File: member-ops.fs

package info (click to toggle)
fsharp 4.0.0.4%2Bdfsg2-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 58,824 kB
  • ctags: 1,395
  • sloc: cs: 2,983; ml: 1,098; makefile: 410; sh: 409; xml: 113
file content (599 lines) | stat: -rw-r--r-- 17,358 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
// #Conformance #MemberDefinitions #Overloading #ComputationExpressions 
#if ALL_IN_ONE
module Core_members_ops
#endif

let failures = ref []

let report_failure (s : string) = 
    stderr.Write" NO: "
    stderr.WriteLine s
    failures := !failures @ [s]

let test (s : string) b = 
    stderr.Write(s)
    if b then stderr.WriteLine " OK"
    else report_failure (s)

let check s b1 b2 = test s (b1 = b2)

//let inline (>>) (x:$a) (y:$b) = (($a.(>>) <> <'a,'b,'c> : $t1<'a,'b> * $t2<'b,'c> -> $t2<'a,'c>) (x,y))
//let inline (+) (x:$t1) (y:$t2) = (($a.(+) <...> <> : $t1<...> * $t2 -> $t1<...>) (x,y))
//let inline (>>) (x:^a) (y:^b) : ^b = (^a.(>>) (x,y) )
//let inline (<<) (x:^a) (y:^b) : ^a = (^a.(<<) (x,y) )

module FuncTest = begin

    type func =
      class
        val numCalls: int ref
        val impl: int -> int option
        member x.Invoke(y) = incr x.numCalls; x.impl(y)
        new(f) = {  numCalls = ref 0; impl=f }
        static member (>>>>) ((f: func), (g: func))  = 
          new func(fun x -> match f.Invoke(x) with None -> None | Some b -> g.Invoke(b))
        static member (<<<<) ((f: func), (g: func))  = 
          new func(fun x -> match g.Invoke(x) with None -> None | Some b -> f.Invoke(b))
      end

    let konst a = new func(fun x -> Some a)

    let morph f = new func(fun x -> Some (f x))

    #if UNNAMED_OPS
    let something = (morph (fun x -> x * x)) >>>> (morph (fun x -> x + x))
    let something2 = (morph (fun x -> x * x)) <<<< (morph (fun x -> x + x))

    do test "cn39233" (something.Invoke(3) = Some 18)
    do test "cn39233b" (something2.Invoke(3) = Some 36)
    #endif

end


module OverloadSamples = begin

    open System

    //-----------------------------------------------------------------------
    // Examples 1-5: Simple overloading 

    let f1 x = x + 1.0  // add on floats
    let f2 x = x + 1.0f  // add on 32-bit floats
    let f3 x = x + 2     // add on integers
    let f4 (x:DateTime) = x + new TimeSpan(300L)     // add on dates
    let f5 (x:TimeSpan) = x + new TimeSpan(1000L)     // add on time spans

    //-----------------------------------------------------------------------
    // Example 6: overloading on types you've defined yourself.  Normally
    // we would use the standard F# pattern of defining a type 
    // (i.e. it's data representation), then defining
    // a module that carries the operations associated with the type, then 
    // using an augmentation to assocaite the operations with the type.  However
    // here we've just added the augmentation straight away.

    type IntVector = V of int array
      with 
        static member (+) (V x, V y) = 
          if x.Length <> y.Length then invalidArg "arg" "IntVectorOps.add";
          V(Array.init x.Length (fun i -> x.[i] + y.[i]))
      end

    // Now use the overloading:

    let res6 = V [| 1;2;3 |] + V [| 3;2;1 |]

    // val res6 = V [|4; 4; 4|]


    //==============================================================================
    // Example 7: Generic Vectors (incorrect approach)
    //
    // F# overloading does not propagate as far as you may wish.  In particular,
    // overloading on generic types will often produce unsatisfying results  (extending
    // overloading in this direction is being considered).
    //
    // For example, you can't create a generic vector type and have the overloading
    // on the element type just magically propagate to the new type.

    type 'a BadGenericVector = 
      { arr: 'a array }
      with
         // This function is not as general as you might wish, despite the use of 
         // the overloaded "+" operator.  Each instance of an overloaded operator
         // must relate to one and only one type across the entire scope of
         // type inference.  So this gives rise to an "add" function that will be
         // used to add one as-yet-to-be-determined type of element.
         //
         // So this function gives rise to the error
         //   test.ml(_,_): error: FS0001: The declared type parameter 'a cannot be used in
         //   conjunction with this overloaded operator since the overloading cannot be 
         //   resolved at compile time

         // static member (+) ((x : 'a BadGenericVector),(y :'a BadGenericVector)) = 
         //    if x.arr.Length <> y.arr.Length then invalidArg "Matrix.(+)";
         //    {arr=Array.init x.arr.Length (fun i -> x.arr.[i] + y.arr.[i])}
      end

    //let BGV arr = {arr=arr}
    // This means you cannot use these
    //let f7a (x:BadGenericVector<int>) = x + BGV [| 1;2;3 |]
    //let f7b (x:BadGenericVector<float>) = x + BGV [| 1.0 |]

    //==============================================================================
    // Example 7: Generic Vectors (correct approach)
    //
    // The solution is to have your generic types carry a dictionary of operations.
    // Overloads on the generic type can then be correctly defined.  This is a lot
    // like writing the translation of Haskell type classes by hand, with the advantage
    // that you get complete control over the instantiations and where the 
    // dictionaries are created and passed, but with the disadvantage that
    // it is a little more verbose.

    // Here is the dictionary of operations:

    type 'a NumberOps = 
      { zero: 'a;
        one: 'a;
        add : 'a -> 'a -> 'a;
        mul : 'a -> 'a -> 'a;
        neg : 'a -> 'a; }

    // Here are two instantiations of this dictionary of operations:

    let intOps = 
      { zero = 0;
        one = 1;
        add = (+);
        mul = ( * );
        neg = (~-); }
        
    let floatOps = 
      { zero = 0.0;
        one = 1.0;
        add = (+);
        mul = ( * );
        neg = (~-); }
        
    // Now the GenericVector type itself, its operations and the augmentation
    // giving the operator overload:

    type 'a GenericVector = 
      { ops: 'a NumberOps;
        arr: 'a array }

    let add x y = 
      if x.arr.Length <> y.arr.Length then invalidArg "arg" "Matrix.(+)";
      {ops=x.ops; arr=Array.init x.arr.Length (fun i -> x.ops.add x.arr.[i] y.arr.[i]) }

    let create ops arr = 
      {ops=ops; arr=arr }

    type 'a GenericVector 
      with
        // Nb. For an operator assocaited with a generic type 
        // the the type parameters involved in the operator's definition must be the same 
        // as the type parameters of the enclosing class.
        static member (+) ((x : 'a GenericVector),(y : 'a GenericVector)) = add x y
      end

    let IGV arr = create intOps arr 
    let FGV arr = create floatOps arr 

    // Now the GenericVector type itself, its operations and the augmentation
    // giving the operator overload:

    let f8 (x:GenericVector<int>) = x + IGV [| 1;2;3 |]
    let f9 (x:GenericVector<float>) = x + FGV [| 1.0 |]
    let twice (x:GenericVector<'a>) (y:GenericVector<'a>) = x + y

    let f10 (x:GenericVector<float>) = twice x
    let f11 (x:GenericVector<int>) = twice x


end


module StateMonadTest = begin

 type 'a IO = 
    { impl: unit -> 'a }
    with 
      member f.Invoke() = f.impl()
      static member Result(r) = { impl = (fun () -> r) }
      member f.Bind(g) : 'b IO = g(f.impl())
      static member BindOp((f : 'a IO), (g : 'a -> 'b IO)) = f.Bind(g)
    end

 let (>>=) (f: 'a IO) g  = f.Bind(g)
 let result x  = {impl = (fun () -> x) }
 let mcons (p: 'a IO) (q : 'a list IO) = p >>= (fun x -> q >>= (fun y -> result (x::y)))
 let sequence (l: 'a IO list) : 'a list IO = 
      List.foldBack mcons  l (result [])


//These run into problems because we don't support higher-kinded polymorphism.
// For example we really wish to write:
//
//let inline result (x:'a) : ^f<'a> = (^f<'a>).Result(x)
//let inline (>>=) (x:^f<'a>) (y:'a -> ^f<'b>) = (^f<'a>).BindOp<'b> (x,y)


//This is ok:
//let inline result (x:^a) : ^b = ^b.Result(x)
//This is not enough:
//let inline (>>>=) (x:^f) (y:'a -> ^g) = (^f.BindOp(x,y))

end


module StreamMonadTest = begin

    type 'a NumberOps = 
      { zero: 'a;
        one: 'a;
        add : 'a -> 'a -> 'a;
        mul : 'a -> 'a -> 'a;
        neg : 'a -> 'a; }

    let intOps = 
      { zero = 0;
        one = 1;
        add = (+);
        mul = ( * );
        neg = (~-); }
        
    let floatOps = 
      { zero = 0.0;
        one = 1.0;
        add = (+);
        mul = ( * );
        neg = (~-); }
        


end


module AnotherFuncTest = begin

    type func =
      class
        val numCalls: int ref
        val impl: int -> int option
        member x.Invoke(y) = incr x.numCalls; x.impl(y)
        new(f) = {  numCalls = ref 0; impl=f }
        static member (++) ((f: func), (g: func))  = 
          new func(fun x -> match f.Invoke(x) with None -> None | Some b -> g.Invoke(b))
      end
     

end


(*
module GenericFunc = begin

type ('a,'b) func =
  class
    val numCalls: int ref
    val impl: 'a -> 'b option
    member x.Invoke(y) = incr x.numCalls; x.impl(y)
    new(f) = { inherit obj(); numCalls = ref 0; impl=f }
    static member FF (f: func<'a,'b>)  (g: func<'b,'c>)  = 
      new func<'a,'c>(fun x -> match f.Invoke(x) with None -> None | Some b -> g.Invoke(b))
  end


end

module GenericFunc2 = begin

type func<'a,'b> =
  class
    val numCalls: int ref
    val impl: 'a -> 'b option

    new(f) = { inherit obj(); numCalls = ref 0; impl=f }

    static member FF (f: func<'a,'b>)  (g: func<'b,'c>)  = 
      new func<'a,'c>(fun x -> match f.Invoke(x) with None -> None | Some b -> g.Invoke(b))

    member x.Invoke(y : 'a) : 'b option = incr x.numCalls; x.impl(y)
  end


end

module AnotherGenericFunc = begin

type func<'a,'b> =
  class
    abstract Invoke : 'a -> 'b option
    static member FF (f: func<'a,'b>)  (g: func<'b,'c>)  = 
      {new func<'a,'c>() with Invoke(x) = match f.Invoke(x) with None -> None | Some b -> g.Invoke(b)}
    // FEATURE REQUEST: inherit should never be needed for base classes that have a default constructor and no other
    // constructors
    new() = { }
  end

let konst a = {new func<_,_>() with Invoke(x) = Some a}

let morph f = {new func<_,_>() with Invoke(x) = Some (f x)}

let something = func.FF (morph (fun x -> x * x)) (morph (fun x -> x + x))

end


module UsingPolymorphicRecursion1 = begin

type func<'a,'b> = { impl : 'a -> 'b option }

let invoke<'a,'b,..> (f:func<'a,'b>) x = f.impl x 

let rec invoke2<'a,..> (f:func<'a,'b>) x = f.impl x 
and compose (f: func<'a,'b>)  (g: func<'b,'c>)  = 
     {impl=(fun x -> match invoke f x with None -> None | Some b -> invoke g b)}


end

module UsingPolymorphicRecursion2 = begin

type func<'a,'b> = { impl : 'a -> 'b option }

let invoke<'a,'b> (f:func<'a,'b>) x = f.impl x 

let rec invoke2<'a,..> (f:func<'a,'b>) x = f.impl x 
and compose (f: func<'a,'b>)  (g: func<'b,'c>)  = 
     {impl=(fun x -> match invoke f x with None -> None | Some b -> invoke g b)}


end


module UsingPolymorphicRecursion3 = begin

type func<'a,'b> = { impl : 'a -> 'b option }

let invoke<'a,..> (f:func<'a,'b>) x = f.impl x 

let rec invoke2<'a,..> (f:func<'a,'b>) x = f.impl x 
and compose (f: func<'a,'b>)  (g: func<'b,'c>)  = 
     {impl=(fun x -> match invoke f x with None -> None | Some b -> invoke g b)}


end

module UsingPolymorphicRecursion4 = begin

type func<'a,'b> = { impl : 'a -> 'b option }

let invoke< .. > (f:func<'a,'b>) x = f.impl x 

let rec invoke2<'a,..> (f:func<'a,'b>) x = f.impl x 
and compose (f: func<'a,'b>)  (g: func<'b,'c>)  = 
     {impl=(fun x -> match invoke f x with None -> None | Some b -> invoke g b)}


end

module UsingPolymorphicRecursion5 = begin

type func<'a,'b> = { impl : 'a -> 'b option }

let rec invoke2<'a,'b,..> (f:func<'a,'b>) x = f.impl x 
and compose (f: func<'a,'b>)  (g: func<'b,'c>)  = 
     {impl=(fun x -> match invoke2 f x with None -> None | Some b -> invoke2 g b)}


end

module UsingPolymorphicRecursion6 = begin

type func<'a,'b> = { impl : 'a -> 'b option }

let rec invoke2<'a,'b> (f:func<'a,'b>) x = f.impl x 
and compose (f: func<'a,'b>)  (g: func<'b,'c>)  = 
     {impl=(fun x -> match invoke2 f x with None -> None | Some b -> invoke2 g b)}


end
*)




open Microsoft.FSharp.Math

module BasicOverloadTests = begin

    let f4 x = 1 + x

    // This gets type int -> int
    let f5 x = 1 - x

    // This gets type DateTime -> DateTime -> TimeSpan, through non-conservative resolution.
    let f6 x1 (x2:System.DateTime) = x1 - x2

    // This gets type TimeSpan -> TimeSpan -> TimeSpan, through non-conservative resolution.
    let f7 x1 (x2:System.TimeSpan) = x1 - x2

    // This gets type TimeSpan -> TimeSpan -> TimeSpan, through non-conservative resolution.
    let f8 x1 (x2:System.TimeSpan) = x2 - x1

    // This gets type TimeSpan -> TimeSpan -> TimeSpan, through non-conservative resolution.
    let f9 (x1:System.TimeSpan) x2 = x1 - x2


    // This gets type TimeSpan -> TimeSpan -> TimeSpan
    let f10 x1 (x2:System.TimeSpan) = x1 + x2

    // Note this gets a different type to f10 as more possible overloads become available through further
    // type annotations
    let f11 (x1:System.DateTime) (x2:System.TimeSpan) = x1 + x2


    let f17 (x1: float) x2 = x1 * x2
    let f18 (x1: int) x2 = x1 * x2
    let f19 x1 (x2:int) = x1 * x2
    let f20 x1 (x2:float) = x1 * x2
    let f21 x1 (x2:string) = x1 + x2
    let f22 (x1:string) x2 = x1 + x2



    // This one is tricky because the type of "s" is unknown, and could in theory resolve to a
    // nominal type which has an extra interesting "op_Addition(string,C)" overload.
    // However, non-conservative resolution is applied prior to method overload resolution in 
    // expressions. This means the overload constraint is resolved OK to op_Addition(string,string).
    let f26 s = stdout.Write("-"+s)

    let f27 x = x + x

    let f28 x = 
        let g x = x + x in
        g x

    let f29 x = 
        let g x = x + 1.0 in
        g x
        
    let f30 x = 
        let g x = x + "a" in
        g x + "3"
end

    
module SubtypingAndOperatorOverloads = begin
    type C() =
        class
            static member (+) (x:C,y:C) = new C()
        end
        
    type D() =
        class
            inherit C()
            static member (+) (x:D,y:D) = new D()
        end   

    let f201 (x1: C) (x2: C) = D.op_Addition(x1,x2)
    let f202 (x1: D) (x2: C) = D.op_Addition(x1,x2)
    let f203 (x1: D) (x2: D) = D.op_Addition(x1,x2)
    let f204 (x1: C) (x2: D) = D.op_Addition(x1,x2)
    let f205 (x1: C) (x2: _) = D.op_Addition(x1,x2)
    let f206 (x1: _) (x2: C) = D.op_Addition(x1,x2)
    
    let f301 (x1: C) (x2: C) = x1 + x2

    let f302 (x1: D) (x2: C) = x1 + x2

    let f303 (x1: D) (x2: D) = x1 + x2

    let f304 (x1: C) (x2: D) = x1 + x2

    let f305 (x1: C) (x2: _) = x1 + x2

    let f306 (x1: _) (x2: C) = x1 + x2

    // TODO: investigate
    let f307 (x1: D) (x2: _) = x1 + x2
    // TODO: investigate
    let f308 (x1: _) (x2: D) = x1 + x2
end
    
module OperatorOverloadsWithFloat = begin
    type C() =
        class
            static member (+) (x:C,y:float) = new C()

            static member (+) (x:float,y:C) = new C()

            static member (+) (x:C,y:C) = new C()
        end
        

    let f201 (x1: C) (x2: C)         = C.op_Addition(x1,x2)
    let f202 (x1: float) (x2: C)     = C.op_Addition(x1,x2)
    let f204 (x1: C) (x2: float)     = C.op_Addition(x1,x2)
#if NEGATIVE
    let f205 (x1: C) (x2: _)         = C.op_Addition(x1,x2)
    let f206 (x1: _) (x2: C)         = C.op_Addition(x1,x2)
#endif
    let f207 (x1: float) (x2: _)     = C.op_Addition(x1,x2)
    let f208 (x1: _) (x2: float)     = C.op_Addition(x1,x2)
    
    let f301 (x1: C) (x2: C)         = x1 + x2
    let f302 (x1: float) (x2: C)     = x1 + x2
    let f304 (x1: C) (x2: float)     = x1 + x2
    
    // TODO: investigate
    let f305 (x1: C) (x2: _)         = x1 + x2
    // TODO: investigate
    let f306 (x1: _) (x2: C)         = x1 + x2

end
    

//let f3 (a:matrix) (b:string) = a * b

module MiscOperatorOverloadTests = begin

    let rec findBounding2Power b tp = if b<=tp then tp else findBounding2Power b (tp*2) 
    let leastBounding2Power b =
        findBounding2Power b 1

    let inline sumfR f (a:int,b:int) =
        let mutable res = 0.0 in
        for i = a to b do
            res <- res + f i
        done;
        res

end


module EnumerationOperatorTests = begin
    let x1 : System.DateTimeKind =  enum 3
    let x2 : System.DateTimeKind =  enum<_> 3
    let x3 =  enum<System.DateTimeKind> 3
    let x4 =  int32 (enum<System.DateTimeKind> 3)
    let inline f5 x = x |> int32 |> enum

end

module TraitCallsAndConstructors = 
    open System
    let inline clone (v : ^a) = (^a : (new : string * Exception -> ^a) ("", v))
    let _ : InvalidOperationException = clone (InvalidOperationException())
    type Base(x : float) =
        member this.x = x
     
    let inline (~-) (v:^a) = (^a:(new : float -> ^a)(-(v:>Base).x))
     
    type Inherited(x : float) =
        inherit Base(x)
     
    let aBase = Base(5.0)
    let aInherited = Inherited(5.0)
     
     
    let _ : Inherited = -aInherited



#if ALL_IN_ONE
let RUN() = !failures
#else
let aa =
  match !failures with 
  | [] -> 
      stdout.WriteLine "Test Passed"
      System.IO.File.WriteAllText("test.ok","ok")
      exit 0
  | _ -> 
      stdout.WriteLine "Test Failed"
      exit 1
#endif