File: nonlin.cpp

package info (click to toggle)
fslview 4.0.1-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 11,812 kB
  • ctags: 4,932
  • sloc: cpp: 28,276; ansic: 5,103; sh: 250; makefile: 125; python: 72; tcl: 43
file content (1088 lines) | stat: -rw-r--r-- 44,989 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
// Definitions for module nonlin

#include <ctime>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
#include <vector>
#include <cmath>
#include "newmat.h"
#include "newmatio.h"
#include "bfmatrix.h"
#include "nonlin.h"
#include "utils/fsl_isfinite.h"

using namespace std;
using namespace NEWMAT;

namespace MISCMATHS {

// Declarations of routines for use only in this module

// Main routine for Variable-Metric optimisation

NonlinOut varmet(const NonlinParam& p, const NonlinCF& cfo);

// Main routine for Gradient-descent optimisation

NonlinOut grades(const NonlinParam& p, const NonlinCF& cfo);

// Main routine for Conjugate-Gradient optimisation

NonlinOut congra(const NonlinParam& p, const NonlinCF& cfo);

// Main routine for scaled conjugate-gradient optimisation

NonlinOut sccngr(const NonlinParam& p, const NonlinCF& cfo);

// Main routine for Levenberg-Marquardt optimisation

NonlinOut levmar(const NonlinParam& p, const NonlinCF& cfo);

LinOut linsrch(// Input
               const ColumnVector&  pdir,    // Search direction
               const ColumnVector&  p0,      // Current parameter values
               const ColumnVector&  grad,    // Gradient at p0
               const NonlinCF&      cfo,     // Cost-function object
               double               f0,      // Current cost-function value
               double               sf,      // Scale factor for cost-function
               double               maxiter, // Max # of iterations in line minimisation
               double               sm,      // Stepmax
               double               alpha,   // Alpha (sorry).
               double               ptol,    // Tolerance in parameter space
               // Output
               double               *lambda,// Resulting step length
               double               *of,    // Value of cost-function on output
               ColumnVector         *np);   // New parameters

double scale_factor(const ColumnVector&  p,       // Current parameter values
                    const ColumnVector&  pdir,    // Search direction
                    const NonlinCF&      cfo,     // Cost-function object
                    int                  maxiter, // Max # of iterations
                    double               sf);     // Scale factor.

LinOut linmin(// Input
              const ColumnVector&   p,      // Current parameter values
              const ColumnVector&   pdir,   // Search direction
              const NonlinCF&       cfo,    // Cost-function object
              double                sf,     // Scale factor for cost-function
              pair<double,double>   lp,     // Left point
              pair<double,double>   mp,     // Point somewhere in interval
              pair<double,double>   rp,     // Right point
              double                ftol,   // Fractional tolerance
              int                   maxiter,// Max # of iterations
              // Output
              pair<double,double>   *x);    // Best point

pair<double,double> bracket(// Input 
                            const ColumnVector& p,      // Current parameter values
                            const ColumnVector& pdir,   // Search direction
                            const NonlinCF&     cfo,    // Cost-function object
                            double              ptol,   // Relative tolerance for parameter values
                            double              sf,     // Scale factor of cost-function
                            // Output
                            pair<double,double> *p_0,   // Cost-function value at p
                            pair<double,double> *p_m);  // Point between p_0 and p_l

// Utility routine that checks for convergence based on "zero"-gradient

// Utility routines that checks for convergence based on various criteria
// Based on zero (neglible) gradient
bool zero_grad_conv(const ColumnVector&   par,
                    const ColumnVector&   grad,
                    double                cf,
                    double                gtol);
// Based on zero (neglible) decrease in cost-function
bool zero_cf_diff_conv(double cfo,
                       double cfn,
                       double cftol);
// Based on zero (neglible) step in parameter space
bool zero_par_step_conv(const ColumnVector&   par,
                        const ColumnVector&   step,
                        double                ptol);

void print_newmat(const NEWMAT::GeneralMatrix&  m,
                  std::string                   fname);


std::string NonlinParam::TextStatus() const
{
  switch (status) {
  case NL_UNDEFINED:
    return(std::string("Status is undefined. Object has been created but no minimisation has been performed"));
    break;
  case NL_MAXITER:
    return(std::string("The optimisation did not converge because the maximum number of iterations was exceeded"));
    break;
  case NL_LM_MAXITER:
    return(std::string("The optimisation did not converge because the maximum number of iterations for a single line minimisation was exceeded"));
    break;
  case NL_PARCONV:
    return(std::string("The optimisation converged. The convergence criterion was that the last step in parameter space was very short"));
    break;
  case NL_GRADCONV:
    return(std::string("The optimisation converged. The convergence criterion was that all the elements of the gradient were very small"));
    break;
  case NL_CFCONV:
    return(std::string("The optimisation converged. The convergence criterion was that the last step changed the cost-function by an insignificant amount"));
    break;
  case NL_LCONV:
    return(std::string("The optimisation converged. The convergence criterion was that lambda became too large"));
    break;
  default:
    return(std::string("Impossible status. This indicates there is a bug"));
    break;
  }
}

// If user choses not to overide the grad-method of the NonlinCF
// base class this routine will be used to calculate numerical derivatives.

ReturnMatrix NonlinCF::grad(const ColumnVector& p) const
{
  ColumnVector gradv(p.Nrows());
  ColumnVector tmpp = p;
  double tiny = 1e-8;
  double cf0 = cf(tmpp);
  for (int i=0; i<p.Nrows(); i++) {
    double step = tiny * std::max(tmpp.element(i),1.0);
    tmpp.element(i) += step;
    gradv.element(i) = (cf(tmpp) - cf0) / step;
    tmpp.element(i) -= step;
  }
  gradv.Release();
  return(gradv);    
}

// If user choses not to overide the hess-method of the NonlinCF
// base class this routine will calculate numerical 2nd derivatives.
// Note also that the hessian will only be used for the Levenberg-
// Marquardt minimisation.
// It is in general _not_ a good idea to use a method that explicitly
// uses the Hessian (i.e. LM) when calculating it numerically.
// Note that it returns a (safe) pointer to BFMatrix. BFMatrix has two
// subclasses FullBFMatrix, and SparseBFMatrix which can be used 
// used interchangeably depending on if the structure of the Hessian
// renders it sparse or not.

boost::shared_ptr<BFMatrix> NonlinCF::hess(const ColumnVector&         p,
                                           boost::shared_ptr<BFMatrix> iptr) const
{
  boost::shared_ptr<BFMatrix>    hessm;
  if (iptr && int(iptr->Nrows())==p.Nrows() && int(iptr->Ncols())==p.Nrows()) hessm = iptr;
  else hessm = boost::shared_ptr<BFMatrix>(new FullBFMatrix(p.Nrows(),p.Nrows()));
  ColumnVector tmpp = p;
  double tiny = 1e-4;
  double fx0y0 = cf(tmpp);
  ColumnVector fdx(p.Nrows());
  ColumnVector step(p.Nrows());

  // First calculate all f(x+dx_i) values

  for (int i=0; i<p.Nrows(); i++) {         
    step.element(i) = tiny * std::max(tmpp.element(i),1.0);
    tmpp.element(i) += step.element(i);
    fdx.element(i) = cf(tmpp);
    tmpp.element(i) -= step.element(i);
  }
  
  // Then values of matrix

  for (int i=0; i<p.Nrows(); i++) {
    for (int j=i; j<p.Nrows(); j++) {
      if (i==j) {   // If diagonal element
        tmpp.element(i) -= step.element(i);
        double tmp = cf(tmpp);
        hessm->Set(i+1,i+1,(fdx.element(i) + tmp - 2.0*fx0y0) / (step.element(i)*step.element(i)));
        tmpp.element(i) += step.element(i);
      }
      else {        // If off-diagonal element
        tmpp.element(i) += step.element(i);
        tmpp.element(j) += step.element(j);
        hessm->Set(i+1,j+1,(cf(tmpp)+fx0y0-fdx.element(i)-fdx.element(j)) / (step.element(i)*step.element(j)));
        hessm->Set(j+1,i+1,hessm->Peek(i+1,j+1));
        tmpp.element(i) -= step.element(i);
        tmpp.element(j) -= step.element(j);
      }
    }
  }

  return(hessm);
}

// Display (for debug purposes) matrix if it is small enough for that to make sense

void VarmetMatrix::print() const
{
  if (sz > 10) {
    cout << "Matrix too big to be meaningful to display" << endl;
    return;
  }
  else {
    if (mtp == VM_FULL) {
      cout << setw(10) << setprecision(5) << mat;
    }
    else if (mtp == VM_COL) {
      Matrix  tmp = IdentityMatrix(sz);
      for (unsigned int i=0; i<sf.size(); i++) {
        tmp += sf[i] * vec[i]*(vec[i]).t();
      }
      cout << setw(10) << setprecision(5) << tmp;
    }
  }
  return;
}

// Update estimate of inverse Hessian based on latest step

void VarmetMatrix::update(const NEWMAT::ColumnVector& pdiff,  // x_{i+1} - x_i
                          const NEWMAT::ColumnVector& gdiff)  // \nabla f_{i+1} - \nabla f_i
{
  // Sort out if this call defines size of problem
  if (pdiff.Nrows() != sz || gdiff.Nrows() != sz) {
    if (sf.size() == 0 && pdiff.Nrows()==gdiff.Nrows()) {
      sz = pdiff.Nrows();
      if (mtp == VM_OPT) {
        if (sz < 100) {mtp = VM_FULL;}
        else {mtp = VM_COL;}
      }
    }
    else {throw NonlinException("VarmetMatrix::update: mismatch between vector and matrix sizes");}
  }
  // Now do the actual update
  double sf1 = DotProduct(pdiff,gdiff);
  if ((sf1*sf1) > MISCMATHS::EPS*DotProduct(pdiff,pdiff)*DotProduct(gdiff,gdiff)) {
    sf1 = 1.0 / sf1;
    ColumnVector v2 = (*this) * gdiff;
    double sf2 = -1.0 / DotProduct(gdiff,v2);
    if (mtp == VM_FULL) {
      mat += sf1 * pdiff * pdiff.t();
      mat += sf2 * v2 * v2.t();
    }
    else {
      vec.push_back(pdiff);
      vec.push_back(v2);
      sf.push_back(sf1);
      sf.push_back(sf2);
    }
    if (utp == VM_BFGS) {
      if (mtp == VM_FULL) {
        ColumnVector u = sf1*pdiff + sf2*v2;
        mat -= (1.0/sf2) * u * u.t();
      }
      else {
        vec.push_back(sf1*pdiff + sf2*v2);
        sf.push_back(-1.0/sf2);
      }
    }
  }
}

// Multiply representation of matrix with vector

ColumnVector operator*(const VarmetMatrix& m, const ColumnVector& v)
{
  if (m.mtp == VM_FULL) {return(m.mat*v);}
  else {
    ColumnVector ov = v; // Multiplication with unity matrix
    if (m.sf.size() != 0) {
      std::vector<double>::const_iterator                sfp;
      std::vector<NEWMAT::ColumnVector>::const_iterator  vep;
      for (sfp=m.sf.begin(), vep=m.vec.begin(); sfp!=m.sf.end(); ++sfp, ++vep) {
        double tmp = (*sfp) * DotProduct((*vep),v);
        ov += tmp * (*vep);
      }
    }
    return(ov);
  }
}


// Gateway function to routines for non-linear optimisation

NonlinOut nonlin(const NonlinParam& p, const NonlinCF& cfo)
{
  NonlinOut status = NL_MAXITER;

  // Call functions that actually do the job

  switch (p.Method()) {
  case NL_VM:
    status = varmet(p,cfo);
    break;
  case NL_CG:
    status = congra(p,cfo);
    break;
  case NL_SCG:
    status = sccngr(p,cfo);
    break;
  case NL_LM:
    status = levmar(p,cfo);
    break;
  case NL_GD:
    status = grades(p,cfo);
    break;
  }

  return(status);
}

// Main routine for Levenberg-Marquardt optimisation

NonlinOut levmar(const NonlinParam& p, const NonlinCF& cfo)
{
  // Calculate initial values
  p.SetCF(cfo.cf(p.Par()));                                   // Cost-function evaluated at current parameters
  bool                            success = true;             // True if last step decreased CF
  double                          olambda = 0.0;              // How much the diagonal of H was nudged last time
  ColumnVector                    g;                          // Gradient
  boost::shared_ptr<BFMatrix>     H;                          // Hessian

  while (p.NextIter(success)) {
    if (success) {                                            // If last attempt decreased cost-function
      g = cfo.grad(p.Par());                                  // Gradient evaluated at current parameters
      H = cfo.hess(p.Par(),H);                                // Hessian evaluated at current parameters
    }
    for (int i=1; i<=p.NPar(); i++) {                         // Nudge it
      if (p.GaussNewtonType() == LM_LM) {                     // If Levenberg-Marquardt
        // H->AddTo(i,i,(p.Lambda()-olambda)*H->Peek(i,i));
        H->Set(i,i,((1.0+p.Lambda())/(1.0+olambda))*H->Peek(i,i));
      }
      else if (p.GaussNewtonType() == LM_L) {                // If Levenberg
        H->AddTo(i,i,p.Lambda()-olambda);             
      }
    }
    ColumnVector step;
    double ncf = 0.0;
    bool inv_fail = false;  // Signals failure of equation solving
    try {
      step = -H->SolveForx(g,SYM_POSDEF,p.EquationSolverTol(),p.EquationSolverMaxIter());
      ncf = cfo.cf(p.Par()+step);
    }
    catch(...) {
      inv_fail = true;
    }
    if (!inv_fail && (success = (ncf < p.CF()))) {              // If last step successful
      olambda = 0.0;                                          // Pristine Hessian, so no need to undo old lambda
      p.SetPar(p.Par()+step);                                 // Set attempt as new parameters
      p.SetLambda(p.Lambda()/10.0);                           // Decrease nudge factor
      // Check for convergence based on small decrease of cf
      if (zero_cf_diff_conv(p.CF(),ncf,p.FractionalCFTolerance())) {
        p.SetCF(ncf); p.SetStatus(NL_CFCONV); return(p.Status()); 
      }
      p.SetCF(ncf);                                           // Store value of cost-function
    }
    else {                                                    // If last step was unsuccesful
      olambda = p.Lambda();                                   // Returning to same H, so must undo old lambda
      p.SetLambda(10.0*p.Lambda());                           // Increase nudge factor
      p.SetCF(p.CF());                                        // Push another copy of best cost function value thus far
      // Check for convergence based on _really_ large lambda
      if (p.Lambda() > p.LambdaConvergenceCriterion()) {
        p.SetStatus(NL_LCONV); return(p.Status());
      }
    }
  }
  // Getting here means we did too many iterations
  p.SetStatus(NL_MAXITER);

  return(p.Status());
}

// Main routine for gradient-descent optimisation. It is
// included mainly as a debugging tool for when the more
// advanced methods fail and one wants to pinpoint the
// reasons for that. 

NonlinOut grades(const NonlinParam& np, const NonlinCF& cfo)
{
  // Set up initial values
  np.SetCF(cfo.cf(np.Par()));
  ColumnVector g = -cfo.grad(np.Par());

  while (np.NextIter()) {
    // Check for convergence based on zero gradient
    if (zero_grad_conv(np.Par(),g,np.CF(),np.FractionalGradientTolerance())) {
      np.SetStatus(NL_GRADCONV); return(np.Status());
    }  
    // Bracket minimum along g
    pair<double,double> lp, mp;                                                                      // Leftmost and middle point of bracket
    pair<double,double> rp = bracket(np.Par(),g,cfo,np.FractionalParameterTolerance(),1.0,&lp,&mp);  // Rightmost point of bracket
    if (rp == lp) {                                                                                  // If no smaller point along g
      np.SetStatus(NL_PARCONV); return(np.Status());                                                 // Assume it is because we are at minimum
    }
    // Find minimum along g between lp and rp
    pair<double,double> minp;                               // Minimum along g
    LinOut lm_status = linmin(np.Par(),g,cfo,1.0,lp,mp,rp,
                              np.LineSearchFractionalParameterTolerance(),
                              np.LineSearchMaxIterations(),&minp);
    // Check for problems with line-search
    if (lm_status == LM_MAXITER) {np.SetStatus(NL_LM_MAXITER); return(np.Status());} // Ouch!
    // Set new cf value and parameters
    np.SetPar(np.Par() + minp.first*g);
    // Check for convergence based on small decrease of cost-function
    if (zero_cf_diff_conv(np.CF(),minp.second,np.FractionalCFTolerance())) {np.SetCF(minp.second); np.SetStatus(NL_CFCONV); return(np.Status());}
    // Check for convergence based on neglible move in parameter space
    else if (zero_par_step_conv(minp.first*g,np.Par(),np.FractionalParameterTolerance())) {np.SetCF(minp.second); np.SetStatus(NL_PARCONV); return(np.Status());}
    else {  // If no covergence
      np.SetCF(minp.second);
      g = -cfo.grad(np.Par());
    }
  }
  // If we get here we have used too many iterations
  np.SetStatus(NL_MAXITER);
    
  return(np.Status());
}

// Main routine for conjugate-gradient optimisation. The 
// implementation follows that of Numerical Recipies 
// reasonably closely.

NonlinOut congra(const NonlinParam& np, const NonlinCF& cfo)
{
  // Set up initial values
  np.SetCF(cfo.cf(np.Par()));
  ColumnVector r = -cfo.grad(np.Par());
  ColumnVector p = r;

  while (np.NextIter()) {
    // Check for convergence based on zero gradient
    if (zero_grad_conv(np.Par(),r,np.CF(),np.FractionalGradientTolerance())) {
      np.SetStatus(NL_GRADCONV); return(np.Status());
    }  
    // Bracket minimum along p
    pair<double,double> lp, mp;                                                                      // Leftmost and middle point of bracket
    pair<double,double> rp = bracket(np.Par(),p,cfo,np.FractionalParameterTolerance(),1.0,&lp,&mp);  // Rightmost point of bracket
    if (rp == lp) {                                                                                  // If no smaller point along p
      np.SetStatus(NL_PARCONV); return(np.Status());                                                 // Assume it is because we are at minimum
    }
    // Find minimum along p between lp and rp
    pair<double,double> minp;                               // Minimum along p
    LinOut lm_status = linmin(np.Par(),p,cfo,1.0,lp,mp,rp,
                              np.LineSearchFractionalParameterTolerance(),
                              np.LineSearchMaxIterations(),&minp);
    // Check for problems with line-search
    if (lm_status == LM_MAXITER) {np.SetStatus(NL_LM_MAXITER); return(np.Status());} // Ouch!
    // Set new cf value and parameters
    np.SetPar(np.Par() + minp.first*p);
    // Check for convergence based on small decrease of cost-function
    if (zero_cf_diff_conv(np.CF(),minp.second,np.FractionalCFTolerance())) {np.SetCF(minp.second); np.SetStatus(NL_CFCONV); return(np.Status());}
    // Check for convergence based on neglible move in parameter space
    else if (zero_par_step_conv(minp.first*p,np.Par(),np.FractionalParameterTolerance())) {np.SetCF(minp.second); np.SetStatus(NL_PARCONV); return(np.Status());}
    else {  // If no covergence
      np.SetCF(minp.second);
      if (((np.NIter())%np.NPar()) == 0) {                          // Explicitly reset directions after npar iterations
        r = -cfo.grad(np.Par());
        p = r;
      }
      else {
        ColumnVector oldr = r;
        r = -cfo.grad(np.Par());
        if (np.ConjugateGradientUpdate() == CG_FR) {              // Get conjugate direction Fletcher-Reeves flavour
          p = r + (DotProduct(r,r)/DotProduct(oldr,oldr)) * p;
	}
        else if (np.ConjugateGradientUpdate() == CG_PR) {         // Get conjugate direction Polak-Ribiere flavour
          p = r + (DotProduct(r-oldr,r)/DotProduct(oldr,oldr)) * p;
        }
      }
    }
  }
  // If we get here we have used too many iterations
  np.SetStatus(NL_MAXITER);
    
  return(np.Status());
}

// Main routine for scaled conjugate-gradient optimisation. The
// idea of the algorithm is similar to that of Levenberg-
// Marquardt. In the LM algorithm the search direction is a 
// "compromise" between the Newton direction and the gradient
// direction, where the compromise depends on a factor lambda.
// A large lambda means that it is close to the gradient and a 
// small lambda that it is close to the Newton direction. The 
// value of lambda is updated each iteration depending on the
// success of the last step. In this method the compromise is
// between the "conjugate gradient" direction and the gradient
// direction. The variable names follow the (excellent!) paper 
// by Martin Mller (1993) Neural Networks 6:525-533.
// I have tried to follow the notation he uses in his paper, thus
// enabling that to be the "documentation" for the routine below.

NonlinOut sccngr(const NonlinParam& np, const NonlinCF& cfo)
{
  // Set up initial values
  np.SetCF(cfo.cf(np.Par()));           // Current value for cost-function (E in Moller 92).
  double sigma = 1.0e-2;                // Step-length when estmating H*p from g(w+sigma*p)-g(w)
  double lambda_bar = 0.0;              // Update for lambda if approximate hessian not positive definite
  ColumnVector r = -cfo.grad(np.Par()); // Negative gradient
  ColumnVector p = r;                   // Search direction
  bool success = true;                  // True if previous step was successful
  double delta = 0.0;                   // Used to check pos def of H in loop below
  ColumnVector s(np.NPar());            // Used as approximation to H*p in loop below 

  while (np.NextIter()) {
    double p2 = DotProduct(p,p);                            // p'*p, Temporary variable to save some time
    if (success == true) {                                  // If last step led to reduction of cost-function
      double sigma_k = sigma/std::sqrt(p2);                      // Normalised step-length when estimating H*p
      // cout << "np.NIter() = " << np.NIter() << ", p2 = " << p2 << ", sigma_k = " << sigma_k << endl;
      s = (cfo.grad(np.Par()+sigma_k*p) + r) / sigma_k;     // Approximation to H*p
      delta = DotProduct(p,s);                              // Approximation to p'*H*p
    }
    s += (np.Lambda()-lambda_bar)*p;                      // Equivalent to adding (l-lb)*I to H
    delta += (np.Lambda()-lambda_bar)*p2;                 // If <0 then H+(l-lb)*I not positive definite
    if (delta <= 0) {                                     // If it H is not positive definite
      s += (np.Lambda() - 2.0*(delta/p2)) * p;            // Make H more diagonal dominant to ensure pos def
      lambda_bar = 2.0*(np.Lambda() - delta/p2);
      delta  = np.Lambda()*p2 - delta;
      np.SetLambda(lambda_bar);
    }
    double mu = DotProduct(p,r);
    double alpha = mu/delta;                              // Step size in direction p
    double tmp_cf = cfo.cf(np.Par()+alpha*p);             // Value of cost-function at attempted new point

    // cout << "np.NIter() " << np.NIter() << ", delta = " << delta << ", mu = " << mu << ", alpha = " << alpha << endl;

    /*
    char fname[100]; 
    sprintf(fname,"scg_debug_gradient_%02d.txt",np.NIter());
    print_newmat(r,fname);
    sprintf(fname,"scg_debug_step_%02d.txt",np.NIter());
    ColumnVector  step(p); step *= alpha;
    print_newmat(step,fname);
    */
    
    
    double Delta = 2.0*delta*(np.CF()-tmp_cf) / (mu*mu);  // > 0 means attempted step reduced cost-function
    if (Delta >= 0) {                                     // If step reduces cost-function
      np.SetCF(tmp_cf);                                   // Update lowest observed value of cost-function
      np.SetPar(np.Par() + alpha*p);                      // Update best set of parameters
      lambda_bar = 0.0;
      success = true;
      if ((np.NIter()%np.NPar()) == 0) {                  // If npar iterations since last resetting of directions
        r = -cfo.grad(np.Par());                          // Reset search direction to negative gradient
        p = r;
      }
      else {
        ColumnVector oldr = r;
        r = -cfo.grad(np.Par());
        double beta = (DotProduct(r,r)-DotProduct(oldr,r)) / mu;
        // cout << "np.NIter() = " << np.NIter() << ", beta = " << beta << endl;
        p = r + beta*p;                              // New search direction
      } 
      if (Delta > 0.75) {                            // If attempted step was \emph{REALLY} good
	np.SetLambda(np.Lambda()/2.0);
      }
    }
    else {                                           // If step doesn't reduce cost-function
      lambda_bar = np.Lambda();
      success = false;
    }
    if (Delta < 0.25) {                              // If step reduced cost-function only "a little" (or not at all)
      np.SetLambda(4.0*np.Lambda());
    }
    if (zero_grad_conv(np.Par(),r,np.CF(),np.FractionalGradientTolerance())) {  // If gradient is (practically) zero
      np.SetStatus(NL_GRADCONV); return(np.Status());
    }
  }
  // If we get here we have exceeded allowed # of iterations
  np.SetStatus(NL_MAXITER);
  return(np.Status());
}
 
// Main routine for variable-metric optimisation. This implements
// the variable-metric optimisation with the BFGS or DFP updating
// schemes. The implementation details are mostly quite close to
// those described in Numerical Recipies in C.

NonlinOut varmet(const NonlinParam& p, const NonlinCF& cfo)
{
  // Get scale factor to ensure a relative scale beteween
  // parameters and cost-function such that fast and robust
  // convergence is acheieved.

  double sf = cfo.sf();                      // Suggestion by "user"
  ColumnVector grad = sf*cfo.grad(p.Par());  // Gradient of const-function
  if (p.VariableMetricAutoScale()) {
    sf = scale_factor(p.Par(),-grad,cfo,p.LineSearchMaxIterations(),sf);         // Refinement by "me"
    if (sf == 0.0) {                                                             // No minimum in indicated direction
      p.SetStatus(NL_PARCONV);                                                   // Assume this means we are already at minimum
      return(p.Status());
    }
    grad = (sf/cfo.sf()) * grad;
  }

  VarmetMatrix  iH(p.NPar(),VM_OPT,p.VariableMetricUpdate());   // Inverse Hessian
  p.SetCF(sf*cfo.cf(p.Par()));                                // Current value of cost-function
  ColumnVector  pdir = -(iH*grad);                            // Direction to search in

  double        lambda = 0.0;     // Step-length returned by linsrch
  double        newcf = 0.0;      // New value for cost-function
  ColumnVector  newpar(p.NPar()); // New point in parameter space

  while (p.NextIter()) {
    // Do a line-search to find a new point in parameter space
    LinOut status = linsrch(pdir,p.Par(),grad,cfo,p.CF(),sf,p.LineSearchMaxIterations(),
                            p.LineSearchMaxStep(),p.VariableMetricAlpha(),
                            p.LineSearchFractionalParameterTolerance(),&lambda,&newcf,&newpar);
    // Check for convergence/problems based on outcome of linsrch
    if (status == LM_MAXITER) {p.SetStatus(NL_LM_MAXITER); return(p.Status());}
    else if (status == LM_LAMBDA_NILL) { // This means we might be heading uphill and should restart
      if (p.NextRestart()) { // If we have spare restarts
        p.SetCF(p.CF());      // Another copy of old value
        p.SetPar(p.Par());    // Another copy of old values
        iH.reset();           // Back to being unity matrix
        pdir = -grad;
        continue;
      }
      else {  
        p.SetStatus(NL_PARCONV); return(p.Status());
      }
    }
    // Test for convergence based on distance between points in parameter space
    ColumnVector dpar = newpar - p.Par();
    p.SetPar(newpar);
    p.SetCF(newcf);
    // cout << "p.FractionalParameterTolerance() = " << p.FractionalParameterTolerance() << endl;
    // cout << "P.Par() = " << p.Par() << endl;
    // cout << "dpar = " << dpar << endl;
    if (zero_par_step_conv(p.Par(),dpar,p.FractionalParameterTolerance())) {p.SetStatus(NL_PARCONV); return(p.Status());}
    // Get gradient at new point
    ColumnVector newgrad = sf*cfo.grad(p.Par());
    // Test for convergence based on "zero" gradient
    if (zero_grad_conv(p.Par(),newgrad,p.CF(),p.FractionalGradientTolerance())) {p.SetStatus(NL_GRADCONV); return(p.Status());}
    // Update estimate of inverse Hessian
    iH.update(dpar,newgrad-grad);
    // Update parameters and get new direction to go in
    grad = newgrad;
    pdir = -(iH*grad);      // N.B. no unary - op for iH, parenthesis necessary
  }

  // If we get here we have exceeded the allowed # of iterations
  p.SetStatus(NL_MAXITER);

  return(p.Status());  
}  

LinOut linsrch(// Input
               const ColumnVector&  dir,    // Search direction
               const ColumnVector&  p0,      // Current parameter values
               const ColumnVector&  grad,    // Gradient at p0
               const NonlinCF&      cfo,     // Cost-function object
               double               f0,      // Current cost-function value
               double               sf,      // Scale factor for cost-function
               double               maxiter, // Max # of iterations
               double               sm,      // Stepmax
               double               alpha,   // Alpha (sorry).
               double               ptol,    // Tolerance in parameter space
               // Output
               double               *lambda, // Resulting step length
               double               *of,     // Value of cost-function on output
               ColumnVector         *np)     // New parameters
{
  const double lmin = 0.1;             
  const double lmax = 0.5; 

  // First make sure that the step-length suggested
  // by pdir isn't completely unreasonable.

  double totstep=std::sqrt(DotProduct(dir,dir));
  ColumnVector pdir(dir);
  if (totstep > sm) {pdir *= sm/totstep;}

  // Calculate expected rate of change in the direction 
  // given by pdir.

  double fp0 = DotProduct(grad,pdir);

  // Calculate smallest meaningful lambda given what is
  // smallest meaningful change in parameter value.

  double almin=0.0;
  for (int i=0; i<p0.Nrows(); i++) {
    almin = std::max(almin,std::abs(pdir.element(i))/std::max(std::abs(p0.element(i)),1.0));
  }
  almin = ptol / almin;

  // First try a step of full lambda
  
  *lambda = 1.0;                        // Start with that
  (*np) =  p0 + (*lambda)*pdir;         // First new parameters to try
  double f2 = sf * cfo.cf(*np);         // Cost-function value for par

  // See if that does it (fat chance!)
  if (f2 < f0 + alpha*(*lambda)*DotProduct(grad,(*np)-p0)) {*of = f2; return(LM_CONV);}

  // Calculate Quadratic based on f(0), f'(0)
  // and f(1) and find minimum of that quadratic.

  *lambda = - fp0 / (2.0*(f2-f0-fp0));  // Minumum of f(lambda)
  // Make sure new lambda is 0.1*old_l < lambda < 0.5*old_l
  *lambda = std::max(lmin,*lambda);
  *lambda = std::min(lmax,*lambda);
  (*np) =  p0 + (*lambda)*pdir;         // Second set of new parameters to try
  double f1 = sf * cfo.cf(*np);              // Cost-function value for par

  // Now we will start fitting cubics to f(0), f'(0),
  // f(lambda_1) and f(lambda_2) where lambda_1 is the
  // lambda most recently tested and where lambda_2 is
  // the lambda tested second to last.

  double       l2 = 1.0;     // Second to last lambda
  double       l1 = *lambda; // Last lambda
  Matrix       X(2,2);
  ColumnVector y(2);       
  
  for (int iter=0; iter<maxiter; iter++) {
    // See if present lambda might be too small
    if (*lambda < almin) {*of = f1; return(LM_LAMBDA_NILL);}
    // See if present value is acceptable
    if (f1 < f0 + alpha*(*lambda)*DotProduct(grad,(*np)-p0)) {*of = f1; return(LM_CONV);}
    // Find parameter values for cubic and square on lambda
    X << std::pow(l1,3.0) << std::pow(l1,2.0) << std::pow(l2,3.0) << std::pow(l2,2.0);
    y << f1-fp0*l1-f0 << f2-fp0*l2-f0;
    ColumnVector b = X.i()*y;
    // Find value for lambda that yield minimum of cubic
    *lambda = (-b.element(1) + std::sqrt(std::pow(b.element(1),2.0) - 3.0*b.element(0)*fp0)) / (3.0*b.element(0));
    // Make sure new lambda is 0.1*old_l < lambda < 0.5*old_l
    *lambda = std::max(lmin*l1,*lambda);
    *lambda = std::min(lmax*l1,*lambda);
    // Get new function value and update parameters
    f2 = f1;
    (*np) = p0 + (*lambda)*pdir;
    f1 = sf * cfo.cf(*np);
    l2 = l1;
    l1 = *lambda;
  }

  // If we are here we have exceeded # of iterations
  
  *of = f1;
  return(LM_MAXITER);
}

// Will try and find a scale factor for the cost-function such that
// the step length (lambda) for the first iteration of the variable-
// metric method is ~0.25. Empricially I have found that such a scaling
// that yields a first step length in the range 0.1 -- 0.5 will yield 
// robust and fast convergence. N.B. though that I have only tested that
// for non-linear reg, and it is concievable that it is different for
// other applications with fewer parameters.
 
double scale_factor(const ColumnVector&  p,       // Current parameter values
                    const ColumnVector&  pdir,    // Search direction
                    const NonlinCF&      cfo,     // Cost-function object
                    int                  maxiter, // Max # of iterations
                    double               sf)      // Scale factor.
{
  const double        dl = 0.25;   // Desired Lambda
  const double        ftol = 0.01; // Fractional tolerance for minimum

  // Start out by finding an upper bound for lambda such that
  // a minimum is guaranteed to be between 0 and rp
  
  pair<double,double> lp;
  pair<double,double> mp;
  pair<double,double> rp = bracket(p,pdir,cfo,ftol,sf,&lp,&mp);
  if (rp == mp) { // If there is no minimum in the indicated direction
    return(0.0);
  }

  // Now find a minimum with a fractional accuracy of ~1%

  pair<double,double> minpoint;
  
  if (linmin(p,pdir,cfo,sf,lp,mp,rp,ftol,maxiter,&minpoint) == LM_MAXITER) {
    throw NonlinException("Failed to find minimum along search direction");
  }

  sf *= minpoint.first/dl;
  return(sf);
}

// Will find the minimum of the cost-function as a function of 
// lambda. This routine will find the minimum to a fractional
// tolerance of lambda. This is NOT practical to use for the
// Variable Metric minimisation (too slow), but is used for
// the conjugate-gradient method and for finding the initial 
// scaling between parameters and cost-function for the 
// variable metric method.

LinOut linmin(// Input
              const ColumnVector&   p,      // Current parameter values
              const ColumnVector&   pdir,   // Search direction
              const NonlinCF&       cfo,    // Cost-function object
              double                sf,     // Scale factor for cost-function
              pair<double,double>   lp,     // Left point
              pair<double,double>   mp,     // Point somewhere in interval
              pair<double,double>   rp,     // Right point
              double                ftol,   // Fractional tolerance
              int                   maxiter,// Max # of iterations
              // Output
              pair<double,double>   *x)     // Best point
{
  const double         gold = 0.382;// Golden section
  pair<double,double>  test;        // New point to test
  pair<double,double>  w = mp;      // Second best point
  pair<double,double>  v = mp;      // Last value of second best point
  double               step = 0.0;
  double               ostep = 0.0; // Length of 2nd to last step taken
  double               d = 0.0;     // Length of last step taken
  ColumnVector         y(3);        // Used for fitting parabolic
  Matrix               X(3,3);      // Used for fitting parabolic
  *x = mp;                          // Initialise "best" point

  for (int i=0; i<maxiter; i++) {
    double midp = (rp.first+lp.first)/2.0;                       // Midpoint of bracketing points
    double tol = 2.0*ftol*std::abs(x->first)+MISCMATHS::EPS;          // Std::Absolute tolerance
    if  (std::abs(x->first-midp) <= (tol-0.5*(rp.first-lp.first))) {  // Convergence check
      return(LM_CONV);
    }
    // Try parabolic fit, but not before third iteration
    double tmp = 10.0*std::sqrt(MISCMATHS::EPS);
    if (std::abs(ostep) > tol/2.0 &&           // If second to last step big enough
        std::abs(x->first-w.first) > tmp && 
        std::abs(x->first-v.first) > tmp && 
        std::abs(w.first-v.first) > tmp) {     // And points not degenerate
      step = ostep;
      ostep = d;
      y << x->second << w.second << v.second;
      X << std::pow(x->first,2.0) << x->first << 1.0 <<
	   std::pow(w.first,2.0) << w.first << 1.0 <<
	   std::pow(v.first,2.0) << v.first << 1.0;
      ColumnVector b = X.i() * y;
      if (b.element(0) < 4*MISCMATHS::EPS ||                   // If on line or going for maximum
          (test.first = -b.element(1)/(2.0*b.element(0))) <= lp.first 
          || test.first >= rp.first ||                         // If outside bracketed interval
          std::abs(test.first-x->first) > 0.5*step) {               // Or if step too big (indicates oscillation)
        // Take golden step into larger interval
        if (rp.first-x->first > x->first-lp.first) {           // If right interval larger
          test.first = x->first + gold * (rp.first - x->first);
        }
        else {
          test.first = x->first - gold * (x->first - lp.first); 
        }
      }
    }
    else { // Take golden step into larger interval   
      if (x->first < midp) {            // If right interval larger
        ostep = rp.first - x->first;
        test.first = x->first + gold * (rp.first - x->first);
      }
      else {
        ostep = x->first - lp.first;
        test.first = x->first - gold * (x->first - lp.first); 
      }
    }
    d = test.first - x->first;                              // Signed length of step
    test.second = sf*cfo.cf(p+test.first*pdir);                // Evaluate cf at new point
    // Now we have a new point, and we need to figure out what to do with it
    if (test.second <= x->second) {  // If it beats the best step
      if (test.first > x->first) {lp = *x;}
      else {rp = *x;}
      v = w; w = *x; *x = test;
    }
    else {
      if (test.first < x->first) {lp = test;}
      else {rp = test;}
      if (test.second <= w.second || w.first == x->first) {
        v = w; w = test;
      }
      else if (test.second <= v.second || v.first == x->first || v.first == w.first) {
        v = test;
      }
    }
  }
  // If we are here we have used too many iterations
  return(LM_MAXITER); // Error status    
}
              
// Will return a value lambda such that a function minimum is guaranteed to
// lie somewhere in the interval between p and p+lambda*pdir. The second value
// of the returned pair is the cost-function value at the point.

pair<double,double> bracket(// Input 
                            const ColumnVector& p,      // Current parameter values
                            const ColumnVector& pdir,   // Search direction
                            const NonlinCF&     cfo,    // Cost-function object
                            double              ptol,   // Relative tolerance for parameter values
                            double              sf,     // Scale factor of cost-function
                            // Output
                            pair<double,double> *p_0,   // Cost-function value at p
                            pair<double,double> *p_m)   // Point between p_0 and p_l
{
  pair<double,double>  p_l;
  const double gr = 0.618034;
  const double maxstep = 100.0;
  p_0->first = 0.0;
  double cf0 = sf*cfo.cf(p);
  double l1 = 1.0;
  double cf1 = sf*cfo.cf(p+l1*pdir);

  // Find maximum relative component of search direction

  double test = 0.0;
  for (int i=0; i<pdir.Nrows(); i++) {test = std::max(test,std::abs(pdir.element(i))/std::max(p.element(i),1.0));}

  // Do a crude initial search for order of magnitude

  while (!isfinite(cf1)) {
    l1 *= 0.1;
    cf1 = sf*cfo.cf(p+l1*pdir);
  }

  // Get third point to get us started
  double l2 = 0.0;
  double cf2 = 0.0;
  if (cf1 < cf0) {l2 = (2.0 + gr)*l1; cf2 = sf*cfo.cf(p+l2*pdir);}
  else {l2 = l1; cf2 = cf1; l1 = gr * l2; cf1 = sf*cfo.cf(p+l1*pdir);}
  // Check if we already have a bracket
  if (cf1 < cf0 && cf1 < cf2) {
    p_l.first = l2; p_l.second = cf2;
    p_m->first = l1; p_m->second = cf1;
    p_0->second = cf0; 
    return(p_l);
  }

  Matrix        X(2,2);
  ColumnVector  y(2);
  double        lt = 0.0;
  double        cft = 0.0;

  while (!(cf1 < cf0 && cf1 < cf2)) {  // If minimum still not bracketed
    if (l2*test < ptol) {              // If interval ridicously small
      p_l = *p_0;
      *p_m = *p_0;
      return(p_l);
    }
    // Let's see if a parabolic might help us
    if (std::abs(l2-l1) > 10.0*std::sqrt(MISCMATHS::EPS)) {
      X << std::pow(l1,2.0) << l1 << std::pow(l2,2.0) << l2;
      y << cf1 << cf2;
      ColumnVector b = X.i()*y;
      if (b.element(0) > 4.0*MISCMATHS::EPS) {           // Check they are not on a line and not for maximum
        lt = - (b.element(1) / (2.0 * b.element(0))); // Tentative point
        if (lt > 0 && lt < l2) {                      // If in range of previous points
          cft = sf*cfo.cf(p+lt*pdir);
          if (cft < cf0 && cft < cf2) {l1=lt; cf1=cft; continue;}
          else if (cft > cf0 && lt < l1 && cft < cf1) {l2=l1; cf2=cf1; l1=lt; cf1=cft; continue;}
          else if (cft > cf0 && lt > l1 && cft < cf2) {l2=lt; cf2=cft; continue;}
        }
        else if (lt > 0 && lt < maxstep*l2) {       // If expansion in allowed range
          cft = sf*cfo.cf(p+lt*pdir);
          l1 = l2; cf1 = cf2; 
          l2 = lt; cf2 = cft;
          continue;
        }
      }
    }
    // If we are here the parabolic was of no use
    if (cf2 < cf0) { // We need to expand
      lt = (2.0 + gr)*l2;
      cft = sf*cfo.cf(p+lt*pdir);
      l1 = l2; cf1 = cf2;
      l2 = lt; cf2 = cft;
    }
    else { // We need to contract
      lt = gr * l1;
      cft = sf*cfo.cf(p+lt*pdir);
      l2 = l1; cf2 = cf1;
      l1 = lt; cf1 = cft;
    }     
  }  

  // If we are here we know that there is a minimum
  // somewhere between 0 and l2;

  p_0->second = cf0;
  p_m->first = l1;
  p_m->second = cf1;
  p_l.first = l2;
  p_l.second = cf2;
  return(p_l);   
}  

// Utility routines that checks for convergence based on various criteria

// Based on zero (neglible) gradient

bool zero_grad_conv(const ColumnVector&   par,
                    const ColumnVector&   grad,
                    double                cf,
                    double                gtol)
{
  double test = 0.0;     // test will be largest relative component of gradient
  for (int i=0; i<par.Nrows(); i++) {
    test = std::max(test,std::abs(grad.element(i))*std::max(std::abs(par.element(i)),1.0));
  }
  test /= std::max(cf,1.0);   // Protect against near-zero values for cost-function

  return(test < gtol);
}

// Based on zero (neglible) decrease in cost-function

bool zero_cf_diff_conv(double cfo,
                       double cfn,
                       double cftol)
{
  return(2.0*std::abs(cfo-cfn) <= cftol*(std::abs(cfo)+std::abs(cfn)+MISCMATHS::EPS));
}

// Based on zero (neglible) step in parameter space

bool zero_par_step_conv(const ColumnVector&   par,
                        const ColumnVector&   step,
                        double                ptol)
{
  double test = 0.0;
  for (int i=0; i<par.Nrows(); i++) {
    test = std::max(test,std::abs(step.element(i))/std::max(std::abs(par.element(i)),1.0));
  }
  return(test < ptol);
}

// Utility routines that allow the user to check accuracy of their own grad and hess functions

pair<ColumnVector,ColumnVector> check_grad(const ColumnVector&  par,
                                           const NonlinCF&      cfo)
{
  pair<ColumnVector,ColumnVector> rv;
  
  rv.first = cfo.NonlinCF::grad(par);
  rv.second = cfo.grad(par);

  return(rv);
}

pair<boost::shared_ptr<BFMatrix>,boost::shared_ptr<BFMatrix> > check_hess(const ColumnVector& par,
                                                                          const NonlinCF&     cfo)
{
  pair<boost::shared_ptr<BFMatrix>,boost::shared_ptr<BFMatrix> > rv;
  
  rv.first = cfo.NonlinCF::hess(par);
  rv.second = cfo.hess(par);

  return(rv);
}     
           

void print_newmat(const NEWMAT::GeneralMatrix&  m,
                  std::string                   fname)
{
  if (!fname.length()) {
    cout << endl << m << endl;
  }
  else {
    try {
      std::ofstream  fout(fname.c_str());
      fout << setprecision(10) << m;
    }
    catch(...) {
      std::string  errmsg("print_newmat: Failed to write to file " + fname);
      throw NonlinException(errmsg);
    }
  }
}
  
} // End namespace MISCMATHS