 0 then
let p = BigInteger.Parse (str.Substring(0,j))
let q = BigInteger.Parse (str.Substring(j+1,len-j-1))
BigRationalLarge.RationalZ (p,q)
else
let p = BigInteger.Parse str
BigRationalLarge.RationalZ (p,OneI)
static member (~-) (Q(bp,bq)) = Q(-bp,bq) // still coprime, bq >= 0
static member (+) (Q(ap,aq),Q(bp,bq)) = BigRationalLarge.Normalize ((ap * bq) + (bp * aq),aq * bq)
static member (-) (Q(ap,aq),Q(bp,bq)) = BigRationalLarge.Normalize ((ap * bq) - (bp * aq),aq * bq)
static member (*) (Q(ap,aq),Q(bp,bq)) = BigRationalLarge.Normalize (ap * bp,aq * bq)
static member (/) (Q(ap,aq),Q(bp,bq)) = BigRationalLarge.Normalize (ap * bq,aq * bp)
static member ( ~+ )(n1:BigRationalLarge) = n1
[<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>]
module BigRationalLarge =
open System.Numerics
let inv (Q(ap,aq)) = BigRationalLarge.Normalize(aq,ap)
let pown (Q(p,q)) (n:int) = Q(BigInteger.Pow(p,n),BigInteger.Pow (q,n)) // p,q powers still coprime
let equal (Q(ap,aq)) (Q(bp,bq)) = ap=bp && aq=bq // normal form, so structural equality
let lt a b = BigRationalLarge.LessThan(a,b)
let gt a b = BigRationalLarge.LessThan(b,a)
let lte (Q(ap,aq)) (Q(bp,bq)) = BigInteger.(<=) (ap * bq,bp * aq)
let gte (Q(ap,aq)) (Q(bp,bq)) = BigInteger.(>=) (ap * bq,bp * aq)
let of_bigint z = BigRationalLarge.RationalZ(z,OneI )
let of_int n = BigRationalLarge.Rational(n,1)
// integer part
let integer (Q(p,q)) =
let mutable r = BigInteger(0)
let d = BigInteger.DivRem (p,q,&r) // have p = d.q + r, |r| < |q|
if r < ZeroI
then d - OneI // p = (d-1).q + (r+q)
else d // p = d.q + r
//----------------------------------------------------------------------------
// BigRational
//--------------------------------------------------------------------------
[<CustomEquality; CustomComparison>]
[<StructuredFormatDisplay("{StructuredDisplayString}N")>]
type BigRational =
| Z of BigInteger
| Q of BigRationalLarge
static member ( + )(n1,n2) =
match n1,n2 with
| Z z ,Z zz -> Z (z + zz)
| Q q ,Q qq -> Q (q + qq)
| Z z ,Q qq -> Q (BigRationalLarge.of_bigint z + qq)
| Q q ,Z zz -> Q (q + BigRationalLarge.of_bigint zz)
static member ( * )(n1,n2) =
match n1,n2 with
| Z z ,Z zz -> Z (z * zz)
| Q q ,Q qq -> Q (q * qq)
| Z z ,Q qq -> Q (BigRationalLarge.of_bigint z * qq)
| Q q ,Z zz -> Q (q * BigRationalLarge.of_bigint zz)
static member ( - )(n1,n2) =
match n1,n2 with
| Z z ,Z zz -> Z (z - zz)
| Q q ,Q qq -> Q (q - qq)
| Z z ,Q qq -> Q (BigRationalLarge.of_bigint z - qq)
| Q q ,Z zz -> Q (q - BigRationalLarge.of_bigint zz)
static member ( / )(n1,n2) =
match n1,n2 with
| Z z ,Z zz -> Q (BigRationalLarge.RationalZ(z,zz))
| Q q ,Q qq -> Q (q / qq)
| Z z ,Q qq -> Q (BigRationalLarge.of_bigint z / qq)
| Q q ,Z zz -> Q (q / BigRationalLarge.of_bigint zz)
static member ( ~- )(n1) =
match n1 with
| Z z -> Z (-z)
| Q q -> Q (-q)
static member ( ~+ )(n1:BigRational) = n1
// nb. Q and Z hash codes must match up - see notes above
override n.GetHashCode() =
match n with
| Z z -> z.GetHashCode()
| Q q -> q.GetHashCode()
override this.Equals(obj:obj) =
match obj with
| :? BigRational as that -> BigRational.(=)(this, that)
| _ -> false
interface System.IComparable with
member n1.CompareTo(obj:obj) =
match obj with
| :? BigRational as n2 ->
if BigRational.(<)(n1, n2) then -1 elif BigRational.(=)(n1, n2) then 0 else 1
| _ -> invalidArg "obj" "the objects are not comparable"
static member FromInt (x:int) = Z (bigint x)
static member FromBigInt x = Z x
static member Zero = BigRational.FromInt(0)
static member One = BigRational.FromInt(1)
static member PowN (n,i:int) =
match n with
| Z z -> Z (BigInteger.Pow (z,i))
| Q q -> Q (BigRationalLarge.pown q i)
static member op_Equality (n,nn) =
match n,nn with
| Z z ,Z zz -> BigInteger.(=) (z,zz)
| Q q ,Q qq -> (BigRationalLarge.equal q qq)
| Z z ,Q qq -> (BigRationalLarge.equal (BigRationalLarge.of_bigint z) qq)
| Q q ,Z zz -> (BigRationalLarge.equal q (BigRationalLarge.of_bigint zz))
static member op_Inequality (n,nn) = not (BigRational.op_Equality(n,nn))
static member op_LessThan (n,nn) =
match n,nn with
| Z z ,Z zz -> BigInteger.(<) (z,zz)
| Q q ,Q qq -> (BigRationalLarge.lt q qq)
| Z z ,Q qq -> (BigRationalLarge.lt (BigRationalLarge.of_bigint z) qq)
| Q q ,Z zz -> (BigRationalLarge.lt q (BigRationalLarge.of_bigint zz))
static member op_GreaterThan (n,nn) =
match n,nn with
| Z z ,Z zz -> BigInteger.(>) (z,zz)
| Q q ,Q qq -> (BigRationalLarge.gt q qq)
| Z z ,Q qq -> (BigRationalLarge.gt (BigRationalLarge.of_bigint z) qq)
| Q q ,Z zz -> (BigRationalLarge.gt q (BigRationalLarge.of_bigint zz))
static member op_LessThanOrEqual (n,nn) =
match n,nn with
| Z z ,Z zz -> BigInteger.(<=) (z,zz)
| Q q ,Q qq -> (BigRationalLarge.lte q qq)
| Z z ,Q qq -> (BigRationalLarge.lte (BigRationalLarge.of_bigint z) qq)
| Q q ,Z zz -> (BigRationalLarge.lte q (BigRationalLarge.of_bigint zz))
static member op_GreaterThanOrEqual (n,nn) =
match n,nn with
| Z z ,Z zz -> BigInteger.(>=) (z,zz)
| Q q ,Q qq -> (BigRationalLarge.gte q qq)
| Z z ,Q qq -> (BigRationalLarge.gte (BigRationalLarge.of_bigint z) qq)
| Q q ,Z zz -> (BigRationalLarge.gte q (BigRationalLarge.of_bigint zz))
member n.IsNegative =
match n with
| Z z -> sign z < 0
| Q q -> q.IsNegative
member n.IsPositive =
match n with
| Z z -> sign z > 0
| Q q -> q.IsPositive
member n.Numerator =
match n with
| Z z -> z
| Q q -> q.Numerator
member n.Denominator =
match n with
| Z _ -> OneI
| Q q -> q.Denominator
member n.Sign =
if n.IsNegative then -1
elif n.IsPositive then 1
else 0
static member Abs(n:BigRational) =
if n.IsNegative then -n else n
static member ToDouble(n:BigRational) =
match n with
| Z z -> ToDoubleI z
| Q q -> BigRationalLarge.ToDouble q
static member ToBigInt(n:BigRational) =
match n with
| Z z -> z
| Q q -> BigRationalLarge.integer q
static member ToInt32(n:BigRational) =
match n with
| Z z -> ToInt32I(z)
| Q q -> ToInt32I(BigRationalLarge.integer q )
static member op_Explicit (n:BigRational) = BigRational.ToInt32 n
static member op_Explicit (n:BigRational) = BigRational.ToDouble n
static member op_Explicit (n:BigRational) = BigRational.ToBigInt n
override n.ToString() =
match n with
| Z z -> z.ToString()
| Q q -> q.ToString()
member x.StructuredDisplayString = x.ToString()
static member Parse(s:string) = Q (BigRationalLarge.Parse s)
type BigNum = BigRational
type bignum = BigNum
module NumericLiteralN =
let FromZero () = BigRational.Zero
let FromOne () = BigRational.One
let FromInt32 i = BigRational.FromInt i
let FromInt64 (i64:int64) = BigRational.FromBigInt (new BigInteger(i64))
let FromString s = BigRational.Parse s
|