File: tlr.fs

package info (click to toggle)
fsharp 4.0.0.4%2Bdfsg2-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 58,824 kB
  • ctags: 1,395
  • sloc: cs: 2,983; ml: 1,098; makefile: 410; sh: 409; xml: 113
file content (418 lines) | stat: -rw-r--r-- 13,622 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
// #Conformance #Regression #Recursion #LetBindings 
(*----------------------------------------------------------------------------
CONTENTS-START-LINE: HERE=1 SEP=2
 23.    tlr constants
 58.    tlr lambdas
 97.    tlr polymorphic constants?
 111.   env tests
 138.   mixed recursion (inner recursing with outer)
 188.   arity 0 tests
 211.   value recursion
 252.   inner constant
 264.   lifting tests
 335.   lifting
 348.   wrap up
CONTENTS-END-LINE:
----------------------------------------------------------------------------*)
#if ALL_IN_ONE
module Core_tlr
#endif

let failures = ref []

let report_failure (s : string) = 
    stderr.Write" NO: "
    stderr.WriteLine s
    failures := !failures @ [s]

let test (s : string) b = 
    stderr.Write(s)
    if b then stderr.WriteLine " OK"
    else report_failure (s)



#if NetCore
#else
let argv = System.Environment.GetCommandLineArgs() 
let SetCulture() = 
  if argv.Length > 2 && argv.[1] = "--culture" then  begin
    let cultureString = argv.[2] in 
    let culture = new System.Globalization.CultureInfo(cultureString) in 
    stdout.WriteLine ("Running under culture "+culture.ToString()+"...");
    System.Threading.Thread.CurrentThread.CurrentCulture <-  culture
  end 
  
do SetCulture()    
#endif

(*-------------------------------------------------------------------------
 *INDEX: tlr constants
 *-------------------------------------------------------------------------*)

(* mainly compile tests *)

module CompilationTests = begin 
    let (+)   x y = (x:int)+y
    let (-)   x y = (x:int)-y    
    let ( * ) x y = (x:int)*y    

    (* test cases for TLR code *)
    let consume x = x
    let (|>) x f = f x    

    (* not TLR - constant - trivial expr *)  
    let notSinceTrival1 = 1
    let notSinceTrival2 = 1.2
    let notSinceTrival3 = true

    (* TLR constants - non-trivial (e.g. allocating) *)
    type ('a,'b) xy = {x:'a;y:'b}    
    let tlrValList   = [1;2;3;4]  
    let tlrValTuple  = (1,2,3,4)
    let tlrValRecord = {x=1;y=2}

    (* TLR constants - transitively *)
    let tlrValTransitiveList   = [ tlrValList; tlrValList ]
    let tlrValTransitiveTuple  = ("transitively a TLR constant",tlrValList)
    let tlrValTransitiveRecord = { x = "transitively a TLR constant"; y = tlrValList}

    (* TLR constants - polymorphic *)
    type 'a node = INT of int | ALPHA of 'a
    (*let tlrValPolymorphic : 'a node = INT 4*)


    (*-------------------------------------------------------------------------
     *INDEX: tlr lambdas
     *-------------------------------------------------------------------------*)

    let tlrLambdaTests () =
      (* TLR lambdas? - non rec *)  
      let     tlrNonRecAppliedAll3Args (x:int) (y:int) (z:int) = x+y+z
      in
      let _ = tlrNonRecAppliedAll3Args 1 2 3
      in
        
      let     tlrNonRecApplied2of3Args (x:int) (y:int) (z:int) = x+y+z
      in
      let _ = tlrNonRecApplied2of3Args 1 2
      in

      let     rejectNonRecApplied0of3Args (x:int) (y:int) (z:int) = x+y+z
      in
      let _ = rejectNonRecApplied0of3Args
      in

      (* TLR lambdas? - rec *)
      let rec tlrRecAppliedAll3Args (x:bool) (y:int) (z:int) = if x then tlrRecAppliedAll3Args false y z else y+z
      in
      let _ = tlrRecAppliedAll3Args true 2 3
      in

      let rec tlrRecApplied2of3Args (x:bool) (y:int) (z:int) = if x then let f = tlrRecApplied2of3Args false y in f z else y+z
      in
      let _ = tlrRecApplied2of3Args true 2
      in

      let rec rejectRecApplied0of3Args (x:bool) (y:int) (z:int) = if x then let f = rejectRecApplied0of3Args in f false y z else y+z
      in
      let _ = rejectRecApplied0of3Args
      in
      ()



    (*-------------------------------------------------------------------------
     *INDEX: tlr polymorphic constants?
     *-------------------------------------------------------------------------*)    

    (* Concerned about polymorphic constants. Arity 0, but infact type-functions. *)
    let enclosing1 (a:int) =
      let tlrInnerFreePolymorphicConstant = None in
      if  tlrInnerFreePolymorphicConstant = None then 0 else 1

    let enclosing2 (a:'a) =
      let tlrInnerPolymorphicConstant = (None : 'a option) in
      if  tlrInnerPolymorphicConstant = None then 0 else 1


    (*-------------------------------------------------------------------------
     *INDEX: env tests
     *-------------------------------------------------------------------------*)    
        
    (* env tests *)

    let xC = 1,2,3
    let yC = 3,2,1

    let envTestFreesUnitArg ()      = xC,yC
    let envTestFreesNArg    (n:int) = xC,yC,n
    let uses            = envTestFreesUnitArg (),envTestFreesNArg 1

    let dependent1 id (xa:'alpha) =
      let envTestFreesUnitArgOpen ()      = id xC,yC   in
      let envTestFreesNArgOpen    (n:int) = id xC,yC,n in
      let envPolymorphicSelf arg = if arg=xa then 1 else 2 in  (* has freetypars *)
      let envPolymorphicViaCall () = envPolymorphicSelf xa in  (* the envPolymorphicSelf call will contribute typar to closure *)
      let uses =
        envTestFreesUnitArgOpen (),
        envTestFreesNArgOpen 1,
        envPolymorphicSelf xa,
        envPolymorphicViaCall ()
      in
      12


    (*-------------------------------------------------------------------------
     *INDEX: mixed recursion (inner recursing with outer)
     *-------------------------------------------------------------------------*)    

    (* test closure determination for inner functions recursing with outer functions *)
    let mixedRecursionTest (z:int) =
      (* What are the env closures?
       *   env(g2) = {x2,z} and envForDirectCallTo(g1)
       *   env(g1) = {z}
       * Note,
       *   env(g1) does not require the envForDirectCallTo(g2) since
       *   g2 is defined inside g1, and it's actual env will be defined at that binding point,
       *   so at any direct calls to g2, it's actual env will be available.
       * In general,
       *   Where-ever "h" is available to be called (for h chosen TLR),
       *   Then the actual-environment needed to pass to "h" will be available.
       *------
       * SUMMARY:
       * For g1 being made TLR, require sub-envs for direct calls only to the freevars of the g1 defn.
       *)
      let rec mixed_g1 (x1:int) (x2:int) =
        let rec mixed_g2 (y2:int) = let r1,r2 = mixed_g1 x2 y2 in
                                    r1 + mixed_g2 z in
        let res1 = mixed_g2 (x1+x2) in
        let res2 = mixed_g2         in
        res1,res2
      in
      mixed_g1 1 2

    (* test:
     * inner definition (g2) has direct call to g,
     * so etps(g2) must include etps(g),
     * but etps(g) are still being determined,
     * because later includesBeta causes beta to be included in etps(g),
     * since it follows from the etps(freeBeta).
     *)
    let innerOuterCallBeforeETpsKnown (xx1:'alpha) (y:'beta) =
       let freeBeta() = let (uses:'beta) = y in ()
       in
       let rec innerOuter_g (x1:'alpha) =
         let innerOuter_g2 (x2:'alpha2) =
           innerOuter_g x1                     (* direct call to g, so etps(g2) need etps(g) *)
         in 
         let (includesBeta:unit) = freeBeta () (* direct call, etps(g) includes etps(freeBeta) = {beta} *)
         in
         (innerOuter_g2 12 : int)
       in
       innerOuter_g 


    (*-------------------------------------------------------------------------
     *INDEX: arity 0 tests
     *-------------------------------------------------------------------------*)    

    (* concerned about arity 0 test cases, esp if they have a type closure *)
    let arityZeroTests (xalpha:'alpha) (xbeta:'beta) =
      let arityZeroMono      = (1,2,true) in
      let arityZeroAlpha     = (1,2,(None : 'alpha option)) in
      let arityZeroAlphaBeta = (1,2,(None : 'alpha option),(None : 'beta option)) in
      arityZeroMono,arityZeroAlpha,arityZeroAlphaBeta

    (* free occurance, but at a type instance *)
    let freeOccuranceAtInstaceTest (u:unit) (b:'beta) =
      let freeOccuranceTestPolyFun (x:'alpha) = x in 
      let useAtInt      = freeOccuranceTestPolyFun 3 in
      let useAtIntList  = freeOccuranceTestPolyFun [3] in
      let useAtBool     = freeOccuranceTestPolyFun true in
      let instAtInt     = (freeOccuranceTestPolyFun : int -> int) in
      let instAtIntList = (freeOccuranceTestPolyFun : int list -> int list) in
      let instAtBeta    = (freeOccuranceTestPolyFun : 'beta -> 'beta) in
      ()


    (*-------------------------------------------------------------------------
     *INDEX: value recursion
     *-------------------------------------------------------------------------*)    

    (* Hit problems in letrec's with value recursions,
       because packing a recursive value into an environment failed,
       since uses to valrecs are requried to be delayed.

       Solutions?
       (a) skip TLR if fclass has a valrec? (they are not common case)
       (b) if a valrec item needs to be carried for a closure,
           use it directly (no packing) carried by itself,
           so avoiding rebinding it into the environment.
     *)

    type func = {f:(bool -> int)}

    let inner1 () =
      let rec nextFun = {f=(fun x -> if x then 0 else next x)}
      and next x = nextFun.f x
      in
      ()

    let inner2 () =
      let rec nextFun next = {f=(fun x -> if x then 0 else next x)}
      and next x = (nextFun next).f x
      in
      ()

    let inner3 () =
      let rec env = (*pack*) next
      and nextFun env = let next = (*unpack*) env in
                        {f=(fun x -> if x then 0 else next x)}
      and next x = (nextFun env).f x
      in
      ()


    (*-------------------------------------------------------------------------
     *INDEX: inner constant
     *-------------------------------------------------------------------------*)    

    (* Creates cctor if needed *)
    let innerConst () =
      let localconst = ("cctor",0) in 
      let capture tag = if tag then localconst else "a3",3
      in
      capture true


    (*-------------------------------------------------------------------------
     *INDEX: lifting tests
     *-------------------------------------------------------------------------*)    
        

    (* Test cases for explicit lifting of inner TLR bindings to top-level *)
    let add (x:int) (y:int) = (x+y:int)

    (* lifting over a lambda *)  
    let liftOverLambda =
      fun (x:int) ->
        let liftOverLambdaExpectConst  = Some (1,2,3,4) in    
        let liftOverLambdaExpectFunc y = add x y,liftOverLambdaExpectConst in
        let res =
          liftOverLambdaExpectConst,
          liftOverLambdaExpectFunc 1
        in
        res

    (* lifting over a tlambda *)
    let overTLambda (* forall a' *) () =
      let xJustAnIntNotExpectedToBeTLR = 12 in
      let x = xJustAnIntNotExpectedToBeTLR in
      let overTLambda_ExpectConst  = Some (5,6) in    
      let overTLambda_ExpectFunc y = add y x,overTLambda_ExpectConst in
      let res =
        overTLambda_ExpectConst,
        overTLambda_ExpectFunc 3
      in
        ((raise (Failure "alpha return type")) : 'alpha)

    (* lifting over letrec *)
    let overLetrec (b:bool) = 
      let rec overLetrec_f1 x = overLetrec_f2 x
      and overLetrec_f2 x = overLetrec_f3 x
      and overLetrec_f3 x = 
          let overLetrec_expectConst = (7,8) in
          let overLetrec_expectFunc a = add a x,overLetrec_expectConst in
            overLetrec_expectConst,overLetrec_expectFunc x
          in
        overLetrec_f1 9

    (* lifting over let *)
    let overLet (b:bool) = 
      let overlet_x1 = 11 in
      let overlet_x2 = let overLet_expectConst2 = (2,2,2) in
                       12 in
      let overlet_x3 = 13 in
      let overlet_x4 = 14 in
      let overLet_expectFunc a = add a (overlet_x1)
      in
        overlet_x2,overlet_x1
          

    (* let test *)
    let letTest2 =
      let a = 1 in
      let b = 2 in
      (* swap *)
      let a = b in
      let b = a in
      a,b (* expect 2,1 *)

    let letTest3 =
      let rec v = fun n -> 1 + w (n-1) 
      and w = fun n -> if n=0 then 0 else v (n-1)
      in
      v,w


    (*-------------------------------------------------------------------------
     *INDEX: lifting
     *-------------------------------------------------------------------------*)

    let _ =
      fun x -> let liftOverTopLambda = [(1,2,3)] in 12

    let _ =
      match [] with
          []    -> let liftOverNilMatchNil  = [902] in 12
        | x::xs -> let liftOverNilMatchCons = [x]   in 12
end


module MiscDetupleTestFromAndyRay = begin

  type LutInitAst =
   | LutInput of int
   | LutAnd of LutInitAst * LutInitAst

  let i0, i1 = LutInput(0), LutInput(1)

  let rec eval n (s : LutInitAst) =
    match s with
    | LutInput(a) -> ((n >>> a) &&& 1)
    | LutAnd(a,b) -> (eval n a) &&& (eval n b)

  let eval_lut lut_n (ops : LutInitAst) =
    let rec eval_n n : string =
      if n = (1 <<< lut_n) then ""
      else (eval_n (n + 1)) + (if (eval n ops) = 1 then "1" else "0")
    in
    eval_n 0

  let test() =
      let g = eval_lut 2 (LutAnd (i0,i1)) in
      printf "%s\n" g

  do test()
end


(*-------------------------------------------------------------------------
 *INDEX: wrap up
 *-------------------------------------------------------------------------*)    

#if ALL_IN_ONE
let RUN() = !failures
#else
let aa =
  match !failures with 
  | [] -> 
      stdout.WriteLine "Test Passed"
      System.IO.File.WriteAllText("test.ok","ok")
      exit 0
  | _ -> 
      stdout.WriteLine "Test Failed"
      exit 1
#endif