File: kernel.cc

package info (click to toggle)
fslview 4.0.1-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 11,812 kB
  • ctags: 4,932
  • sloc: cpp: 28,276; ansic: 5,103; sh: 250; makefile: 125; python: 72; tcl: 43
file content (240 lines) | stat: -rw-r--r-- 6,785 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/*  kernel.cc

    Mark Jenkinson, FMRIB Image Analysis Group

    Copyright (C) 2001 University of Oxford  */

/*  CCOPYRIGHT  */

#include "kernel.h"
#include "miscmaths.h"

namespace MISCMATHS {

  set<kernelstorage*, kernelstorage::comparer> kernel::existingkernels;  

  //////// Support function /////////

  float kernelval(float x, int w, const ColumnVector& kernel)
  {
    // linearly interpolates to get the kernel at the point (x)
    //   given the half-width w
    if (fabs(x)>w) return 0.0;
    float halfnk = (kernel.Nrows()-1.0)/2.0;
    float dn = x/w*halfnk + halfnk + 1.0;
    int n = (int) floor(dn);
    dn -= n;
    if (n>(kernel.Nrows()-1)) return 0.0;
    if (n<1) return 0.0;
    
    return kernel(n)*(1.0-dn) + kernel(n+1)*dn;
  }
  
  inline bool in_bounds(const ColumnVector& data, int index)
  { return ( (index>=1) && (index<=data.Nrows())); }
  
  inline bool in_bounds(const ColumnVector& data, float index)
  { return ( ((int)floor(index)>=1) && ((int)ceil(index)<=data.Nrows())); }
  
  float sincfn(float x)
  {
    if (fabs(x)<1e-7) { return 1.0-fabs(x); }
    float y=M_PI*x;
    return sin(y)/y;
  }
  
  float hanning(float x, int w)
  {  // w is half-width
    if (fabs(x)>w) 
      return 0.0;
    else
      return (0.5 + 0.5 *cos(M_PI*x/w));
  }
  
  float blackman(float x, int w)
  {  // w is half-width
    if (fabs(x)>w) 
      return 0.0;
    else
      return (0.42 + 0.5 *cos(M_PI*x/w) + 0.08*cos(2.0*M_PI*x/w));
  }
  
  float rectangular(float x, int w)
  {  // w is half-width
    if (fabs(x)>w) 
      return 0.0;
    else
      return 1.0;
  }

  ColumnVector sinckernel1D(const string& sincwindowtype, int w, int n)
  {  // w is full-width
    int nstore = n;
    if (nstore<1) nstore=1;
    ColumnVector ker(nstore);
    int hw = (w-1)/2; // convert to half-width
    // set x between +/- width
    float halfnk = (nstore-1.0)/2.0;
    for (int n=1; n<=nstore; n++) {
      float x=(n-halfnk-1)/halfnk*hw;
      if ( (sincwindowtype=="hanning") || (sincwindowtype=="h") ) {
	ker(n) = sincfn(x)*hanning(x,hw);
      } else if ( (sincwindowtype=="blackman") || (sincwindowtype=="b") ) {
	ker(n) = sincfn(x)*blackman(x,hw);
      } else if ( (sincwindowtype=="rectangular") || (sincwindowtype=="r") ) {
	ker(n) = sincfn(x)*rectangular(x,hw);
      } else {
	cerr << "ERROR: Unrecognised sinc window type - using Blackman" << endl;
	ker = sinckernel1D("b",w,nstore);
	return ker;
      }
    }
    return ker;
  }

  
  kernel sinckernel(const string& sincwindowtype, int w, int nstore) 
  {
    kernel sinck;
    sinck = sinckernel(sincwindowtype,w,w,w,nstore);
    return sinck;
  }


  kernel sinckernel(const string& sincwindowtype,
		    int wx, int wy, int wz, int nstore)
  { // widths are full-widths
    kernel sinckern;
    if (nstore<1) nstore=1;

    // convert all widths to half-widths
    int hwx = (wx-1)/2;
    int hwy = (wy-1)/2;
    int hwz = (wz-1)/2;

    ColumnVector kx, ky, kz;
    // calculate kernels
    kx = sinckernel1D(sincwindowtype,wx,nstore);
    ky = sinckernel1D(sincwindowtype,wy,nstore);
    kz = sinckernel1D(sincwindowtype,wz,nstore);
    
    sinckern.setkernel(kx,ky,kz,hwx,hwy,hwz);
    return sinckern;
  }

  // dummy fn for now
  float extrapolate_1d(const ColumnVector& data, const int index)
  {
    float extrapval;

    if (in_bounds(data, index))
      extrapval = data(index);
    else if (in_bounds(data, index-1))
      extrapval = data(data.Nrows());
    else if (in_bounds(data, index+1))
      extrapval = data(1);
    else
      extrapval = mean(data).AsScalar();

    return extrapval;
  }
  
  // basic trilinear call
  float interpolate_1d(const ColumnVector& data, const float index)
  {
    float interpval;
    int low_bound = (int)floor(index);
    int high_bound = (int)ceil(index); 

    if (in_bounds(data, index))
      interpval = data(low_bound) + (index - low_bound)*(data(high_bound) - data(low_bound));
    else
      interpval = extrapolate_1d(data, round(index));

    return interpval;
  }

    
  //////// Spline Support /////////

  float hermiteinterpolation_1d(const ColumnVector& data, int p1, int p4, float t)
  {
    // Q(t) = (2t^3 - 3t^2 + 1)P_1 + (-2t^3 + 3t^2)P_4 + (t^3 - 2t^2 + t)R_1 + (t^3 - t^2)R_4
    // inputs: points P_1, P_4; tangents R_1, R_4; interpolation index t;

    float retval, r1 = 0.0, r4 = 0.0;
    
    if (!in_bounds(data,p1) || !in_bounds(data,p4)) {
      cerr << "Hermite Interpolation - ERROR: One or more indicies lie outside the data range. Returning ZERO" << endl;
      retval = 0.0;
    } else if ((t < 0) || (t > 1)) {
      cerr << "Hermite Interpolation - ERROR: Interpolation index must lie between 0 and 1. Returning ZERO" << endl;
      retval = 0.0;
      /*    } else if (t == 0.0) {
	    retval = data(p1);
	    } else if (t == 1.0) {
	    retval = data(p4);
      */   
    } else {
      r1 = 0.5 * (extrapolate_1d(data, p1) - extrapolate_1d(data, p1 - 1)) + 0.5 * (extrapolate_1d(data, p1 + 1) - extrapolate_1d(data, p1));// tangent @ P_1
      r4 = 0.5 * (extrapolate_1d(data, p4) - extrapolate_1d(data, p4 - 1)) + 0.5 * (extrapolate_1d(data, p4 + 1) - extrapolate_1d(data, p4));// tangent @ P_4
      
      float t2 = t*t; float t3 = t2*t;
      retval = (2*t3 - 3*t2 + 1)*data(p1) + (-2*t3 + 3*t2)*data(p4) + (t3 - 2*t2 + t)*r1 + (t3 - t2)*r4;
    }

    // cerr << "p1, p4, t, r1, r4 = " << p1 << ", " << p4 << ", " << t << ", " << r1 << ", " << r4 << endl;
    
    return retval;
  }


  //////// Kernel Interpolation Call /////////

  float kernelinterpolation_1d(const ColumnVector& data, float index, const ColumnVector& userkernel, int width)
  {
    int widthx = (width - 1)/2;
    // kernel half-width  (i.e. range is +/- w)
    int ix0;
    ix0 = (int) floor(index);
    
    int wx(widthx);
    vector<float> storex(2*wx+1);
    for (int d=-wx; d<=wx; d++) 
       storex[d+wx] = kernelval((index-ix0+d),wx,userkernel);

    float convsum=0.0, interpval=0.0, kersum=0.0;
    
    int xj;
    for (int x1=ix0-wx; x1<=ix0+wx; x1++) {
      if (in_bounds(data, x1)) {
	xj=ix0-x1+wx;
	float kerfac = storex[xj];
	convsum += data(x1) * kerfac;
	kersum += kerfac;
      }
    }

    if ( (fabs(kersum)>1e-9) ) {
      interpval = convsum / kersum;
    } else {
      interpval = (float) extrapolate_1d(data, ix0);
    }
    return interpval;
  }
  
  ////// Kernel wrappers //////

  float kernelinterpolation_1d(const ColumnVector& data, float index)
  {
    ColumnVector userkernel = sinckernel1D("hanning", 7, 1201);
    return kernelinterpolation_1d(data, index, userkernel, 7);
  }

  float kernelinterpolation_1d(RowVector data, float index)
  {
    ColumnVector userkernel = sinckernel1D("hanning", 7, 1201);
    return kernelinterpolation_1d(data.t(), index, userkernel, 7);
  }
}