File: patterns.fs

package info (click to toggle)
fsharp 4.0.0.4%2Bdfsg2-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 58,824 kB
  • ctags: 1,395
  • sloc: cs: 2,983; ml: 1,098; makefile: 410; sh: 409; xml: 113
file content (1119 lines) | stat: -rw-r--r-- 37,294 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
// #Conformance #PatternMatching #Regression #Lists #ActivePatterns 
(* Pattern match tests.
 * Initially just some tests related to top-level let-pattern bug.
 * Later regression tests that patterns do project out the bits expected?
 *)
#if ALL_IN_ONE
module Core_patterns
#endif

#light

let failures = ref []

let report_failure (s : string) = 
    stderr.Write" NO: "
    stderr.WriteLine s
    failures := !failures @ [s]

let test (s : string) b = 
    stderr.Write(s)
    if b then stderr.WriteLine " OK"
    else report_failure (s)

let check s x1 x2 = 
    if (x1 = x2) then 
        stderr.WriteLine ("test "+s+": ok")
    else 
        report_failure(s)

#if NetCore
#else
let argv = System.Environment.GetCommandLineArgs() 
let SetCulture() = 
  if argv.Length > 2 && argv.[1] = "--culture" then  begin
    let cultureString = argv.[2] in 
    let culture = new System.Globalization.CultureInfo(cultureString) in 
    stdout.WriteLine ("Running under culture "+culture.ToString()+"...");
    System.Threading.Thread.CurrentThread.CurrentCulture <-  culture
  end 
  
do SetCulture()    
#endif

(* What kinds of top-leval let patterns are possible? *)

type r2 = {f1:int;f2:int}
type ('a,'b) either = This of 'a | That of 'b
exception XInt  of int
exception XBool of bool

(* Those with no variables *)
let () = ()
let (1) = (1)
let (1,2,3) = (1,2,3)  
let  1,2,3  = (1,2,3)
let [] = []
let [1] = [1]
let [1;2] = [1;2]
let (None) = None
let (Some 1) = Some 1
let {f1=f1;f2=f2} = {f1=1;f2=2}
let (XInt 1) = XInt 1  
let (XBool true) = XBool true

(* Those with some variables *)
let () = ()
let (v1) = (1)
let (v2,v3) = (2,3)  
let v4,v5,v6 = (4,5,6)
let v7 = []
let [v8] = [8]
let [v9;v10] = [9;10]
let (Some v11) = Some 11
let {f1=v12;f2=v13} = {f1=12;f2=13}
let (XInt v14) = XInt 14
let (XBool vTrue) = XBool true
let w1,[w2,Some (w3,XInt w4,XBool w5)] = 1,[2,Some (3,XInt 4,XBool true)]

(* Those with alternatives *)
let this_10 = This 10
let that_20 = That 20
let (This eiA | That eiA) = this_10
let (This eiB | That eiB) = that_20

(* polymorphic bound vars *)
let this_f1 = This (fun x -> x)
let that_f2 = That (fun x -> x)
let (This fA | That fA) = this_f1
let (This fB | That fB) = that_f2

(* If there are several polymorphic values matched,
   they get put into a tuple which has first class polymorphic field types...
   Users can not (directly!) create such tuples in source... need to check they are ok.
*)
let (Some xxxx),polyF1,polyF2,n =
  Some 1,
  (  (* ? forall alpha. *) fun (x:'alpha) -> x  ),
  (  (* ? forall beta.  *) fun (x:'beta) -> x   ),
  4

(* Relics *)
let aaa = []
let bb = match aaa with x::xs -> x | [] -> 0
let [p,q,r,(sA,sB)] = [1,2,3,(4,5)]
let [1],a,b,c = List.map (fun x -> x) [1],11,12,13
let y = 3
let x = try raise (Failure("a")) with e -> 12
let [x2] = [1]
let [1] = [1]

(* BUG: 438
 * null tests are split out,
 * but subsequent patterns need passing through the pattern simplifier,
 * specifically here to replace string patterns by equality test calls.
 *)
let bug438repro (tok:string) =
  match tok with
      null -> 11      
    | ""   -> 22
    | "aa" -> 33
    | str  -> 99

module ComplexNumbers_Example = begin
    // dummy type definition
    type complex = 
        { RealPart: float; ImaginaryPart: float }
        member x.Magnitude = 1.0
        member x.Phase = 1.0
    module Complex = 
        let mkRect (a,b) = { RealPart = a; ImaginaryPart = b }
        // dummy definition
        let mkPolar (a,b) = { RealPart = a; ImaginaryPart = b }
    
        
    open Microsoft.FSharp.Math
//    let Rect (x,y) = Complex.mkRect(x,y)
  //  let Polar (r,th) = Complex.mkPolar(r,th)
    
    let (|Rect|) (x:complex) = (x.RealPart, x.ImaginaryPart)
    let (|Polar|) (x:complex) = (x.Magnitude , x.Phase)

    let mulViaRect c1 c2 = 
        match c1,c2 with 
        | Rect(ar,ai), Rect(br,bi) -> Complex.mkRect(ar*br - ai*bi, ai*br + bi*ar)

    let mulViaPolar c1 c2 = 
        match c1,c2 with 
        | Polar(r1,th1),Polar(r2,th2) -> Complex.mkPolar(r1*r2, th1+th2)

    let mul1 (Rect(ar,ai)) (Rect(br,bi)) = Complex.mkRect(ar*br - ai*bi, ai*br + bi*ar)
    let mul2 (Polar(r1,th1)) (Polar(r2,th2)) = Complex.mkPolar(r1*r2, th1+th2)
end

module NaturalNumbers_Example = begin

    let Succ n = n+1
    
    let (|Zero|Succ|) n = if n = 0 then Zero else Succ(n-1)


    let rec fib n = 
        match n with
        | Succ (Succ m) -> fib m + fib (m+1)
        | Succ Zero -> 1
        | Zero -> 0

    let (|Even|Odd|) n = if n%2 = 0 then Even(n/2) else Odd(n-1)

    let rec power x n =
        match n with
        | Even m -> let p = power x m in p * p
        | Odd m -> x * power x m

end

// Queues 

module FunctionalQueue_Example = begin
    let (|Reversed|) l = List.rev l
    let (|NonEmpty|Empty|) q =
        match q with
        | (h::t),r               ->  NonEmpty(h,(t,r))
        | []    ,Reversed (h::t) ->  NonEmpty(h,(t,[]))
        | _                      -> Empty()

    let enqueue x (f,r) = (f,x::r)

    let dequeue2 q = 
        match q with
        | NonEmpty(x,NonEmpty(y,xs)) -> x,y,xs
        | NonEmpty(x,Empty) ->  failwith "singleton queue"
        | Empty -> failwith "empty queue"

    let q = ref ([1], [2;3;4])
    do System.Console.WriteLine("q = {0}", sprintf "%A" !q)
    do let x,y,rest = dequeue2 !q in System.Console.WriteLine("dequeue q = {0}", sprintf "%A" x); q := rest
    do let x,y,rest = dequeue2 !q in System.Console.WriteLine("dequeue q = {0}", sprintf "%A" x); q := rest
    do let x = enqueue 5 !q in System.Console.WriteLine("enqueue q = {0}", sprintf "%A" x); q := x
end

// CLR types 

module System_Type_Example2 = begin

    open System
    
    let (|Named|Array|ByRef|Ptr|Param|) (typ : System.Type) =
        if typ.IsGenericType        then Named(typ.GetGenericTypeDefinition(), typ.GetGenericArguments())
        elif not typ.HasElementType then Named(typ, [| |])
        elif typ.IsArray            then Array(typ.GetElementType(), typ.GetArrayRank())
        elif typ.IsByRef            then ByRef(typ.GetElementType())
        elif typ.IsPointer          then Ptr(typ.GetElementType())
        elif typ.IsGenericParameter then Param(typ.GenericParameterPosition, typ.GetGenericParameterConstraints())
        else failwith "unexpected System.Type"

    //val widget : Type -> [ `Named of ... | `Array of ... | `ByRef of ... ]
    //val (|Named|Array|ByRef|Ptr|Param|) : Type -> Choices5< Type , .. , .. >

    let rec toString typ =
        match typ with
        | Named (con, args) -> "(" + con.Name + " " + String.Join(";",Array.map toString args) + ")"
        | Array (arg, rank) -> "(Array"  + rank.ToString() + " " + toString arg + ")"
        | ByRef arg         -> "(ByRef " + toString arg + ")"
        | Ptr arg           -> "(Ptr "   + toString arg + ")"
        | Param(pos,cxs)    -> "(Param " + sprintf "%A" (pos,cxs) + ")"

    do System.Console.WriteLine(typeof<(int list option ref)>)
end

// Join lists 

module JoinList_ExampleA = begin
    type ilist = 
        | Empty 
        | Single of int 
        | Join of ilist * ilist

    let rec (|Cons|Nil|) inp =
        match inp with  
        | Single x                -> Cons(x, Empty)
        | Join (Cons (x,xs), ys)  -> Cons(x, Join (xs, ys))
        | Join (Nil, Cons (y,ys)) -> Cons(y, Join (ys, Empty))
        | _                       -> Nil()

    let head js = 
        match js with 
        | Cons (x,_) -> x
        | _ -> failwith "empty list"

    do System.Console.WriteLine("JoinList_ExampleA1")
    do System.Console.WriteLine("1 = {0}", head (Single 1))
    do System.Console.WriteLine("JoinList_ExampleA2")
    do System.Console.WriteLine("true = {0}", head (Join (Single 1,Empty)))
    do System.Console.WriteLine("JoinList_ExampleA3")
    do System.Console.WriteLine("true = {0}", head (Join (Empty, Single 1)))
end

// Join lists 

module JoinList_Example = begin
    type ilist = 
        | Empty 
        | Single of int 
        | Join of ilist * ilist
    
    let rec (|Cons|Nil|) = function 
        | Single x                   -> Cons(x, Empty)
        | Join (Cons (x,xs), ys)     -> Cons(x, Join (xs, ys))
        | Join (Nil (), Cons (y,ys)) -> Cons(y, Join (ys, Empty))
        | _                          -> Nil()

    let head js = 
        match js with 
        | Cons (x,_) -> x
        | _ -> failwith "empty list"

    let rec map f xs =
        match xs with
        | Cons (y,ys) -> Join (Single (f y), map f ys)
        | Nil () -> Empty

    let rec to_list xs =
        match xs with
        | Cons (y,ys) -> y :: to_list ys
        | Nil () -> []

    let is = Join (Join (Single 0, Join (Single 1, Join (Empty, Empty))), Join (Empty, Join (Join (Single 2, Single 3), Single 4)))
    do System.Console.WriteLine("true = {0}", head (Join (Empty, Single 1)))
    do System.Console.WriteLine("true = {0}", head (Join (Join (Empty, Empty), Single 2)))
end

module PolyJoinList_Example = begin
    type 'a jlist = Empty | Single of 'a | Join of 'a jlist * 'a jlist

    let rec (|JCons|JNil|) = function 
        | Single x                     -> JCons(x, Empty)
        | Join (JCons (x,xs), ys)      -> JCons(x, Join (xs, ys))
        | Join (JNil (), JCons (y,ys)) -> JCons(y, Join (ys, Empty))
        | Empty 
        | Join (JNil (), JNil ()) -> JNil()

    let jhead js = 
        match js with 
        | JCons (x,_) -> x
        | JNil        -> failwith "empty list"

    let rec jmap f xs =
        match xs with
        | JCons (y,ys) -> Join (Single (f y), jmap f ys)
        | JNil () -> Empty

    let rec jlist_to_list xs =
        match xs with
        | JCons (y,ys) -> y :: jlist_to_list ys
        | JNil () -> []

    let js = Join (Join (Single 0, Join (Single 1, Join (Empty, Empty))), Join (Empty, Join (Join (Single 2, Single 3), Single 4)))
    do System.Console.WriteLine("js = {0}", sprintf "%A" (jlist_to_list js))
    do System.Console.WriteLine("jmap (+1) js = {0}", sprintf "%A" (jlist_to_list (jmap (fun x -> x+1) js)))
    do System.Console.WriteLine("true = {0}", jhead (Join (Empty, Single true)))
    do System.Console.WriteLine("true = {0}", jhead (Join (Join (Empty, Empty), Single true)))
end

module UnZip_Example = begin
    // Zip 
    let rec (|Unzipped|) = function 
        | ((x,y) :: Unzipped (xs, ys)) -> (x :: xs, y :: ys)
        | []                           -> ([], [])

    let unzip (Unzipped (xs, ys)) = xs, ys

    let zs = [(1,1);(2,4);(3,9);(4,16)]

    do System.Console.WriteLine("zs = {0}", sprintf "%A" zs)
    do System.Console.WriteLine("unzip zs = {0}", sprintf "%A" (unzip zs))
end


// Lazy lists 

module LazyList_Example = begin
    open System
    open System.Collections.Generic

    #nowarn "21" // recursive initialization
    #nowarn "40" // recursive initialization

    exception UndefinedException

    [<NoEquality; NoComparison>]
    type LazyList<'T> =
        { mutable status : LazyCellStatus< 'T > }
        
        member x.Value = 
            match x.status with 
            | LazyCellStatus.Value v -> v
            | _ -> 
                lock x (fun () -> 
                    match x.status with 
                    | LazyCellStatus.Delayed f -> 
                        x.status <- Exception UndefinedException; 
                        try 
                            let res = f () 
                            x.status <- LazyCellStatus.Value res; 
                            res 
                        with e -> 
                            x.status <- LazyCellStatus.Exception(e); 
                            reraise()
                    | LazyCellStatus.Value v -> v
                    | LazyCellStatus.Exception e -> raise e)
        
        member s.GetEnumeratorImpl() = 
            let getCell (x : LazyList<'T>) = x.Value
            let toSeq s = Seq.unfold (fun ll -> match getCell ll with CellEmpty -> None | CellCons(a,b) -> Some(a,b)) s 
            (toSeq s).GetEnumerator()
                
        interface IEnumerable<'T> with
            member s.GetEnumerator() = s.GetEnumeratorImpl()

        interface System.Collections.IEnumerable with
            override s.GetEnumerator() = (s.GetEnumeratorImpl() :> System.Collections.IEnumerator)


    and 
        [<NoEquality; NoComparison>]
        LazyCellStatus<'T> =
        | Delayed of (unit -> LazyListCell<'T> )
        | Value of LazyListCell<'T> 
        | Exception of System.Exception


    and 
        [<NoEquality; NoComparison>]
        LazyListCell<'T> = 
        | CellCons of 'T * LazyList<'T> 
        | CellEmpty

    [<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>]
    module LazyList = 

        let lzy f = { status = Delayed f }
        let force (x: LazyList<'T>) = x.Value

        let notlazy v = { status = Value v }
        
        type EmptyValue<'T>() = 
            static let value : LazyList<'T> = notlazy CellEmpty
            static member Value : LazyList<'T> = value
            
        [<NoEquality; NoComparison>]
        type LazyItem<'T> = ItemCons of 'T * LazyList<'T> | ItemEmpty
        type 'T item = 'T LazyItem
        let get (x : LazyList<'T>) = match force x with CellCons (a,b) -> Some(a,b) | CellEmpty -> None
        let getCell (x : LazyList<'T>) = force x 
        let empty<'T> : LazyList<'T> = EmptyValue<'T>.Value
        let consc x l = CellCons(x,l)
        let cons x l = lzy(fun () -> (consc x l))
        let consDelayed x l = lzy(fun () -> (consc x (lzy(fun () ->  (force (l()))))))
        let consf x l = consDelayed x l

        let rec unfold f z = 
          lzy(fun () -> 
              match f z with
              | None       -> CellEmpty
              | Some (x,z) -> CellCons (x,unfold f z))

        let rec append l1  l2 = lzy(fun () ->  (appendc l1 l2))
        and appendc l1 l2 =
          match getCell l1 with
          | CellEmpty -> force l2
          | CellCons(a,b) -> consc a (append b l2)

        let delayed f = lzy(fun () ->  (getCell (f())))
        let repeat x = 
          let rec s = cons x (delayed (fun () -> s)) in s

        let rec map f s = 
          lzy(fun () ->  
            match getCell s with
            | CellEmpty -> CellEmpty
            | CellCons(a,b) -> consc (f a) (map f b))

        let rec map2 f s1 s2 =  
          lzy(fun () -> 
            match getCell s1, getCell s2  with
            | CellCons(a1,b1),CellCons(a2,b2) -> consc (f a1 a2) (map2 f b1 b2)
            | _ -> CellEmpty)

        let rec zip s1 s2 = 
          lzy(fun () -> 
            match getCell s1, getCell s2  with
            | CellCons(a1,b1),CellCons(a2,b2) -> consc (a1,a2) (zip b1 b2)
            | _ -> CellEmpty)
        let combine s1 s2 = zip s1 s2

        let rec concat s1 = 
          lzy(fun () -> 
            match getCell s1 with
            | CellCons(a,b) -> appendc a (concat b)
            | CellEmpty -> CellEmpty)
          
        let rec filter p s1= lzy(fun () ->  filterc p s1)
        and filterc p s1 =
            match getCell s1 with
            | CellCons(a,b) -> if p a then consc a (filter p b) else filterc p b
            | CellEmpty -> CellEmpty
          
        let rec tryFind p s1 =
            match getCell s1 with
            | CellCons(a,b) -> if p a then Some a else tryFind p b
            | CellEmpty -> None

        let first p s1 = tryFind p s1

        let indexNotFound() = raise (new System.Collections.Generic.KeyNotFoundException("An index satisfying the predicate was not found in the collection"))

        let find p s1 =
            match tryFind p s1 with
            | Some a -> a
            | None   -> indexNotFound()

        let rec scan f acc s1 = 
          lzy(fun () -> 
            match getCell s1 with
            | CellCons(a,b) -> let acc' = f acc a in consc acc' (scan f acc' b)
            | CellEmpty -> CellEmpty)

        let folds f acc s1 = scan f acc s1 // deprecated

        let head s = 
          match getCell s with
          | CellCons(a,_) -> a
          | CellEmpty -> invalidArg "s" "the list is empty"

        let tail s = 
          match getCell s with
          | CellCons(_,b) -> b
          | CellEmpty -> invalidArg "s" "the list is empty"

        let hd s = head s
        let tl s = tail s

        let isEmpty s =
          match getCell s with
          | CellCons _ -> false
          | CellEmpty -> true

        let nonempty s = not (isEmpty s)

        let rec take n s = 
          lzy(fun () -> 
            if n < 0 then invalidArg "n" "the number must not be negative"
            elif n = 0 then CellEmpty 
            else
              match getCell s with
              | CellCons(a,s) -> consc a (take (n-1) s)
              | CellEmpty -> invalidArg "n" "not enough items in the list" )

        let rec skipc n s =
          if n = 0 then force s 
          else  
            match getCell s with
            | CellCons(_,s) -> skipc (n-1) s
            | CellEmpty -> invalidArg "n" "not enough items in the list"

        let rec skip n s = 
          lzy(fun () -> 
            if n < 0 then invalidArg "n" "the value must not be negative"
            else skipc n s)

        let drop n s = skip n s

        let rec ofList l = 
          lzy(fun () -> 
            match l with [] -> CellEmpty | h :: t -> consc h (ofList t))
          
        let toList s = 
          let rec loop s acc = 
              match getCell s with
              | CellEmpty -> List.rev acc
              | CellCons(h,t) -> loop t (h::acc)
          loop s []
          
        let rec iter f s = 
          match getCell s with
          | CellEmpty -> ()
          | CellCons(h,t) -> f h; iter f t
          
        let rec copyFrom i a = 
          lzy(fun () -> 
            if i >= Array.length a then CellEmpty 
            else consc a.[i] (copyFrom (i+1) a))
          
        let rec copyTo (arr: _[]) s i = 
          match getCell s with
          | CellEmpty -> ()
          | CellCons(a,b) -> arr.[i] <- a; copyTo arr b (i+1)

        let ofArray a = copyFrom 0 a
        let toArray s = Array.ofList (toList s)
          
        let rec lengthAux n s = 
          match getCell s with
          | CellEmpty -> n
          | CellCons(_,b) -> lengthAux (n+1) b

        let length s = lengthAux 0 s

        let toSeq (s: LazyList<'T>) = (s :> IEnumerable<_>)

        // Note: this doesn't dispose of the IEnumerator if the iteration is not run to the end
        let rec ofFreshIEnumerator (e : IEnumerator<_>) = 
          lzy(fun () -> 
            if e.MoveNext() then 
              consc e.Current (ofFreshIEnumerator e)
            else 
               e.Dispose()
               CellEmpty)
          
        let ofSeq (c : IEnumerable<_>) =
          ofFreshIEnumerator (c.GetEnumerator()) 
          
        let (|Cons|Nil|) l = match getCell l with CellCons(a,b) -> Cons(a,b) | CellEmpty -> Nil


    let matchTwo(ll) = 
        match ll with 
        | LazyList.Cons(h1,LazyList.Cons(h2,t)) -> printf "%O,%O\n" h1 h2
        | LazyList.Cons(h1,t) -> printf "%O\n" h1
        | LazyList.Nil() -> printf "empty!\n" 

    open LazyList
    
    let rec pairReduce xs =
      match xs with
        | Cons (x, Cons (y,ys)) -> LazyList.consf (x+y) (fun () -> pairReduce ys)
        | Cons (x, Nil ())      -> LazyList.cons x LazyList.empty
        | Nil ()                -> LazyList.empty 

    let rec inf = LazyList.consf 0 (fun () -> LazyList.map (fun x -> x + 1) inf)

    let ll = LazyList.ofList [1;2;3;4]
    do System.Console.WriteLine(sprintf "%A" (LazyList.toList (LazyList.take 10 (pairReduce inf))))
end

(*
module RawQuotation_Examples1 = begin

    open Microsoft.FSharp.Quotations.Raw

    let (|Add|_|) = <@@| (_:int32) + (_:int32) |@@>
    let (|Mul|_|) = <@@| (_:int32) * (_:int32) |@@>
        
    let rec trans x =
        match x with 
        | Add(x,y) -> trans x + trans y
        | Mul(x,y) -> trans x * trans y
        | Int32(x) -> x
        | _ -> failwith "unrecognized"
        
    printf "res1 = %d\n" (trans <@@ 1+3+2 @@>)
end
*)


module PartialPattern_Examples = begin

     // Partial patterns are signfied by |_| and return 'option'.
     // They are most useful when dealing with repeatedly recurring queries
     // on very "heterogeneous" data sets, i.e. data sets able to represent 
     // a large range of possible entities, but where you're often interested in
     // focusing on a subset of the entities involved. Strings, term structures and XML
     // are common examples.
     let (|MulThree|_|) inp = 
        if inp % 3 = 0 then Some(inp/3) else None
     let (|MulSeven|_|) inp = 
        if inp % 7 = 0 then Some(inp/7) else None
        
     // Here is an example of their use.
     let example1 inp = 
         match 21 with 
         | MulThree(residue) -> printf "residue = %d!\n" residue
         | MulSeven(residue) -> printf "residue = %d!\n" residue
         | _ -> printf "no match!\n"

     example1 777
     example1 9
     example1 10
     example1 21

end
     

module ParameterizedPartialPattern_Examples = begin
     let (|Equal|_|) x y = 
        printf "x = %d!\n" x
        if x = y then Some() else None
        
     let example1 = 
         match 3 with 
         | Equal 4 () -> printf "3 = 4!\n"
         | Equal 3 () -> printf "3 = 3!\n"
         | _ -> printf "3 = ?!\n"

     let (|Lookup|_|) x map = Map.tryFind x map
        
     let example2 = 
         match Map.ofList [ "2", "Two" ; "3", "Three" ] with 
         | Lookup "4" v -> printf "4 should not be present!\n"
         | Lookup "3" v -> printf "map(3) = %s\n" v
         | Lookup "2" v -> printf "this should not be reached\n"
         | _ -> printf "3 = ?!\n"
end
     

module Combinator_Examples = begin

    type ('a,'b) query = 'a -> 'b option 
    let mapQ1 f (|P|_|) = function (P x) -> Some (f x) | _ -> None
    let app1 (|P|) (P x) = x
    let app2 (|P|_|) (P x) = x
    let mapQ2 f (|P|) (P x) = f x

    // Sets 

    // Given a partial pattern P find the first element in the list that satisfies P
    // This is obviously overkill but it's showing what's possible.
    let Find (|P|_|) =
        let rec (|E|_|) ys =
            match ys with 
            | (P x :: _  ) -> Some(x)
            | (_   :: E x) -> Some(x)
            | _ -> None
        (|E|_|)    

end

#if Portable
#else
module XmlPattern_Examples = begin


  open System.Xml
  open System.Collections
  open System.Collections.Generic

  let Select (|P|_|) (x: #XmlNode) = [ for P y as n in x.ChildNodes -> y ]

  let Select2 (|A|B|) (x: #XmlNode) = [ for (A y | B y) as n in x.ChildNodes -> y ]

  let (|Elem|_|) name (inp: #XmlNode) = 
      if inp.Name = name then Some(inp) 
      else None

  let (|Attr|_|) attr (inp: #XmlNode) = 
      match inp.Attributes.GetNamedItem(attr) with
      | null -> None
      | node -> Some(node.Value)

  let (|Num|_|) attr inp = 
      match inp with 
      | Attr attr v -> Some (float v) 
      | _           -> None

  type scene = 
      | Sphere of float * float * float * float
      | Intersect of scene list 
  
  let (|Vector|_|) = function (Num "x" x & Num "y" y & Num "z" z) -> Some(x,y,z) | _ -> None
  
  let rec (|ShapeElem|_|) inp = 
      match inp with 
      | Elem "Sphere" (Num "r" r  & Num "x" x & Num "y" y & Num "z" z) -> Some (Sphere (r,x,y,z)) 
      | Elem "Intersect" (ShapeElems(objs)) -> Some (Intersect objs) 
      | _ -> None

  and (|ShapeElems|) inp = Select (|ShapeElem|_|) inp 

  let parse inp = 
      match (inp :> XmlNode) with 
      | Elem "Scene" (ShapeElems elems) -> elems
      | _                               -> failwith "not a scene graph"

  let inp = "<Scene>
                <Intersect>
                  <Sphere r='2' x='1' y='0' z='0'/>
                  <Intersect>
                    <Sphere r='2' x='4' y='0' z='0'/>
                    <Sphere r='2' x='-3' y='0' z='0'/>
                  </Intersect>
                  <Sphere r='2' x='-2' y='1' z='0'/>
                </Intersect>
             </Scene>"
  let doc = new XmlDocument()
  doc.LoadXml(inp)
  //stdout.WriteLine doc.DocumentElement.Name
  printf "results = %A\n" (parse doc.DocumentElement)


end
#endif
module RegExp = 
    open System.IO
    
    let rec allFiles dir =
        [ for x in Directory.GetFiles(dir) do yield x
          for x in Directory.GetDirectories(dir) do yield! allFiles x ]

    open System.Text.RegularExpressions
    let (|IsMatch|_|) (pat:string) (inp:string) = if System.Text.RegularExpressions.Regex.IsMatch(inp,"^" + pat + "$") then Some(inp) else None
    let (|Match|_|) (pat:string) (inp:string) = 
        let m = Regex.Match(inp, "^" + pat + "$") in
        if m.Success then Some (List.tail [ for g in m.Groups -> g.Value ]) else None

    let (|Match1|_|) (pat:string) (inp:string) = 
        match (|Match|_|) pat inp with 
        | Some [h] -> Some h
        | Some [] -> failwith "Match1 succeeded, but no groups found. Use '(.*)' to capture groups"
        | Some _ -> failwith "Match1 succeeded, but more than one group found. Use '(.*)' to capture groups"
        | None -> None

    let (|IsSubMatch|_|) (pat:string) (inp:string) = if Regex.IsMatch(inp,pat) then Some(inp) else None
    let (|SubMatch|_|) (pat:string) (inp:string) = 
        let m = Regex.Match(inp, pat) in
        if m.Success then Some (List.tail [ for g in m.Groups -> g.Value ]) else None

    let check s b1 b2 = if b1 <> b2 then report_failure s
    check "fwhin3op1" ((|IsMatch|_|) ".*.ml" "abc.ml") (Some "abc.ml")
    check "fwhin3op2"((|Match|_|) ".*.ml" "abc.ml") (Some [])
    check "fwhin3op3" ((|Match|_|) ".*.ml" "abc.mlll") None
    check "fwhin3op4" ((|Match|_|) "(.*).ml" "abc.ml") (Some ["abc"])
    check "fwhin3op5" ((|Match|_|) "([abc]*).ml" "abc.ml") (Some ["abc"])
    check "fwhin3op6" ((|Match|_|) "([a-c]*).ml" "abc.ml") (Some ["abc"])
    check "fwhin3op7" ((|Match|_|) "([a-bc]*).ml" "abc.ml") (Some ["abc"])
    check "fwhin3op9" ((|Match|_|) "^.*.ml$" "abc.ml") (Some [])

    let testFun() = 
        File.WriteAllLines("test.fs", seq { for (IsMatch "(.*).fs" f) in allFiles System.Environment.CurrentDirectory do yield! "-------------------------------" :: "\n" :: "\n" :: ("// FILE: "+f) :: "" :: "module "+(f |> Path.GetDirectoryName |> Path.GetFileName |> (fun s -> s.ToUpper()))+ " =" :: [ for line in Array.toList (File.ReadAllLines(f)) -> "    "+line ] } |> Seq.toArray)

module RandomWalk = 
    let ran = new System.Random()
    let dice p = ran.NextDouble() <= p

    //! Random walk
    let randomWalk upP (nSteps,x) = if nSteps = 0 then None else
                                    if dice upP then Some (x+1,(nSteps-1,x+1))
                                                else Some (x-1,(nSteps-1,x-1))
    let n = 100

    let xs     = [| for i in 0 .. n -> i |]

    let walk initial upP = [| let state = ref initial 
                              for i in 0 .. n do
                                 if dice upP then incr state else decr state; 
                                 yield float !state |]

    let walkA1 = walk 10 0.54 
    let walkB1 = walk 14 0.46 

module RandomTEst = 
    type ICool =    
        abstract p : unit -> unit 
        
    type IEvenCooler =
        inherit ICool
    
#if Portable
#else
module RandomCodeFragment = 
    open System

    let createRemote<'T> (d: AppDomain) = 
        unbox<'T>(d.CreateInstanceAndUnwrap((typeof<'T>).Assembly.FullName,(typeof<'T>).FullName))

    //let o = createRemote<Inspector>(AppDomain.CurrentDomain)


    open System
    open System.Reflection
    open System.Threading

    type Remoter<'a>(f) =
      class
        inherit MarshalByRefObject()
        member x.Call : 'a = f()
      end

    let remoteCall (d:AppDomain) (f:unit->'a) =
      let t = (typeof<Remoter<'a>>)
      let r = d.CreateInstanceAndUnwrap(t.Assembly.FullName, t.FullName, true, BindingFlags.CreateInstance, null, [| box f |], null, null, null)
              |> unbox<Remoter<'a>>
      r.Call

    let inspect (d:AppDomain) =
      let callingDomain = AppDomain.CurrentDomain.FriendlyName 
      remoteCall d 
        (fun() -> 
          printf "inspector called from: %s\nexecuted in: %s\non thread: %d\n\n\n"
            callingDomain 
            AppDomain.CurrentDomain.FriendlyName
            System.Threading.Thread.CurrentThread.ManagedThreadId)
            
 #endif
      
module ActivePatternsFromTheHub = 
    type callData = 
      { time : System.DateTime;
        duration : int;
        countryCode : string;
        areaCode : string;
        number : string }

    // Note: you ask for calling plans to be extensible. I've done this by using strings: in many ways
    // active patterns allow you to use more heterogeneous data (such as strings) and still use
    // functional programming (or at least pattern matching).
    //
    // The intention of the example appears to be that additional calling plans are given semantics
    // by new rules that resolve how they interact in a fairly adhoc way with the call data.
    // It's hard to see how you would permit "arbitrary" extensions in a modular way for
    // this example, since the devil is always in the resolution of potential conflicts and
    // ambiguities with other rules. If I've misunderstood the kind of extensibility you require
    // then please let me know. In any case it's a great example of adhoc matching.
    type userData = 
      { callingPlan : string }

    // Define patterns that extract features out of the above data structures. Once
    // these are defined we never access the internal data structures. 
    //
    //   Note for language geeks: we'll probably also add some kind of syntax for 
    //   automatically getting active patterns that extract properties, which would make
    //   these redundant.

    let (|CallTime|)   cd = cd.time
    let (|CountryCode|) cd = cd.countryCode
    let (|AreaCode|)    cd = cd.areaCode
    let (|CallingPlan|) ud = ud.callingPlan

    // Define some patterns that detect particular features relevant to the rules.
    let predicate b = if b then Some() else None

    let (|NightTime|_|) (time:System.DateTime) = 
        let hourOfDay = time.TimeOfDay.Hours in 
        predicate (hourOfDay < 5 or hourOfDay > 19)

    let (|International|_|) cc = 
        predicate (cc <> "")

    let perMinuteRate (cd,ud) = 
        match cd,ud with
        //Rule1: 1-800 numbers are free
        | AreaCode("800"), _ -> 0
        //Rule2: customers on 'Unlimited' plans don't pay per-minute charges
        | _,CallingPlan("Unlimited") -> 0
        //Rule3: International calls cost 20c/daytime and 10c/nighttime
        | CountryCode(International) & CallTime(NightTime), _ -> 10 
        | CountryCode(International), _ -> 20
        //Rule 4: anything else costs 1 dollar per minute
        | _ -> 100  

module AndrewKennedyFunkyActivePatternsBugRelatedToArityInference = 
    let (|Fun|) (x:int->int) =  x

    let (Fun(f)) = (fun x -> x)

module AndrewKennedyRatherEmarrassingSimpleBug1133 = 

    type a = A | B
    let f = fun A -> 1
    let g = fun [] -> 1
    check "vweioh3v209" (f A) 1
    check "vweioh3v209" (try f B with MatchFailureException _ -> 2) 2
    check "vweioh3v209" (g []) 1
    check "vweioh3v209" (try g [1] with MatchFailureException _ -> 2) 2
    check "vweioh3v209" (try g ["1"] with MatchFailureException _ -> 3) 3

module NameResolutionBug1134 = 
    module M1 = 
       type a = A | B
       let (|A2|) (x:a) = "a"

    module M2 = 
       let A = 1
       let A2 = 1


    open M1
    open M2
    let f x = match x with | A -> 4 | B -> 5 // the 'A' should resolve to the pattern identifier
    let g x = match x with | A2 _ -> 4 | B -> 5 // the 'A' should resolve to the pattern identifier

module CheckNameResoutionRules = 

    module M1a = 
        type t = C of int
        
    module M2a = 
        open M1a
        let (C x1) = C(3) 
        let (C x2) = C(3)
        let f1 = fun (C _) -> C
        let f2 = fun (C _) -> C
        let f3 = function C _ -> C
        let f4 = C
        let v = C 3
        let C = 1
        

    module M1b = 
        type t = C 

    module M2b = 
        open M1b
        let (C) = C
        let f1 = fun (C _) -> C
        let f2 = fun (C _) -> C
        let f3 = function C _ -> C
        let f4 = C
        let C x1 = x1

    module M3a1 = 
        type t = C 

    module M3a2 = 
        let C = 3

    module M3b = 
        open M3a1
        open M3a2
        let (C) = M3a1.C
        let f1 = fun (C _) -> C
        let f2 = fun (C _) -> C
        let f3 = function C _ -> C
        let f4 = C
        let C x1 = x1  // ok to define a function because "M3a1.C" is zero arity
    module Adhoc1 = 
        let Exit(args) = printfn "exit!"  // Exit is an OCaml-compatible exception in the F# library. This is a common case where people try to redefine it.
    module Adhoc2 = 
        let Exit() = printfn "exit!"  // Exit is an OCaml-compatible exception in the F# library. This is a common case where people try to redefine it.
        
(*
module BigIntAndBigNumPatternMatching = begin

    let test (m) =
        match m with
        | 0I -> "zero"
        | 1I -> "one"
        | _ -> "more"

    do check "v4j-042p91" (test 0I) "zero"
    do check "v4j-042p92" (test 1I) "one"
    do check "v4j-042p93" (test 2I) "more"


    let test2 (m) =
        match m with
        | 0N -> "zero"
        | 1N -> "one"
        | _ -> "more"

    do check "v4j-042p94" (test2 0N) "zero"
    do check "v4j-042p95" (test2 1N) "one"
    do check "v4j-042p96" (test2 2N) "more"
end
*)

//TODO:turn this back on F# 3.1 test?
//module ActivePatternsWithIndeterminateReturnType = 
//
//    let (|Cast|_|) (x:obj) : 'T option = match x with | :? 'T as t ->  Some t | _ -> None
//    let (|CastIron|) (x:obj) : 'T = match x with | :? 'T as t ->  t | _ -> failwith "CastIron"
//
//    let test inp = 
//        match inp with 
//        | Cast (x:int) -> 1
//        | Cast "1" -> 2
//        | Cast (x:string) -> 3
//        | _ -> 4
//
//    check "ckwenwe0" (test (box 1)) 1
//    check "ckwenwe0" (test (box "1")) 2
//    check "ckwenwe0" (test (box "2")) 3
//    check "ckwenwe0" (test (box 1.0)) 4
//
//    let test2 inp = 
//        match inp with 
//        | CastIron (x:int) -> 1
//
//    check "ckwenwe0" (test2 (box 1)) 1
//    check "ckwenwe0" ((try test2 (box "1") |> ignore; 1 with Failure _ -> 2)) 2
//    check "ckwenwe0" ((try test2 (box 1.0) |> ignore; 1 with Failure _ -> 2)) 2

module TypecheckingBug_FSharp_1_0_6389 = 
    type Nullary<'T> = | Nullary 

    (* Separate bug: Nullary<int>.Nullary *)

    let f1 Nullary = ()
    let f2 Nullary Nullary = ()
    let f3 Nullary = Nullary
    let f4 Nullary Nullary = Nullary

    let f5<'T,'U> (Nullary: Nullary<'T>) = (Nullary: Nullary<'U>)
    let f6<'T,'U,'V> (Nullary: Nullary<'T>) (Nullary: Nullary<'U>)= (Nullary: Nullary<'V>)

    // check f3 is properly generic with type f3 : Nullary<'T> -> Nullary<'U>
    let v3 : Nullary<string> = f3 (Nullary : Nullary<int>) 
    let v4 : Nullary<string> = f4 (Nullary : Nullary<int>) (Nullary : Nullary<decimal>) 
    let v5 : Nullary<string> = f5<int,string> (Nullary : Nullary<int>) 
    let v6 : Nullary<string> = f6<int,decimal,string> (Nullary : Nullary<int>) (Nullary : Nullary<decimal>) 

    type C() = 
        static member M1 Nullary = ()
        static member M2 Nullary Nullary = ()
        static member M3 Nullary = Nullary
        static member M4 Nullary Nullary = Nullary

        static member M5<'T,'U> (Nullary: Nullary<'T>) = (Nullary: Nullary<'U>)
        static member M6<'T,'U,'V> (Nullary: Nullary<'T>) (Nullary: Nullary<'U>) = (Nullary: Nullary<'V>)

        // check f3 is properly generic with type M3 : Nullary<'T> -> Nullary<'U>
        static member P3 : Nullary<string> = C.M3 (Nullary : Nullary<int>) 
        static member P4 : Nullary<string> = C.M4 (Nullary : Nullary<int>) (Nullary : Nullary<decimal>) 
        static member P5 : Nullary<string> = C.M5<int,string> (Nullary : Nullary<int>) 
        static member P6 : Nullary<string> = C.M6<int,decimal,string> (Nullary : Nullary<int>) (Nullary : Nullary<decimal>) 


    type C2() = 
        member c.M1 Nullary = ()
        member c.M2 Nullary Nullary = ()
        member c.M3 Nullary = Nullary
        member c.M4 Nullary Nullary = Nullary

        member c.M5<'T,'U> (Nullary: Nullary<'T>) = (Nullary: Nullary<'U>)
        member c.M6<'T,'U,'V> (Nullary: Nullary<'T>) (Nullary: Nullary<'U>) = (Nullary: Nullary<'V>)

        // check f3 is properly generic with type M3 : Nullary<'T> -> Nullary<'U>
        member c.P3 : Nullary<string> = c.M3 (Nullary : Nullary<int>) 
        member c.P4 : Nullary<string> = c.M4 (Nullary : Nullary<int>) (Nullary : Nullary<decimal>) 
        member c.P5 : Nullary<string> = c.M5<int,string> (Nullary : Nullary<int>) 
        member c.P6 : Nullary<string> = c.M6<int,decimal,string> (Nullary : Nullary<int>) (Nullary : Nullary<decimal>) 


(* check for failure else sign off "ok" *)


#if ALL_IN_ONE
let RUN() = !failures
#else
let aa =
  match !failures with 
  | [] -> 
      stdout.WriteLine "Test Passed"
      System.IO.File.WriteAllText("test.ok","ok")
      exit 0
  | _ -> 
      stdout.WriteLine "Test Failed"
      exit 1
#endif