1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
// SPDX-License-Identifier: MIT
/*
* Implementation of libfsverity_compute_digest().
*
* Copyright 2018 Google LLC
* Copyright (C) 2020 Facebook
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
*/
#include "lib_private.h"
#include <stdlib.h>
#include <string.h>
#define FS_VERITY_MAX_LEVELS 64
struct block_buffer {
u32 filled;
u8 *data;
};
/*
* Hash a block, writing the result to the next level's pending block buffer.
*/
static void hash_one_block(struct hash_ctx *hash, struct block_buffer *cur,
u32 block_size, const u8 *salt, u32 salt_size)
{
struct block_buffer *next = cur + 1;
/* Zero-pad the block if it's shorter than block_size. */
memset(&cur->data[cur->filled], 0, block_size - cur->filled);
libfsverity_hash_init(hash);
libfsverity_hash_update(hash, salt, salt_size);
libfsverity_hash_update(hash, cur->data, block_size);
libfsverity_hash_final(hash, &next->data[next->filled]);
next->filled += hash->alg->digest_size;
cur->filled = 0;
}
static bool block_is_full(const struct block_buffer *block, u32 block_size,
struct hash_ctx *hash)
{
/* Would the next hash put us over the limit? */
return block->filled + hash->alg->digest_size > block_size;
}
static int report_merkle_tree_size(const struct libfsverity_metadata_callbacks *cbs,
u64 size)
{
if (cbs && cbs->merkle_tree_size) {
int err = cbs->merkle_tree_size(cbs->ctx, size);
if (err) {
libfsverity_error_msg("error processing Merkle tree size");
return err;
}
}
return 0;
}
static int report_merkle_tree_block(const struct libfsverity_metadata_callbacks *cbs,
const struct block_buffer *block,
u32 block_size, u64 *level_offset)
{
if (cbs && cbs->merkle_tree_block) {
int err = cbs->merkle_tree_block(cbs->ctx, block->data,
block_size,
*level_offset * block_size);
if (err) {
libfsverity_error_msg("error processing Merkle tree block");
return err;
}
(*level_offset)++;
}
return 0;
}
static int report_descriptor(const struct libfsverity_metadata_callbacks *cbs,
const void *descriptor, size_t size)
{
if (cbs && cbs->descriptor) {
int err = cbs->descriptor(cbs->ctx, descriptor, size);
if (err) {
libfsverity_error_msg("error processing fs-verity descriptor");
return err;
}
}
return 0;
}
/*
* Compute the file's Merkle tree root hash using the given hash algorithm,
* block size, and salt.
*/
static int compute_root_hash(void *fd, libfsverity_read_fn_t read_fn,
u64 file_size, struct hash_ctx *hash,
u32 block_size, const u8 *salt, u32 salt_size,
const struct libfsverity_metadata_callbacks *metadata_cbs,
u8 *root_hash)
{
const u32 hashes_per_block = block_size / hash->alg->digest_size;
const u32 padded_salt_size = roundup(salt_size, hash->alg->block_size);
u8 *padded_salt = NULL;
u64 blocks;
int num_levels = 0;
int level;
u64 level_offset[FS_VERITY_MAX_LEVELS];
struct block_buffer _buffers[1 + FS_VERITY_MAX_LEVELS + 1] = {};
struct block_buffer *buffers = &_buffers[1];
u64 offset;
int err = 0;
/* Root hash of empty file is all 0's */
if (file_size == 0) {
memset(root_hash, 0, hash->alg->digest_size);
return report_merkle_tree_size(metadata_cbs, 0);
}
if (salt_size != 0) {
padded_salt = libfsverity_zalloc(padded_salt_size);
if (!padded_salt)
return -ENOMEM;
memcpy(padded_salt, salt, salt_size);
}
/* Compute number of levels and the number of blocks in each level. */
blocks = DIV_ROUND_UP(file_size, block_size);
while (blocks > 1) {
if (WARN_ON(num_levels >= FS_VERITY_MAX_LEVELS)) {
err = -EINVAL;
goto out;
}
blocks = DIV_ROUND_UP(blocks, hashes_per_block);
/*
* Temporarily use level_offset[] to store the number of blocks
* in each level. It will be overwritten later.
*/
level_offset[num_levels++] = blocks;
}
/*
* Compute the starting block of each level, using the convention where
* the root level is first, i.e. the convention used by
* FS_IOC_READ_VERITY_METADATA. At the same time, compute the total
* size of the Merkle tree. These values are only needed for the
* metadata callbacks (if they were given), as the hash computation
* itself doesn't prescribe an ordering of the levels and doesn't
* prescribe any special meaning to the total size of the Merkle tree.
*/
offset = 0;
for (level = num_levels - 1; level >= 0; level--) {
blocks = level_offset[level];
level_offset[level] = offset;
offset += blocks;
}
err = report_merkle_tree_size(metadata_cbs, offset * block_size);
if (err)
goto out;
/*
* Allocate the block buffers. Buffer "-1" is for data blocks.
* Buffers 0 <= level < num_levels are for the actual tree levels.
* Buffer 'num_levels' is for the root hash.
*/
for (level = -1; level < num_levels; level++) {
buffers[level].data = libfsverity_zalloc(block_size);
if (!buffers[level].data) {
err = -ENOMEM;
goto out;
}
}
buffers[num_levels].data = root_hash;
/* Hash each data block, also hashing the tree blocks as they fill up */
for (offset = 0; offset < file_size; offset += block_size) {
buffers[-1].filled = min(block_size, file_size - offset);
err = read_fn(fd, buffers[-1].data, buffers[-1].filled);
if (err) {
libfsverity_error_msg("error reading file");
goto out;
}
hash_one_block(hash, &buffers[-1], block_size,
padded_salt, padded_salt_size);
for (level = 0; level < num_levels; level++) {
if (!block_is_full(&buffers[level], block_size, hash))
break;
hash_one_block(hash, &buffers[level], block_size,
padded_salt, padded_salt_size);
err = report_merkle_tree_block(metadata_cbs,
&buffers[level],
block_size,
&level_offset[level]);
if (err)
goto out;
}
}
/* Finish all nonempty pending tree blocks */
for (level = 0; level < num_levels; level++) {
if (buffers[level].filled != 0) {
hash_one_block(hash, &buffers[level], block_size,
padded_salt, padded_salt_size);
err = report_merkle_tree_block(metadata_cbs,
&buffers[level],
block_size,
&level_offset[level]);
if (err)
goto out;
}
}
/* Root hash was filled by the last call to hash_one_block() */
if (WARN_ON(buffers[num_levels].filled != hash->alg->digest_size)) {
err = -EINVAL;
goto out;
}
err = 0;
out:
for (level = -1; level < num_levels; level++)
free(buffers[level].data);
free(padded_salt);
return err;
}
LIBEXPORT int
libfsverity_compute_digest(void *fd, libfsverity_read_fn_t read_fn,
const struct libfsverity_merkle_tree_params *params,
struct libfsverity_digest **digest_ret)
{
u32 alg_num;
u32 block_size;
const struct fsverity_hash_alg *hash_alg;
struct hash_ctx *hash = NULL;
struct libfsverity_digest *digest;
struct fsverity_descriptor desc;
int err;
if (!read_fn || !params || !digest_ret) {
libfsverity_error_msg("missing required parameters for compute_digest");
return -EINVAL;
}
if (params->version != 1) {
libfsverity_error_msg("unsupported version (%u)",
params->version);
return -EINVAL;
}
alg_num = params->hash_algorithm ?: FS_VERITY_HASH_ALG_DEFAULT;
block_size = params->block_size ?: FS_VERITY_BLOCK_SIZE_DEFAULT;
if (!is_power_of_2(block_size)) {
libfsverity_error_msg("unsupported block size (%u)",
block_size);
return -EINVAL;
}
if (params->salt_size > sizeof(desc.salt)) {
libfsverity_error_msg("unsupported salt size (%u)",
params->salt_size);
return -EINVAL;
}
if (params->salt_size && !params->salt) {
libfsverity_error_msg("salt_size specified, but salt is NULL");
return -EINVAL;
}
if (!libfsverity_mem_is_zeroed(params->reserved1,
sizeof(params->reserved1)) ||
!libfsverity_mem_is_zeroed(params->reserved2,
sizeof(params->reserved2))) {
libfsverity_error_msg("reserved bits set in merkle_tree_params");
return -EINVAL;
}
hash_alg = libfsverity_find_hash_alg_by_num(alg_num);
if (!hash_alg) {
libfsverity_error_msg("unknown hash algorithm: %u", alg_num);
return -EINVAL;
}
if (block_size < 2 * hash_alg->digest_size) {
libfsverity_error_msg("block size (%u) too small for hash algorithm %s",
block_size, hash_alg->name);
return -EINVAL;
}
hash = hash_alg->create_ctx(hash_alg);
if (!hash)
return -ENOMEM;
memset(&desc, 0, sizeof(desc));
desc.version = 1;
desc.hash_algorithm = alg_num;
desc.log_blocksize = ilog2(block_size);
desc.data_size = cpu_to_le64(params->file_size);
if (params->salt_size != 0) {
memcpy(desc.salt, params->salt, params->salt_size);
desc.salt_size = params->salt_size;
}
err = compute_root_hash(fd, read_fn, params->file_size, hash,
block_size, params->salt, params->salt_size,
params->metadata_callbacks, desc.root_hash);
if (err)
goto out;
err = report_descriptor(params->metadata_callbacks,
&desc, sizeof(desc));
if (err)
goto out;
digest = libfsverity_zalloc(sizeof(*digest) + hash_alg->digest_size);
if (!digest) {
err = -ENOMEM;
goto out;
}
digest->digest_algorithm = alg_num;
digest->digest_size = hash_alg->digest_size;
libfsverity_hash_full(hash, &desc, sizeof(desc), digest->digest);
*digest_ret = digest;
err = 0;
out:
libfsverity_free_hash_ctx(hash);
return err;
}
|