1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
// #Regression #Conformance #MemberDefinitions #ObjectOrientedTypes #Classes
//---------------------------------------------------------------
// lists.fs F# source file of generic data types
//
// 2006 written by Ralf Herbrich
// Microsoft Research Ltd.
//---------------------------------------------------------------
#if ALL_IN_ONE
module Core_members_factors
#endif
let failures = ref []
let report_failure (s : string) =
stderr.Write" NO: "
stderr.WriteLine s
failures := !failures @ [s]
let test (s : string) b =
stderr.Write(s)
if b then stderr.WriteLine " OK"
else report_failure (s)
let check s b1 b2 = test s (b1 = b2)
open System.Collections.Generic
type Matrix = M of int
with
member x.NoRows = 0
member x.NoColumns = 0
member x.Item with get((i:int),(j:int)) = 0.0
end
module Types = begin
/// Shorthand notation for .NET 2.0 Lists
type ResizeArray<'a> = List<'a>
end
open Types
module ResizeArray = begin
/// Maps a ResizeArray to another ResizeArray by application of the function f to every element.
let map f (r:ResizeArray<_>) : ResizeArray<_> = r.ConvertAll (fun x -> f x)
/// Iterates the function f for every element of the ResizeArray.
let iter f (r:ResizeArray<_>) = r.ForEach (fun x -> f x)
/// Creates a ResizeArray from a List.
let of_list l :ResizeArray<_> = new ResizeArray<_>(List.toArray l)
end
//---------------------------------------------------------------
// distribution.fs F# source file of the abstract distribution class
//
// 2006 written by Ralf Herbrich
// Microsoft Research Ltd.
//---------------------------------------------------------------
//***************************************************
// Abstract distribution base class
//***************************************************
/// An abstract class for probability distributions in the exponential family.
type IDistribution =
interface
/// Gets a sample from the distribution.
abstract member Sample : int -> System.Random -> Matrix
/// Computes the probability density value at a particular point.
abstract member Density : Matrix -> float
/// Computes the absolute change between two distributions.
abstract member AbsoluteDifference : IDistribution -> float
end
//***************************************************
// Abstract distribution operation class
//***************************************************
/// The list of distribution operations (at the moment, this is just the constant distribution).
type DistributionOps<'Distribution> =
interface
/// The constant function distribution.
abstract One : 'Distribution
end
//---------------------------------------------------------------
// distributions.fs F# source file of the distributions library
//
// 2006 written by Ralf Herbrich
// Microsoft Research Ltd.
//---------------------------------------------------------------
//***************************************************
// 1D Gaussian
//***************************************************
/// The 1D Gaussian class for probability distribtion.
type Gaussian1D =
class
/// The precision mean of the Gaussian
val tau : float
/// The precision of the Gaussian
val pi : float
/// The standard constructor.
new () =
{ tau = 0.0; pi = 0.0; }
/// The parameterised constructor.
new (precisionMean, precision) =
{ tau = precisionMean; pi = precision; }
/// Precision of the Gaussian.
member x.Precision with get() = x.pi
/// Precision times mean of the Gaussian.
member x.PrecisionMean with get() = x.tau
/// Mean of the Gaussian (Mu).
member x.Mean with get () = x.tau / x.pi
/// Variance of the Gaussian (Sigma^2).
member x.Variance with get () = 1.0 / x.pi
member x.Density (point:Matrix) =
if (point.NoRows > 1 || point.NoColumns > 1) then
failwith "This is a 1D distribution which cannot have a density of multidimensional points."
else
let diff = point.Item(1,1) - x.Mean in
sqrt (x.Precision / (2.0 * System.Math.PI)) * exp (-diff * x.Precision * diff / 2.0)
/// Absolute difference between two Gaussians
member x.AbsoluteDifference (y: Gaussian1D) =
max (abs (x.PrecisionMean - y.PrecisionMean)) (abs (x.Precision - y.Precision))
/// Samples a 1D Gaussian
member x.Sample (numberOfSamples:int) random = M 1
interface IDistribution with
override x.Density point = x.Density (point)
override x.AbsoluteDifference distribution =
match distribution with
| :? Gaussian1D as gaussian1D -> x.AbsoluteDifference (gaussian1D)
| _ -> failwith "Wrong distribution"
override x.Sample numberOfSamples random = x.Sample numberOfSamples random
end
/// String representation of a 1D Gaussian
override x.ToString() = "[" + x.Mean.ToString () + "," + (sqrt (x.Variance)).ToString () + "]"
end
//***************************************************
// The distribution operations of a 1D Gaussian
//***************************************************
let GaussianDistributionOps = { new DistributionOps<Gaussian1D> with
member __.One = new Gaussian1D (0.0 , 0.0) }
//---------------------------------------------------------------
// factorgraph.fs F# source file of the factor graph library
//
// 2006 written by Ralf Herbrich
// Microsoft Research Ltd.
//---------------------------------------------------------------
open System.Collections.Generic
//***************************************************
// The variable node interface
//***************************************************
/// A single variable node in a factor graph. This is the non-mutable interface.
type IVariableNode =
interface
/// The marginal distribution of the variable.
abstract Distribution : IDistribution
end
//***************************************************
// The specific variable node class
//***************************************************
/// A single variable in a factor graph.
type VariableNode<'Distribution> when 'Distribution :> IDistribution =
class
interface IVariableNode with
/// Just return the distribution
member x.Distribution = x.distribution :> IDistribution
end
/// The marginal distribution of the variable.
val mutable distribution : 'Distribution
/// Sets up a new variable node
new (dOps : DistributionOps<_>) = { distribution = dOps.One; }
end
//***************************************************
// The factor node interface
//***************************************************
/// The computation nodes (i.e. factor nodes) of a factor graph.
type IFactorNode =
interface
/// The list of all variables that this factor "talks" to.
abstract VariableNodes : IEnumerable< IVariableNode >
/// The list of messages from the factor to all its variables.
abstract Messages : IEnumerable< IDistribution >
/// Abstract update (computation) mechansim
abstract UpdateMessage : int -> float
end
(*
/// A factor graph node.
type FactorGraphNode =
{
/// The internal ID of a factor graphs node.
ID : int;
/// The X coordinate of the factor graph node.
X : float;
/// The Y coordinate of the factor graph node.
Y : float;
/// The name of the node.
Name : string;
}*)
//---------------------------------------------------------------
// factornodes.fs F# source file of several factor nodes
//
// 2006 written by Ralf Herbrich
// Microsoft Research Ltd.
//---------------------------------------------------------------
open System
(*
let Gaussian1DPriorFactorNode ((var: VariableNode<Gaussian1D>), mean, variance) =
//let message = ref GaussianDistributionOps.One in
{ new IFactorNode
with UpdateMessage i =
if i > 0 then
raise (new ArgumentOutOfRangeException ("iVariableIndex", "This factor only points to one variable."));
let oldMarginal = var.distribution in
let newMarginal = new Gaussian1D (mean / variance + oldMarginal.PrecisionMean, 1.0 / variance + oldMarginal.Precision) in
var.distribution <- newMarginal;
oldMarginal.AbsoluteDifference (newMarginal)
and get_Messages() = Seq.ofList [ ] //(!message :> IDistribution) ]
and get_VariableNodes() = Seq.ofList [ (var :> IVariableNode) ] }
*)
let OneVariableNode((var: VariableNode<_>),f) =
// let message = ref (new Gaussian1D(0.0,0.0) ) in
{ new IFactorNode with
member __.UpdateMessage i =
if i > 0 then
raise (new ArgumentOutOfRangeException ("iVariableIndex", "This factor only points to one variable."));
let oldMarginal = var.distribution in
let newMarginal = f oldMarginal in
var.distribution <- newMarginal;
(oldMarginal :> IDistribution).AbsoluteDifference (newMarginal)
member __.Messages = Seq.ofList [ (* (!message :> IDistribution) *) ]
member __.VariableNodes = Seq.ofList [ (var :> IVariableNode) ] }
let Gaussian1DPriorFactorNode((var: VariableNode<Gaussian1D>), mean, variance) =
let update (oldMarginal : Gaussian1D) = new Gaussian1D (mean / variance + oldMarginal.PrecisionMean, 1.0 / variance + oldMarginal.Precision) in
OneVariableNode(var, update)
//---------------------------------------------------------------------
// Finish up
#if ALL_IN_ONE
let RUN() = !failures
#else
let aa =
match !failures with
| [] ->
stdout.WriteLine "Test Passed"
System.IO.File.WriteAllText("test.ok","ok")
exit 0
| _ ->
stdout.WriteLine "Test Failed"
exit 1
#endif
|