1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
|
// #Conformance #ObjectConstructors
#if ALL_IN_ONE
module Core_longnames
#endif
let failures = ref []
let report_failure (s : string) =
stderr.Write" NO: "
stderr.WriteLine s
failures := !failures @ [s]
let test (s : string) b =
stderr.Write(s)
if b then stderr.WriteLine " OK"
else report_failure (s)
let check s b1 b2 = test s (b1 = b2)
#if NetCore
#else
let argv = System.Environment.GetCommandLineArgs()
let SetCulture() =
if argv.Length > 2 && argv.[1] = "--culture" then begin
let cultureString = argv.[2] in
let culture = new System.Globalization.CultureInfo(cultureString) in
stdout.WriteLine ("Running under culture "+culture.ToString()+"...");
System.Threading.Thread.CurrentThread.CurrentCulture <- culture
end
do SetCulture()
#endif
(* Some test expressions *)
(* Can we access an F# constructor via a long path *)
let v0 = Microsoft.FSharp.Core.Some("")
let v0b = Microsoft.FSharp.Core.Option.Some("")
let v0c = Microsoft.FSharp.Core.option.Some("")
(* Can we access an F# nullary constructor via a long path *)
let v1 = (Microsoft.FSharp.Core.None : int option)
let v1b = (Microsoft.FSharp.Core.Option.None : int option)
let v1c = (Microsoft.FSharp.Core.option.None : int option)
(* Can we access an F# type name via a long path *)
let v2 = (None : int Microsoft.FSharp.Core.Option)
(* Can we access an F# field name via a long path *)
let v3 = { Microsoft.FSharp.Core.contents = 1 }
let v3b = { Microsoft.FSharp.Core.Ref.contents = 1 }
let v3c = { Microsoft.FSharp.Core.ref.contents = 1 }
let v3d = { contents = 1 }
let v3e = { Ref.contents = 1 }
let v3f = { ref.contents = 1 }
let v3g = { Core.contents = 1 }
let v3h = { Core.Ref.contents = 1 }
let v3i = { Core.ref.contents = 1 }
(* Can we construct a "ref" value *)
let v4 = ref 1
(* Can we access an F# exception constructor via a long path *)
let v5 = (Microsoft.FSharp.Core.MatchFailureException("1",2,2) : exn)
(* Can we construct a "lazy" value *)
let v6 = lazy 1
(* Can we pattern match against a constructor specified via a long path *)
let v7 =
match v0 with
| Microsoft.FSharp.Core.Some(x) -> x
| _ -> failwith ""
let v7b2 =
match v0 with
| option.Some(x) -> x
| _ -> failwith ""
let v7b3 =
match v0 with
| Option.Some(x) -> x
| _ -> failwith ""
let v7b =
match v0 with
| Microsoft.FSharp.Core.option.Some(x) -> x
| _ -> failwith ""
let v7c =
match v0 with
| Microsoft.FSharp.Core.Option.Some(x) -> x
| _ -> failwith ""
(* Can we pattern match against a nullary constructor specified via a long path *)
let v8 =
match v1 with
| Microsoft.FSharp.Core.None -> 1
| _ -> failwith ""
let v8b =
match v1 with
| Microsoft.FSharp.Core.Option.None -> 1
| _ -> failwith ""
let v8c =
match v1 with
| Microsoft.FSharp.Core.option.None -> 1
| _ -> failwith ""
(* Can we pattern match against an exception constructor specified via a long path *)
let v9 =
match v5 with
| Microsoft.FSharp.Core.MatchFailureException _ -> 1
| _ -> 2
(* Can we access an F# constructor via a long path *)
let v10 = Microsoft.FSharp.Core.Some(1)
(* Can we pattern match against a constructor specified via a long path *)
let v11 =
match v10 with
| Microsoft.FSharp.Core.Some(x) -> x
| _ -> failwith ""
let v12 =
match v10 with
| Microsoft.FSharp.Core.Some(x) -> x
| _ -> failwith ""
let v13 = Microsoft.FSharp.Core.Some(1)
#if Portable
#else
(* check lid setting bug *)
open System.Diagnostics
let doubleLidSetter () =
let p : Process = new Process() in
p.StartInfo.set_FileName("child.exe"); // OK
p.StartInfo.FileName <- "child.exe"; // was not OK, now fixed
()
#endif
module NameResolutionExample1Bug1218 = begin
type S =
| A
| B
with
static member C = "ONE"
end
type U = class
[<DefaultValue>]
static val mutable private d : int
static member D with get() = U.d and set v = U.d <- v
end
type s =
| S
| U
with
member x.A = 1
member x.C = 1
member x.D = "1"
end
let _ = (S.A : S) // the type constraint proves that this currently resolves to type S, constructor A
let _ = (S.C : string) // the type constraint proves that this currently resolves to type S, property C
let _ = (U.D : int) // the type constraint proves that this currently resolves to type S, static value D
end
module NameResolutionExample2Bug1218 = begin
type S =
| A
| B
type s = class
new () = { }
member x.A = 1
end
let S : s = new s()
let _ = (S.A : int) // the type constraint proves that this currently resolves to value S, member A, i.e. value lookups take precedence over types
let _ = (fun (S : s) -> S.A : int) // the type constraint proves that this currently resolves to value S, member A, i.e. value lookups take precedence over types
end
module LookupStaticFieldInType = begin
type TypeInfoResult =
| Unknown = 0
// .NET reference types
| Null_CanArise_Allowed_NotTrueValue = 1
// F# types with [<PermitNull>]
| Null_CanArise_Allowed_TrueValue = 2
// F# types
| Null_CanArise_NotAllowed = 3
// structs
| Null_Never = 4
type TypeInfo<'a>() = class
[<DefaultValue>]
static val mutable private info : TypeInfoResult
static member TypeInfo
with get() =
if TypeInfo<'a>.info = TypeInfoResult.Unknown then (
let nullness =
let ty = typeof<'a> in
if ty.IsValueType
then TypeInfoResult.Null_Never else
let mappingAttrs = ty.GetCustomAttributes(typeof<CompilationMappingAttribute>,false) in
if mappingAttrs.Length = 0
then TypeInfoResult.Null_CanArise_Allowed_NotTrueValue
else
let reprAttrs = ty.GetCustomAttributes(typeof<CompilationRepresentationAttribute>,false) in
if reprAttrs.Length = 0
then TypeInfoResult.Null_CanArise_NotAllowed
else
let reprAttr = reprAttrs.[0] in
let reprAttr = (failwith "" : CompilationRepresentationAttribute ) in
if true
then TypeInfoResult.Null_CanArise_NotAllowed
else TypeInfoResult.Null_CanArise_Allowed_TrueValue in
// The lookup on this line was failing to resolve
TypeInfo<'a>.info <- nullness
);
TypeInfo<'a>.info
end
end
module TestsForUsingTypeNamesAsValuesWhenTheTypeHasAConstructor = begin
// All the tests in this file relate to FSharp 1.0 bug 4379: Testing fix name resolution is weird when T constructor shadows method of same name
module Test0 = begin
let x = obj()
let foo x = x + 1
type foo() = class end
let y = foo() // still does not compile, and this is not shadowing!
let x2 = ref 1
end
module Test1 = begin
let _ = Set<int> [3;4;5]
let _ = Set [3;4;5]
end
module Test2 = begin
type Set() = class
let x = 1
static member Foo = 1
end
type Set<'T,'Tag>() = class
let x = 1
static member Foo = 1
end
let _ = Set()
//Set<>()
let _ = Set<_> [3;4;5]
let _ = Set<int,int>()
let _ = Set<int,int>.Foo
//let x : obj list = [ 1;2;3;4]
end
module Test3a = begin
let f() =
float 1.0 |> ignore;
decimal 1.0 |> ignore;
float32 1.0 |> ignore;
sbyte 1.0 |> ignore;
byte 1.0 |> ignore;
int16 1.0 |> ignore;
uint16 1.0 |> ignore;
int32 1.0 |> ignore;
int64 1.0 |> ignore;
uint32 1.0 |> ignore;
uint64 1.0 |> ignore;
string 1.0 |> ignore;
unativeint 1.0 |> ignore;
nativeint 1.0 |> ignore
end
module Test3b = begin
open Microsoft.FSharp.Core
let f() =
float 1.0 |> ignore;
decimal 1.0 |> ignore;
float32 1.0 |> ignore;
sbyte 1.0 |> ignore;
byte 1.0 |> ignore;
int16 1.0 |> ignore;
uint16 1.0 |> ignore;
int32 1.0 |> ignore;
int64 1.0 |> ignore;
uint32 1.0 |> ignore;
uint64 1.0 |> ignore;
string 1.0 |> ignore;
unativeint 1.0 |> ignore;
nativeint 1.0 |> ignore;
end
module Test3c = begin
open Microsoft.FSharp.Core.Operators
open Microsoft.FSharp.Core
let x3 = float 1.0
end
module Test3d = begin
open System
// This is somewhat perversely using the type name 'decimal' as a constructor, but it is legal
let x3 = Decimal 1.0
let x4 = decimal 1.0
end
module Test3e = begin
let x3 = System.Decimal 1.0
let x4 = decimal 1.0
end
module Test3f = begin
// This is somewhat perversely using the type name 'decimal' as a constructor, but it is legal
Microsoft.FSharp.Core.decimal 1.0 |> ignore;
// This is somewhat perversely using the type name 'string' as a constructor
Microsoft.FSharp.Core.string ('3',100) |> ignore
end
module Test7 = begin
open System
let x3 = Decimal 1.0
let x4 = decimal 1.0
end
module TestValuesGetAddedAfterTypes = begin
module M = begin
type string = System.String
let string (x:int,y:int) = "1"
end
open M
let x = string (1,1)
end
module TestValuesGetAddedAfterTypes2 = begin
module M = begin
let string (x:int,y:int) = "1"
type string = System.String
end
open M
let x = string (1,1)
end
module TestAUtoOpenNestedModulesGetAddedAfterTypes2 = begin
module M = begin
type string = System.String
[<AutoOpen>]
module M2 = begin
let string (v:int,y:int) = 3
end
end
open M
let x = string (1,1)
end
module TestAUtoOpenNestedModulesGetAddedAfterVals = begin
module M = begin
let string(x:string,y:string,z:string) = 23
[<AutoOpen>]
module M2 = begin
let string (v:int,y:int) = 3
end
end
open M
// The module M2 gets auto-opened after the values for "M" get added , hence this typechecks OK
let x = string (1,1)
end
module TestAUtoOpenNestedModulesGetAddedInOrder = begin
module M = begin
let string(x:string,y:string,z:string) = 23
[<AutoOpen>]
module M2 = begin
let string (v:int,y:int) = 3
end
[<AutoOpen>]
module M3 = begin
let string (v:int,y:int,z:int) = 3
end
end
open M
// The auto-open modules get added in declaration order
let x = string (1,1,3)
end
// AutoOpen modules get auto-opened in the order they appear in the referenced signature
module TestAUtoOpenNestedModulesGetAddedInOrder_ReverseAlphabetical = begin
module M = begin
let string(x:string,y:string,z:string) = 23
[<AutoOpen>]
module M3 = begin
let string (v:int,y:int) = 3
end
[<AutoOpen>]
module M2 = begin
let string (v:int,y:int,z:int) = 3
end
end
open M
// The auto-open modules get added in declaration order
let x = string (1,1,3)
end
end
#if ALL_IN_ONE
let RUN() = !failures
#else
let aa =
match !failures with
| [] ->
stdout.WriteLine "Test Passed"
System.IO.File.WriteAllText("test.ok","ok")
exit 0
| _ ->
stdout.WriteLine "Test Failed"
exit 1
#endif
|