File: mmgr.cpp

package info (click to toggle)
ftgl 2.4.0-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 2,540 kB
  • sloc: cpp: 17,918; sh: 1,073; ansic: 644; makefile: 376
file content (1742 lines) | stat: -rw-r--r-- 70,376 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
// ---------------------------------------------------------------------------------------------------------------------------------
//
//
//  _ __ ___  _ __ ___   __ _ _ __      ___ _ __  _ __
// | '_ ` _ \| '_ ` _ \ / _` | '__|    / __| '_ \| '_ \
// | | | | | | | | | | | (_| | |    _ | (__| |_) | |_) |
// |_| |_| |_|_| |_| |_|\__, |_|   (_) \___| .__/| .__/
//                       __/ |             | |   | |
//                      |___/              |_|   |_|
//
// Memory manager & tracking software
//
// Best viewed with 8-character tabs and (at least) 132 columns
//
// ---------------------------------------------------------------------------------------------------------------------------------
//
// Restrictions & freedoms pertaining to usage and redistribution of this software:
//
//  * This software is 100% free
//  * If you use this software (in part or in whole) you must credit the author.
//  * This software may not be re-distributed (in part or in whole) in a modified
//    form without clear documentation on how to obtain a copy of the original work.
//  * You may not use this software to directly or indirectly cause harm to others.
//  * This software is provided as-is and without warrantee. Use at your own risk.
//
// For more information, visit HTTP://www.FluidStudios.com
//
// ---------------------------------------------------------------------------------------------------------------------------------
// Originally created on 12/22/2000 by Paul Nettle
//
// Copyright 2000, Fluid Studios, Inc., all rights reserved.
// ---------------------------------------------------------------------------------------------------------------------------------
//
// !!IMPORTANT!!
//
// This software is self-documented with periodic comments. Before you start using this software, perform a search for the string
// "-DOC-" to locate pertinent information about how to use this software.
//
// You are also encouraged to read the comment blocks throughout this source file. They will help you understand how this memory
// tracking software works, so you can better utilize it within your applications.
//
// NOTES:
//
// 1. This code purposely uses no external routines that allocate RAM (other than the raw allocation routines, such as malloc). We
//    do this because we want this to be as self-contained as possible. As an example, we don't use assert, because when running
//    under WIN32, the assert brings up a dialog box, which allocates RAM. Doing this in the middle of an allocation would be bad.
//
// 2. When trying to override new/delete under MFC (which has its own version of global new/delete) the linker will complain. In
//    order to fix this error, use the compiler option: /FORCE, which will force it to build an executable even with linker errors.
//    Be sure to check those errors each time you compile, otherwise, you may miss a valid linker error.
//
// 3. If you see something that looks odd to you or seems like a strange way of going about doing something, then consider that this
//    code was carefully thought out. If something looks odd, then just assume I've got a good reason for doing it that way (an
//    example is the use of the class MemStaticTimeTracker.)
//
// 4. With MFC applications, you will need to comment out any occurance of "#define new DEBUG_NEW" from all source files.
//
// 5. Include file dependencies are _very_important_ for getting the MMGR to integrate nicely into your application. Be careful if
//    you're including standard includes from within your own project inclues; that will break this very specific dependency order.
//    It should look like this:
//
//		#include <stdio.h>   // Standard includes MUST come first
//		#include <stdlib.h>  //
//		#include <streamio>  //
//
//		#include "mmgr.h"    // mmgr.h MUST come next
//
//		#include "myfile1.h" // Project includes MUST come last
//		#include "myfile2.h" //
//		#include "myfile3.h" //
//
// ---------------------------------------------------------------------------------------------------------------------------------

//#include "stdafx.h"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <time.h>
#include <stdarg.h>
#include <new>

#ifndef	_WIN32
#include <unistd.h>
#endif

#include "mmgr.h"

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- If you're like me, it's hard to gain trust in foreign code. This memory manager will try to INDUCE your code to crash (for
// very good reasons... like making bugs obvious as early as possible.) Some people may be inclined to remove this memory tracking
// software if it causes crashes that didn't exist previously. In reality, these new crashes are the BEST reason for using this
// software!
//
// Whether this software causes your application to crash, or if it reports errors, you need to be able to TRUST this software. To
// this end, you are given some very simple debugging tools.
//
// The quickest way to locate problems is to enable the STRESS_TEST macro (below.) This should catch 95% of the crashes before they
// occur by validating every allocation each time this memory manager performs an allocation function. If that doesn't work, keep
// reading...
//
// If you enable the TEST_MEMORY_MANAGER #define (below), this memory manager will log an entry in the memory.log file each time it
// enters and exits one of its primary allocation handling routines. Each call that succeeds should place an "ENTER" and an "EXIT"
// into the log. If the program crashes within the memory manager, it will log an "ENTER", but not an "EXIT". The log will also
// report the name of the routine.
//
// Just because this memory manager crashes does not mean that there is a bug here! First, an application could inadvertantly damage
// the heap, causing malloc(), realloc() or free() to crash. Also, an application could inadvertantly damage some of the memory used
// by this memory tracking software, causing it to crash in much the same way that a damaged heap would affect the standard
// allocation routines.
//
// In the event of a crash within this code, the first thing you'll want to do is to locate the actual line of code that is
// crashing. You can do this by adding log() entries throughout the routine that crashes, repeating this process until you narrow
// in on the offending line of code. If the crash happens in a standard C allocation routine (i.e. malloc, realloc or free) don't
// bother contacting me, your application has damaged the heap. You can help find the culprit in your code by enabling the
// STRESS_TEST macro (below.)
//
// If you truely suspect a bug in this memory manager (and you had better be sure about it! :) you can contact me at
// midnight@FluidStudios.com. Before you do, however, check for a newer version at:
//
//	http://www.FluidStudios.com/publications.html
//
// When using this debugging aid, make sure that you are NOT setting the alwaysLogAll variable on, otherwise the log could be
// cluttered and hard to read.
// ---------------------------------------------------------------------------------------------------------------------------------

//#define	TEST_MEMORY_MANAGER

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Enable this sucker if you really want to stress-test your app's memory usage, or to help find hard-to-find bugs
// ---------------------------------------------------------------------------------------------------------------------------------

#define	STRESS_TEST

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Enable this sucker if you want to stress-test your app's error-handling. Set RANDOM_FAIL to the percentage of failures you
//       want to test with (0 = none, >100 = all failures).
// ---------------------------------------------------------------------------------------------------------------------------------

//#define	RANDOM_FAILURE 10.0

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Locals -- modify these flags to suit your needs
// ---------------------------------------------------------------------------------------------------------------------------------

#ifdef	STRESS_TEST
	static	const	unsigned int	hashBits           		= 12;
	static			bool			randomWipe          	= true;
	static			bool			alwaysValidateAll   	= true;
	static			bool			alwaysLogAll        	= true;
	static			bool			alwaysWipeAll       	= true;
	static			bool			cleanupLogOnFirstRun	= true;
	static	const	unsigned int	paddingSize         	= 1024; // An extra 8K per allocation!
#else
	static	const	unsigned int	hashBits               = 12;
	static			bool			randomWipe             = false;
	static			bool			alwaysValidateAll      = false;
	static			bool			alwaysLogAll           = false;
	static			bool			alwaysWipeAll          = true;
	static			bool			cleanupLogOnFirstRun   = true;
	static	const	unsigned int	paddingSize            = 4;
#endif

// ---------------------------------------------------------------------------------------------------------------------------------
// We define our own assert, because we don't want to bring up an assertion dialog, since that allocates RAM. Our new assert
// simply declares a forced breakpoint.
//
// The BEOS assert added by Arvid Norberg <arvid@iname.com>.
// ---------------------------------------------------------------------------------------------------------------------------------

#ifdef	_WIN32
	#ifdef	_DEBUG
	#define	m_assert(x) if ((x) == false) __asm { int 3 }
	#else
	#define	m_assert(x) {}
	#endif
#elif defined(__BEOS__)
	#ifdef DEBUG
		extern void debugger(const char *message);
		#define	m_assert(x) if ((x) == false) debugger("mmgr: assert failed")
	#else
		#define m_assert(x) {}
	#endif
#else	// Linux uses assert, which we can use safely, since it doesn't bring up a dialog within the program.
	#define	m_assert(cond) assert(cond)
#endif

// ---------------------------------------------------------------------------------------------------------------------------------
// Here, we turn off our macros because any place in this source file where the word 'new' or the word 'delete' (etc.)
// appear will be expanded by the macro. So to avoid problems using them within this source file, we'll just #undef them.
// ---------------------------------------------------------------------------------------------------------------------------------

#undef	new
#undef	delete
#undef	malloc
#undef	calloc
#undef	realloc
#undef	free

// ---------------------------------------------------------------------------------------------------------------------------------
// Defaults for the constants & statics in the MemoryManager class
// ---------------------------------------------------------------------------------------------------------------------------------

const		unsigned int	m_alloc_unknown        = 0;
const		unsigned int	m_alloc_new            = 1;
const		unsigned int	m_alloc_new_array      = 2;
const		unsigned int	m_alloc_malloc         = 3;
const		unsigned int	m_alloc_calloc         = 4;
const		unsigned int	m_alloc_realloc        = 5;
const		unsigned int	m_alloc_delete         = 6;
const		unsigned int	m_alloc_delete_array   = 7;
const		unsigned int	m_alloc_free           = 8;

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Get to know these values. They represent the values that will be used to fill unused and deallocated RAM.
// ---------------------------------------------------------------------------------------------------------------------------------

static		unsigned int	prefixPattern          = 0xbaadf00d; // Fill pattern for bytes preceeding allocated blocks
static		unsigned int	postfixPattern         = 0xdeadc0de; // Fill pattern for bytes following allocated blocks
static		unsigned int	unusedPattern          = 0xfeedface; // Fill pattern for freshly allocated blocks
static		unsigned int	releasedPattern        = 0xdeadbeef; // Fill pattern for deallocated blocks

// ---------------------------------------------------------------------------------------------------------------------------------
// Other locals
// ---------------------------------------------------------------------------------------------------------------------------------

static	const	unsigned int	hashSize               = 1 << hashBits;
static	const	char		*allocationTypes[]     = {"Unknown",
							  "new",     "new[]",  "malloc",   "calloc",
							  "realloc", "delete", "delete[]", "free"};
static		sAllocUnit	*hashTable[hashSize];
static		sAllocUnit	*reservoir;
static		unsigned int	currentAllocationCount = 0;
static		unsigned int	breakOnAllocationCount = 0;
static		sMStats		stats;
static	const	char		*sourceFile            = "??";
static	const	char		*sourceFunc            = "??";
static		unsigned int	sourceLine             = 0;
static		bool		staticDeinitTime       = false;
static		sAllocUnit	**reservoirBuffer      = NULL;
static		unsigned int	reservoirBufferSize    = 0;
static const	char		*memoryLogFile         = "memory.log";
static const	char		*memoryLeakLogFile     = "memleaks.log";
static		void		doCleanupLogOnFirstRun();

// ---------------------------------------------------------------------------------------------------------------------------------
// Local functions only
// ---------------------------------------------------------------------------------------------------------------------------------

static	void	log(const char *format, ...)
{
	// Build the buffer

	static char buffer[2048];
	va_list	ap;
	va_start(ap, format);
	vsprintf(buffer, format, ap);
	va_end(ap);

	// Cleanup the log?

	if (cleanupLogOnFirstRun) doCleanupLogOnFirstRun();

	// Open the log file

	FILE	*fp = fopen(memoryLogFile, "ab");

	// If you hit this assert, then the memory logger is unable to log information to a file (can't open the file for some
	// reason.) You can interrogate the variable 'buffer' to see what was supposed to be logged (but won't be.)
	m_assert(fp);

	if (!fp) return;

	// Spit out the data to the log

	fprintf(fp, "%s\r\n", buffer);
	fclose(fp);
}

// ---------------------------------------------------------------------------------------------------------------------------------

static	void	doCleanupLogOnFirstRun()
{
	if (cleanupLogOnFirstRun)
	{
		unlink(memoryLogFile);
		cleanupLogOnFirstRun = false;

		// Print a header for the log

		time_t	t = time(NULL);
		log("--------------------------------------------------------------------------------");
		log("");
		log("      %s - Memory logging file created on %s", memoryLogFile, asctime(localtime(&t)));
		log("--------------------------------------------------------------------------------");
		log("");
		log("This file contains a log of all memory operations performed during the last run.");
		log("");
		log("Interrogate this file to track errors or to help track down memory-related");
		log("issues. You can do this by tracing the allocations performed by a specific owner");
		log("or by tracking a specific address through a series of allocations and");
		log("reallocations.");
		log("");
		log("There is a lot of useful information here which, when used creatively, can be");
		log("extremely helpful.");
		log("");
		log("Note that the following guides are used throughout this file:");
		log("");
		log("   [!] - Error");
		log("   [+] - Allocation");
		log("   [~] - Reallocation");
		log("   [-] - Deallocation");
		log("   [I] - Generic information");
		log("   [F] - Failure induced for the purpose of stress-testing your application");
		log("   [D] - Information used for debugging this memory manager");
		log("");
		log("...so, to find all errors in the file, search for \"[!]\"");
		log("");
		log("--------------------------------------------------------------------------------");
	}
}

// ---------------------------------------------------------------------------------------------------------------------------------

static	const char	*sourceFileStripper(const char *sourceFile)
{
	char	*ptr = strrchr(sourceFile, '\\');
	if (ptr) return ptr + 1;
	ptr = strrchr(sourceFile, '/');
	if (ptr) return ptr + 1;
	return sourceFile;
}

// ---------------------------------------------------------------------------------------------------------------------------------

static	const char	*ownerString(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc)
{
	static	char	str[90];
	memset(str, 0, sizeof(str));
	sprintf(str, "%s(%05d)::%s", sourceFileStripper(sourceFile), sourceLine, sourceFunc);
	return str;
}

// ---------------------------------------------------------------------------------------------------------------------------------

static	const char	*insertCommas(unsigned int value)
{
	static	char	str[30];
	memset(str, 0, sizeof(str));

	sprintf(str, "%u", value);
	if (strlen(str) > 3)
	{
		memmove(&str[strlen(str)-3], &str[strlen(str)-4], 4);
		str[strlen(str) - 4] = ',';
	}
	if (strlen(str) > 7)
	{
		memmove(&str[strlen(str)-7], &str[strlen(str)-8], 8);
		str[strlen(str) - 8] = ',';
	}
	if (strlen(str) > 11)
	{
		memmove(&str[strlen(str)-11], &str[strlen(str)-12], 12);
		str[strlen(str) - 12] = ',';
	}

	return str;
}

// ---------------------------------------------------------------------------------------------------------------------------------

static	const char	*memorySizeString(unsigned long size)
{
	static	char	str[90];
	     if (size > (1024*1024))	sprintf(str, "%10s (%7.2fM)", insertCommas(size), (float) size / (1024.0f * 1024.0f));
	else if (size > 1024)		sprintf(str, "%10s (%7.2fK)", insertCommas(size), (float) size / 1024.0f);
	else				sprintf(str, "%10s bytes     ", insertCommas(size));
	return str;
}

// ---------------------------------------------------------------------------------------------------------------------------------

static	sAllocUnit	*findAllocUnit(const void *reportedAddress)
{
	// Just in case...
	m_assert(reportedAddress != NULL);

	// Use the address to locate the hash index. Note that we shift off the lower four bits. This is because most allocated
	// addresses will be on four-, eight- or even sixteen-byte boundaries. If we didn't do this, the hash index would not have
	// very good coverage.

	unsigned int	hashIndex = ((unsigned int) reportedAddress >> 4) & (hashSize - 1);
	sAllocUnit	*ptr = hashTable[hashIndex];
	while(ptr)
	{
		if (ptr->reportedAddress == reportedAddress) return ptr;
		ptr = ptr->next;
	}

	return NULL;
}

// ---------------------------------------------------------------------------------------------------------------------------------

static	size_t	calculateActualSize(const size_t reportedSize)
{
	// We use DWORDS as our padding, and a long is guaranteed to be 4 bytes, but an int is not (ANSI defines an int as
	// being the standard word size for a processor; on a 32-bit machine, that's 4 bytes, but on a 64-bit machine, it's
	// 8 bytes, which means an int can actually be larger than a long.)

	return reportedSize + paddingSize * sizeof(long) * 2;
}

// ---------------------------------------------------------------------------------------------------------------------------------

static	size_t	calculateReportedSize(const size_t actualSize)
{
	// We use DWORDS as our padding, and a long is guaranteed to be 4 bytes, but an int is not (ANSI defines an int as
	// being the standard word size for a processor; on a 32-bit machine, that's 4 bytes, but on a 64-bit machine, it's
	// 8 bytes, which means an int can actually be larger than a long.)

	return actualSize - paddingSize * sizeof(long) * 2;
}

// ---------------------------------------------------------------------------------------------------------------------------------

static	void	*calculateReportedAddress(const void *actualAddress)
{
	// We allow this...

	if (!actualAddress) return NULL;

	// JUst account for the padding

	return (void *) ((char *) actualAddress + sizeof(long) * paddingSize);
}

// ---------------------------------------------------------------------------------------------------------------------------------

static	void	wipeWithPattern(sAllocUnit *allocUnit, unsigned long pattern, const unsigned int originalReportedSize = 0)
{
	// For a serious test run, we use wipes of random a random value. However, if this causes a crash, we don't want it to
	// crash in a differnt place each time, so we specifically DO NOT call srand. If, by chance your program calls srand(),
	// you may wish to disable that when running with a random wipe test. This will make any crashes more consistent so they
	// can be tracked down easier.

	if (randomWipe)
	{
		pattern = ((rand() & 0xff) << 24) | ((rand() & 0xff) << 16) | ((rand() & 0xff) << 8) | (rand() & 0xff);
	}

	// -DOC- We should wipe with 0's if we're not in debug mode, so we can help hide bugs if possible when we release the
	// product. So uncomment the following line for releases.
	//
	// Note that the "alwaysWipeAll" should be turned on for this to have effect, otherwise it won't do much good. But we'll
	// leave it this way (as an option) because this does slow things down.
//	pattern = 0;

	// This part of the operation is optional

	if (alwaysWipeAll && allocUnit->reportedSize > originalReportedSize)
	{
		// Fill the bulk

		long	*lptr = (long *) ((char *)allocUnit->reportedAddress + originalReportedSize);
		int	length = allocUnit->reportedSize - originalReportedSize;
		int	i;
		for (i = 0; i < (length >> 2); i++, lptr++)
		{
			*lptr = pattern;
		}

		// Fill the remainder

		unsigned int	shiftCount = 0;
		char		*cptr = (char *) lptr;
		for (i = 0; i < (length & 0x3); i++, cptr++, shiftCount += 8)
		{
			*cptr = (pattern & (0xff << shiftCount)) >> shiftCount;
		}
	}

	// Write in the prefix/postfix bytes

	long		*pre = (long *) allocUnit->actualAddress;
	long		*post = (long *) ((char *)allocUnit->actualAddress + allocUnit->actualSize - paddingSize * sizeof(long));
	for (unsigned int i = 0; i < paddingSize; i++, pre++, post++)
	{
		*pre = prefixPattern;
		*post = postfixPattern;
	}
}

// ---------------------------------------------------------------------------------------------------------------------------------

static	void	dumpAllocations(FILE *fp)
{
	fprintf(fp, "Alloc.   Addr       Size       Addr       Size                        BreakOn BreakOn              \r\n");
	fprintf(fp, "Number Reported   Reported    Actual     Actual     Unused    Method  Dealloc Realloc Allocated by \r\n");
	fprintf(fp, "------ ---------- ---------- ---------- ---------- ---------- -------- ------- ------- --------------------------------------------------- \r\n");


	for (unsigned int i = 0; i < hashSize; i++)
	{
		sAllocUnit *ptr = hashTable[i];
		while(ptr)
		{
			fprintf(fp, "%06d 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X %-8s    %c       %c    %s\r\n",
				ptr->allocationNumber,
				(unsigned int) ptr->reportedAddress, ptr->reportedSize,
				(unsigned int) ptr->actualAddress, ptr->actualSize,
				m_calcUnused(ptr),
				allocationTypes[ptr->allocationType],
				ptr->breakOnDealloc ? 'Y':'N',
				ptr->breakOnRealloc ? 'Y':'N',
				ownerString(ptr->sourceFile, ptr->sourceLine, ptr->sourceFunc));
			ptr = ptr->next;
		}
	}
}

// ---------------------------------------------------------------------------------------------------------------------------------

static	void	dumpLeakReport()
{
	// Open the report file

	FILE	*fp = fopen(memoryLeakLogFile, "w+b");

	// If you hit this assert, then the memory report generator is unable to log information to a file (can't open the file for
	// some reason.)
	m_assert(fp);
	if (!fp) return;

	// Any leaks?

	// Header

	static  char    timeString[25];
	memset(timeString, 0, sizeof(timeString));
	time_t  t = time(NULL);
	struct  tm *tme = localtime(&t);
	fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
	fprintf(fp, "|                                          Memory leak report for:  %02d/%02d/%04d %02d:%02d:%02d                                            |\r\n", tme->tm_mon + 1, tme->tm_mday, tme->tm_year + 1900, tme->tm_hour, tme->tm_min, tme->tm_sec);
	fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
	fprintf(fp, "\r\n");
	fprintf(fp, "\r\n");
	if (stats.totalAllocUnitCount)
	{
		fprintf(fp, "%d memory leak%s found:\r\n", stats.totalAllocUnitCount, stats.totalAllocUnitCount == 1 ? "":"s");
	}
	else
	{
		fprintf(fp, "Congratulations! No memory leaks found!\r\n");

		// We can finally free up our own memory allocations

		if (reservoirBuffer)
		{
			for (unsigned int i = 0; i < reservoirBufferSize; i++)
			{
				free(reservoirBuffer[i]);
			}
			free(reservoirBuffer);
			reservoirBuffer = 0;
			reservoirBufferSize = 0;
			reservoir = NULL;
		}
	}
	fprintf(fp, "\r\n");

	if (stats.totalAllocUnitCount)
	{
		dumpAllocations(fp);
	}

	fclose(fp);
}

// ---------------------------------------------------------------------------------------------------------------------------------
// We use a static class to let us know when we're in the midst of static deinitialization
// ---------------------------------------------------------------------------------------------------------------------------------

class	MemStaticTimeTracker
{
public:
	MemStaticTimeTracker() {doCleanupLogOnFirstRun();}
	~MemStaticTimeTracker() {staticDeinitTime = true; dumpLeakReport();}
};
static	MemStaticTimeTracker	mstt;

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Flags & options -- Call these routines to enable/disable the following options
// ---------------------------------------------------------------------------------------------------------------------------------

bool	&m_alwaysValidateAll()
{
	// Force a validation of all allocation units each time we enter this software
	return alwaysValidateAll;
}

// ---------------------------------------------------------------------------------------------------------------------------------

bool	&m_alwaysLogAll()
{
	// Force a log of every allocation & deallocation into memory.log
	return alwaysLogAll;
}

// ---------------------------------------------------------------------------------------------------------------------------------

bool	&m_alwaysWipeAll()
{
	// Force this software to always wipe memory with a pattern when it is being allocated/dallocated
	return alwaysWipeAll;
}

// ---------------------------------------------------------------------------------------------------------------------------------

bool	&m_randomeWipe()
{
	// Force this software to use a random pattern when wiping memory -- good for stress testing
	return randomWipe;
}

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Simply call this routine with the address of an allocated block of RAM, to cause it to force a breakpoint when it is
// reallocated.
// ---------------------------------------------------------------------------------------------------------------------------------

bool	&m_breakOnRealloc(void *reportedAddress)
{
	// Locate the existing allocation unit

	sAllocUnit	*au = findAllocUnit(reportedAddress);

	// If you hit this assert, you tried to set a breakpoint on reallocation for an address that doesn't exist. Interrogate the
	// stack frame or the variable 'au' to see which allocation this is.
	m_assert(au != NULL);

	// If you hit this assert, you tried to set a breakpoint on reallocation for an address that wasn't allocated in a way that
	// is compatible with reallocation.
	m_assert(au->allocationType == m_alloc_malloc ||
		 au->allocationType == m_alloc_calloc ||
		 au->allocationType == m_alloc_realloc);

	return au->breakOnRealloc;
}

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Simply call this routine with the address of an allocated block of RAM, to cause it to force a breakpoint when it is
// deallocated.
// ---------------------------------------------------------------------------------------------------------------------------------

bool	&m_breakOnDealloc(void *reportedAddress)
{
	// Locate the existing allocation unit

	sAllocUnit	*au = findAllocUnit(reportedAddress);

	// If you hit this assert, you tried to set a breakpoint on deallocation for an address that doesn't exist. Interrogate the
	// stack frame or the variable 'au' to see which allocation this is.
	m_assert(au != NULL);

	return au->breakOnDealloc;
}

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- When tracking down a difficult bug, use this routine to force a breakpoint on a specific allocation count
// ---------------------------------------------------------------------------------------------------------------------------------

void	m_breakOnAllocation(unsigned int count)
{
	breakOnAllocationCount = count;
}

// ---------------------------------------------------------------------------------------------------------------------------------
// Used by the macros
// ---------------------------------------------------------------------------------------------------------------------------------

void	m_setOwner(const char *file, const unsigned int line, const char *func)
{
	// You're probably wondering about this...
	//
	// It's important for this memory manager to primarily work with global new/delete in their original forms (i.e. with
	// no extra parameters.) In order to do this, we use macros that call this function prior to operators new & delete. This
	// is fine... usually. Here's what actually happens when you use this macro to delete an object:
	//
	// m_setOwner(__FILE__, __LINE__, __FUNCTION__) --> object::~object() --> delete
	//
	// Note that the compiler inserts a call to the object's destructor just prior to calling our overridden operator delete.
	// But what happens when we delete an object whose destructor deletes another object, whose desctuctor deletes another
	// object? Here's a diagram (indentation follows stack depth):
	//
	// m_setOwner(...) -> ~obj1()                          // original call to delete obj1
	//     m_setOwner(...) -> ~obj2()                      // obj1's destructor deletes obj2
	//         m_setOwner(...) -> ~obj3()                  // obj2's destructor deletes obj3
	//             ...                                     // obj3's destructor just does some stuff
	//         delete                                      // back in obj2's destructor, we call delete
	//     delete                                          // back in obj1's destructor, we call delete
	// delete                                              // back to our original call, we call delete
	//
	// Because m_setOwner() just sets up some static variables (below) it's important that each call to m_setOwner() and
	// successive calls to new/delete alternate. However, in this case, three calls to m_setOwner() happen in succession
	// followed by three calls to delete in succession (with a few calls to destructors mixed in for fun.) This means that
	// only the final call to delete (in this chain of events) will have the proper reporting, and the first two in the chain
	// will not have ANY owner-reporting information. The deletes will still work fine, we just won't know who called us.
	//
	// "Then build a stack, my friend!" you might think... but it's a very common thing that people will be working with third-
	// party libraries (including MFC under Windows) which is not compiled with this memory manager's macros. In those cases,
	// m_setOwner() is never called, and rightfully should not have the proper trace-back information. So if one of the
	// destructors in the chain ends up being a call to a delete from a non-mmgr-compiled library, the stack will get confused.
	//
	// I've been unable to find a solution to this problem, but at least we can detect it and report the data before we
	// lose it. That's what this is all about. It makes it somewhat confusing to read in the logs, but at least ALL the
	// information is present...
	//
	// There's a caveat here... The compiler is not required to call operator delete if the value being deleted is NULL.
	// In this case, any call to delete with a NULL will sill call m_setOwner(), which will make m_setOwner() think that
	// there is a destructor chain becuase we setup the variables, but nothing gets called to clear them. Because of this
	// we report a "Possible destructor chain".
	//
	// Thanks to J. Woznack (from Kodiak Interactive Software Studios -- www.kodiakgames.com) for pointing this out.

	if (sourceLine && alwaysLogAll)
	{
		log("[I] NOTE! Possible destructor chain: previous owner is %s", ownerString(sourceFile, sourceLine, sourceFunc));
	}

	// Okay... save this stuff off so we can keep track of the caller

	sourceFile = file;
	sourceLine = line;
	sourceFunc = func;
}

// ---------------------------------------------------------------------------------------------------------------------------------

static	void	resetGlobals()
{
	sourceFile = "??";
	sourceLine = 0;
	sourceFunc = "??";
}

// ---------------------------------------------------------------------------------------------------------------------------------
// Global new/new[]
//
// These are the standard new/new[] operators. They are merely interface functions that operate like normal new/new[], but use our
// memory tracking routines.
// ---------------------------------------------------------------------------------------------------------------------------------

void	*operator new(size_t reportedSize)
{
	#ifdef TEST_MEMORY_MANAGER
	log("[D] ENTER: new");
	#endif

	// Save these off...

	const	char		*file = sourceFile;
	const	unsigned int	line = sourceLine;
	const	char		*func = sourceFunc;

	// ANSI says: allocation requests of 0 bytes will still return a valid value

	if (reportedSize == 0) reportedSize = 1;

	// ANSI says: loop continuously because the error handler could possibly free up some memory

	for(;;)
	{
		// Try the allocation

		void	*ptr = m_allocator(file, line, func, m_alloc_new, reportedSize);
		if (ptr)
		{
			#ifdef TEST_MEMORY_MANAGER
			log("[D] EXIT : new");
			#endif
			return ptr;
		}

		// There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
		// set it back again.

		std::new_handler	nh = std::set_new_handler(0);
		std::set_new_handler(nh);

		// If there is an error handler, call it

		if (nh)
		{
			(*nh)();
		}

		// Otherwise, throw the exception

		else
		{
			#ifdef TEST_MEMORY_MANAGER
			log("[D] EXIT : new");
			#endif
			throw std::bad_alloc();
		}
	}
}

// ---------------------------------------------------------------------------------------------------------------------------------

void	*operator new[](size_t reportedSize)
{
	#ifdef TEST_MEMORY_MANAGER
	log("[D] ENTER: new[]");
	#endif

	// Save these off...

	const	char		*file = sourceFile;
	const	unsigned int	line = sourceLine;
	const	char		*func = sourceFunc;

	// The ANSI standard says that allocation requests of 0 bytes will still return a valid value

	if (reportedSize == 0) reportedSize = 1;

	// ANSI says: loop continuously because the error handler could possibly free up some memory

	for(;;)
	{
		// Try the allocation

		void	*ptr = m_allocator(file, line, func, m_alloc_new_array, reportedSize);
		if (ptr)
		{
			#ifdef TEST_MEMORY_MANAGER
			log("[D] EXIT : new[]");
			#endif
			return ptr;
		}

		// There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
		// set it back again.

		std::new_handler	nh = std::set_new_handler(0);
		std::set_new_handler(nh);

		// If there is an error handler, call it

		if (nh)
		{
			(*nh)();
		}

		// Otherwise, throw the exception

		else
		{
			#ifdef TEST_MEMORY_MANAGER
			log("[D] EXIT : new[]");
			#endif
			throw std::bad_alloc();
		}
	}
}

// ---------------------------------------------------------------------------------------------------------------------------------
// Other global new/new[]
//
// These are the standard new/new[] operators as used by Microsoft's memory tracker. We don't want them interfering with our memory
// tracking efforts. Like the previous versions, these are merely interface functions that operate like normal new/new[], but use
// our memory tracking routines.
// ---------------------------------------------------------------------------------------------------------------------------------

void	*operator new(size_t reportedSize, const char *sourceFile, int sourceLine)
{
	#ifdef TEST_MEMORY_MANAGER
	log("[D] ENTER: new");
	#endif

	// The ANSI standard says that allocation requests of 0 bytes will still return a valid value

	if (reportedSize == 0) reportedSize = 1;

	// ANSI says: loop continuously because the error handler could possibly free up some memory

	for(;;)
	{
		// Try the allocation

		void	*ptr = m_allocator(sourceFile, sourceLine, "??", m_alloc_new, reportedSize);
		if (ptr)
		{
			#ifdef TEST_MEMORY_MANAGER
			log("[D] EXIT : new");
			#endif
			return ptr;
		}

		// There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
		// set it back again.

		std::new_handler	nh = std::set_new_handler(0);
		std::set_new_handler(nh);

		// If there is an error handler, call it

		if (nh)
		{
			(*nh)();
		}

		// Otherwise, throw the exception

		else
		{
			#ifdef TEST_MEMORY_MANAGER
			log("[D] EXIT : new");
			#endif
			throw std::bad_alloc();
		}
	}
}

// ---------------------------------------------------------------------------------------------------------------------------------

void	*operator new[](size_t reportedSize, const char *sourceFile, int sourceLine)
{
	#ifdef TEST_MEMORY_MANAGER
	log("[D] ENTER: new[]");
	#endif

	// The ANSI standard says that allocation requests of 0 bytes will still return a valid value

	if (reportedSize == 0) reportedSize = 1;

	// ANSI says: loop continuously because the error handler could possibly free up some memory

	for(;;)
	{
		// Try the allocation

		void	*ptr = m_allocator(sourceFile, sourceLine, "??", m_alloc_new_array, reportedSize);
		if (ptr)
		{
			#ifdef TEST_MEMORY_MANAGER
			log("[D] EXIT : new[]");
			#endif
			return ptr;
		}

		// There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
		// set it back again.

		std::new_handler	nh = std::set_new_handler(0);
		std::set_new_handler(nh);

		// If there is an error handler, call it

		if (nh)
		{
			(*nh)();
		}

		// Otherwise, throw the exception

		else
		{
			#ifdef TEST_MEMORY_MANAGER
			log("[D] EXIT : new[]");
			#endif
			throw std::bad_alloc();
		}
	}
}

// ---------------------------------------------------------------------------------------------------------------------------------
// Global delete/delete[]
//
// These are the standard delete/delete[] operators. They are merely interface functions that operate like normal delete/delete[],
// but use our memory tracking routines.
// ---------------------------------------------------------------------------------------------------------------------------------

void	operator delete(void *reportedAddress)
{
	#ifdef TEST_MEMORY_MANAGER
	log("[D] ENTER: delete");
	#endif

	// ANSI says: delete & delete[] allow NULL pointers (they do nothing)

	if (reportedAddress) m_deallocator(sourceFile, sourceLine, sourceFunc, m_alloc_delete, reportedAddress);
	else if (alwaysLogAll) log("[-] ----- %8s of NULL                      by %s", allocationTypes[m_alloc_delete], ownerString(sourceFile, sourceLine, sourceFunc));

	// Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
	// source (i.e. they didn't include our H file) then we won't think it was the last allocation.

	resetGlobals();

	#ifdef TEST_MEMORY_MANAGER
	log("[D] EXIT : delete");
	#endif
}

// ---------------------------------------------------------------------------------------------------------------------------------

void	operator delete[](void *reportedAddress)
{
	#ifdef TEST_MEMORY_MANAGER
	log("[D] ENTER: delete[]");
	#endif

	// ANSI says: delete & delete[] allow NULL pointers (they do nothing)

	if (reportedAddress) m_deallocator(sourceFile, sourceLine, sourceFunc, m_alloc_delete_array, reportedAddress);
	else if (alwaysLogAll)
		log("[-] ----- %8s of NULL                      by %s", allocationTypes[m_alloc_delete_array], ownerString(sourceFile, sourceLine, sourceFunc));

	// Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
	// source (i.e. they didn't include our H file) then we won't think it was the last allocation.

	resetGlobals();

	#ifdef TEST_MEMORY_MANAGER
	log("[D] EXIT : delete[]");
	#endif
}

// ---------------------------------------------------------------------------------------------------------------------------------
// Allocate memory and track it
// ---------------------------------------------------------------------------------------------------------------------------------

void	*m_allocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int allocationType, const size_t reportedSize)
{
	try
	{
		#ifdef TEST_MEMORY_MANAGER
		log("[D] ENTER: m_allocator()");
		#endif

		// Increase our allocation count

		currentAllocationCount++;

		// Log the request

		if (alwaysLogAll) log("[+] %05d %8s of size 0x%08X(%08d) by %s", currentAllocationCount, allocationTypes[allocationType], reportedSize, reportedSize, ownerString(sourceFile, sourceLine, sourceFunc));

		// If you hit this assert, you requested a breakpoint on a specific allocation count
		m_assert(currentAllocationCount != breakOnAllocationCount);

		// If necessary, grow the reservoir of unused allocation units

		if (!reservoir)
		{
			// Allocate 256 reservoir elements

			reservoir = (sAllocUnit *) malloc(sizeof(sAllocUnit) * 256);

			// If you hit this assert, then the memory manager failed to allocate internal memory for tracking the
			// allocations
			m_assert(reservoir != NULL);

			// Danger Will Robinson!

			if (reservoir == NULL) throw "Unable to allocate RAM for internal memory tracking data";

			// Build a linked-list of the elements in our reservoir

			memset(reservoir, 0, sizeof(sAllocUnit) * 256);
			for (unsigned int i = 0; i < 256 - 1; i++)
			{
				reservoir[i].next = &reservoir[i+1];
			}

			// Add this address to our reservoirBuffer so we can free it later

			sAllocUnit	**temp = (sAllocUnit **) realloc(reservoirBuffer, (reservoirBufferSize + 1) * sizeof(sAllocUnit *));
			m_assert(temp);
			if (temp)
			{
				reservoirBuffer = temp;
				reservoirBuffer[reservoirBufferSize++] = reservoir;
			}
		}

		// Logical flow says this should never happen...
		m_assert(reservoir != NULL);

		// Grab a new allocaton unit from the front of the reservoir

		sAllocUnit	*au = reservoir;
		reservoir = au->next;

		// Populate it with some real data

		memset(au, 0, sizeof(sAllocUnit));
		au->actualSize        = calculateActualSize(reportedSize);
		#ifdef RANDOM_FAILURE
		double	a = rand();
		double	b = RAND_MAX / 100.0 * RANDOM_FAILURE;
		if (a > b)
		{
			au->actualAddress = malloc(au->actualSize);
		}
		else
		{
			log("[F] Random faiure");
			au->actualAddress = NULL;
		}
		#else
		au->actualAddress     = malloc(au->actualSize);
		#endif
		au->reportedSize      = reportedSize;
		au->reportedAddress   = calculateReportedAddress(au->actualAddress);
		au->allocationType    = allocationType;
		au->sourceLine        = sourceLine;
		au->allocationNumber  = currentAllocationCount;
		if (sourceFile) strncpy(au->sourceFile, sourceFileStripper(sourceFile), sizeof(au->sourceFile) - 1);
		else		strcpy (au->sourceFile, "??");
		if (sourceFunc) strncpy(au->sourceFunc, sourceFunc, sizeof(au->sourceFunc) - 1);
		else		strcpy (au->sourceFunc, "??");

		// We don't want to assert with random failures, because we want the application to deal with them.

		#ifndef RANDOM_FAILURE
		// If you hit this assert, then the requested allocation simply failed (you're out of memory.) Interrogate the
		// variable 'au' or the stack frame to see what you were trying to do.
		m_assert(au->actualAddress != NULL);
		#endif

		if (au->actualAddress == NULL)
		{
			throw "Request for allocation failed. Out of memory.";
		}

		// If you hit this assert, then this allocation was made from a source that isn't setup to use this memory tracking
		// software, use the stack frame to locate the source and include our H file.
		m_assert(allocationType != m_alloc_unknown);

		// Insert the new allocation into the hash table

		unsigned int	hashIndex = ((unsigned int) au->reportedAddress >> 4) & (hashSize - 1);
		if (hashTable[hashIndex]) hashTable[hashIndex]->prev = au;
		au->next = hashTable[hashIndex];
		au->prev = NULL;
		hashTable[hashIndex] = au;

		// Account for the new allocatin unit in our stats

		stats.totalReportedMemory += au->reportedSize;
		stats.totalActualMemory   += au->actualSize;
		stats.totalAllocUnitCount++;
		if (stats.totalReportedMemory > stats.peakReportedMemory) stats.peakReportedMemory = stats.totalReportedMemory;
		if (stats.totalActualMemory   > stats.peakActualMemory)   stats.peakActualMemory   = stats.totalActualMemory;
		if (stats.totalAllocUnitCount > stats.peakAllocUnitCount) stats.peakAllocUnitCount = stats.totalAllocUnitCount;
		stats.accumulatedReportedMemory += au->reportedSize;
		stats.accumulatedActualMemory += au->actualSize;
		stats.accumulatedAllocUnitCount++;

		// Prepare the allocation unit for use (wipe it with recognizable garbage)

		wipeWithPattern(au, unusedPattern);

		// calloc() expects the reported memory address range to be filled with 0's

		if (allocationType == m_alloc_calloc)
		{
			memset(au->reportedAddress, 0, au->reportedSize);
		}

		// Validate every single allocated unit in memory

		if (alwaysValidateAll) m_validateAllAllocUnits();

		// Log the result

		if (alwaysLogAll) log("[+] ---->             addr 0x%08X", (unsigned int) au->reportedAddress);

		// Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
		// source (i.e. they didn't include our H file) then we won't think it was the last allocation.

		resetGlobals();

		// Return the (reported) address of the new allocation unit

		#ifdef TEST_MEMORY_MANAGER
		log("[D] EXIT : m_allocator()");
		#endif

		return au->reportedAddress;
	}
	catch(const char *err)
	{
		// Deal with the errors

		log("[!] %s", err);
		resetGlobals();

		#ifdef TEST_MEMORY_MANAGER
		log("[D] EXIT : m_allocator()");
		#endif

		return NULL;
	}
}

// ---------------------------------------------------------------------------------------------------------------------------------
// Reallocate memory and track it
// ---------------------------------------------------------------------------------------------------------------------------------

void	*m_reallocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int reallocationType, const size_t reportedSize, void *reportedAddress)
{
	try
	{
		#ifdef TEST_MEMORY_MANAGER
		log("[D] ENTER: m_reallocator()");
		#endif

		// Calling realloc with a NULL should force same operations as a malloc

		if (!reportedAddress)
		{
			return m_allocator(sourceFile, sourceLine, sourceFunc, reallocationType, reportedSize);
		}

		// Increase our allocation count

		currentAllocationCount++;

		// If you hit this assert, you requested a breakpoint on a specific allocation count
		m_assert(currentAllocationCount != breakOnAllocationCount);

		// Log the request

		if (alwaysLogAll) log("[~] %05d %8s of size 0x%08X(%08d) by %s", currentAllocationCount, allocationTypes[reallocationType], reportedSize, reportedSize, ownerString(sourceFile, sourceLine, sourceFunc));

		// Locate the existing allocation unit

		sAllocUnit	*au = findAllocUnit(reportedAddress);

		// If you hit this assert, you tried to reallocate RAM that wasn't allocated by this memory manager.
		m_assert(au != NULL);
		if (au == NULL) throw "Request to reallocate RAM that was never allocated";

		// If you hit this assert, then the allocation unit that is about to be reallocated is damaged. But you probably
		// already know that from a previous assert you should have seen in validateAllocUnit() :)
		m_assert(m_validateAllocUnit(au));

		// If you hit this assert, then this reallocation was made from a source that isn't setup to use this memory
		// tracking software, use the stack frame to locate the source and include our H file.
		m_assert(reallocationType != m_alloc_unknown);

		// If you hit this assert, you were trying to reallocate RAM that was not allocated in a way that is compatible with
		// realloc. In other words, you have a allocation/reallocation mismatch.
		m_assert(au->allocationType == m_alloc_malloc ||
			 au->allocationType == m_alloc_calloc ||
			 au->allocationType == m_alloc_realloc);

		// If you hit this assert, then the "break on realloc" flag for this allocation unit is set (and will continue to be
		// set until you specifically shut it off. Interrogate the 'au' variable to determine information about this
		// allocation unit.
		m_assert(au->breakOnRealloc == false);

		// Keep track of the original size

		unsigned int	originalReportedSize = au->reportedSize;

		if (alwaysLogAll) log("[~] ---->             from 0x%08X(%08d)", originalReportedSize, originalReportedSize);

		// Do the reallocation

		void	*oldReportedAddress = reportedAddress;
		size_t	newActualSize = calculateActualSize(reportedSize);
		void	*newActualAddress = NULL;
		#ifdef RANDOM_FAILURE
		double	a = rand();
		double	b = RAND_MAX / 100.0 * RANDOM_FAILURE;
		if (a > b)
		{
			newActualAddress = realloc(au->actualAddress, newActualSize);
		}
		else
		{
			log("[F] Random faiure");
		}
		#else
		newActualAddress = realloc(au->actualAddress, newActualSize);
		#endif

		// We don't want to assert with random failures, because we want the application to deal with them.

		#ifndef RANDOM_FAILURE
		// If you hit this assert, then the requested allocation simply failed (you're out of memory) Interrogate the
		// variable 'au' to see the original allocation. You can also query 'newActualSize' to see the amount of memory
		// trying to be allocated. Finally, you can query 'reportedSize' to see how much memory was requested by the caller.
		m_assert(newActualAddress);
		#endif

		if (!newActualAddress) throw "Request for reallocation failed. Out of memory.";

		// Remove this allocation from our stats (we'll add the new reallocation again later)

		stats.totalReportedMemory -= au->reportedSize;
		stats.totalActualMemory   -= au->actualSize;

		// Update the allocation with the new information

		au->actualSize        = newActualSize;
		au->actualAddress     = newActualAddress;
		au->reportedSize      = calculateReportedSize(newActualSize);
		au->reportedAddress   = calculateReportedAddress(newActualAddress);
		au->allocationType    = reallocationType;
		au->sourceLine        = sourceLine;
		au->allocationNumber  = currentAllocationCount;
		if (sourceFile) strncpy(au->sourceFile, sourceFileStripper(sourceFile), sizeof(au->sourceFile) - 1);
		else		strcpy (au->sourceFile, "??");
		if (sourceFunc) strncpy(au->sourceFunc, sourceFunc, sizeof(au->sourceFunc) - 1);
		else		strcpy (au->sourceFunc, "??");

		// The reallocation may cause the address to change, so we should relocate our allocation unit within the hash table

		unsigned int	hashIndex = (unsigned int) -1;
		if (oldReportedAddress != au->reportedAddress)
		{
			// Remove this allocation unit from the hash table

			{
				unsigned int	hashIndex = ((unsigned int) oldReportedAddress >> 4) & (hashSize - 1);
				if (hashTable[hashIndex] == au)
				{
					hashTable[hashIndex] = hashTable[hashIndex]->next;
				}
				else
				{
					if (au->prev)	au->prev->next = au->next;
					if (au->next)	au->next->prev = au->prev;
				}
			}

			// Re-insert it back into the hash table

			hashIndex = ((unsigned int) au->reportedAddress >> 4) & (hashSize - 1);
			if (hashTable[hashIndex]) hashTable[hashIndex]->prev = au;
			au->next = hashTable[hashIndex];
			au->prev = NULL;
			hashTable[hashIndex] = au;
		}

		// Account for the new allocatin unit in our stats

		stats.totalReportedMemory += au->reportedSize;
		stats.totalActualMemory   += au->actualSize;
		if (stats.totalReportedMemory > stats.peakReportedMemory) stats.peakReportedMemory = stats.totalReportedMemory;
		if (stats.totalActualMemory   > stats.peakActualMemory)   stats.peakActualMemory   = stats.totalActualMemory;
		int	deltaReportedSize = reportedSize - originalReportedSize;
		if (deltaReportedSize > 0)
		{
			stats.accumulatedReportedMemory += deltaReportedSize;
			stats.accumulatedActualMemory += deltaReportedSize;
		}

		// Prepare the allocation unit for use (wipe it with recognizable garbage)

		wipeWithPattern(au, unusedPattern, originalReportedSize);

		// If you hit this assert, then something went wrong, because the allocation unit was properly validated PRIOR to
		// the reallocation. This should not happen.
		m_assert(m_validateAllocUnit(au));

		// Validate every single allocated unit in memory

		if (alwaysValidateAll) m_validateAllAllocUnits();

		// Log the result

		if (alwaysLogAll) log("[~] ---->             addr 0x%08X", (unsigned int) au->reportedAddress);

		// Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
		// source (i.e. they didn't include our H file) then we won't think it was the last allocation.

		resetGlobals();

		// Return the (reported) address of the new allocation unit

		#ifdef TEST_MEMORY_MANAGER
		log("[D] EXIT : m_reallocator()");
		#endif

		return au->reportedAddress;
	}
	catch(const char *err)
	{
		// Deal with the errors

		log("[!] %s", err);
		resetGlobals();

		#ifdef TEST_MEMORY_MANAGER
		log("[D] EXIT : m_reallocator()");
		#endif

		return NULL;
	}
}

// ---------------------------------------------------------------------------------------------------------------------------------
// Deallocate memory and track it
// ---------------------------------------------------------------------------------------------------------------------------------

void	m_deallocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int deallocationType, const void *reportedAddress)
{
	try
	{
		#ifdef TEST_MEMORY_MANAGER
		log("[D] ENTER: m_deallocator()");
		#endif

		// Log the request

		if (alwaysLogAll) log("[-] ----- %8s of addr 0x%08X           by %s", allocationTypes[deallocationType], (unsigned int) reportedAddress, ownerString(sourceFile, sourceLine, sourceFunc));

		// Go get the allocation unit

		sAllocUnit	*au = findAllocUnit(reportedAddress);

		// If you hit this assert, you tried to deallocate RAM that wasn't allocated by this memory manager.
		m_assert(au != NULL);
		if (au == NULL) throw "Request to deallocate RAM that was never allocated";

		// If you hit this assert, then the allocation unit that is about to be deallocated is damaged. But you probably
		// already know that from a previous assert you should have seen in validateAllocUnit() :)
		m_assert(m_validateAllocUnit(au));

		// If you hit this assert, then this deallocation was made from a source that isn't setup to use this memory
		// tracking software, use the stack frame to locate the source and include our H file.
		m_assert(deallocationType != m_alloc_unknown);

		// If you hit this assert, you were trying to deallocate RAM that was not allocated in a way that is compatible with
		// the deallocation method requested. In other words, you have a allocation/deallocation mismatch.
		m_assert((deallocationType == m_alloc_delete       && au->allocationType == m_alloc_new      ) ||
			 (deallocationType == m_alloc_delete_array && au->allocationType == m_alloc_new_array) ||
			 (deallocationType == m_alloc_free         && au->allocationType == m_alloc_malloc   ) ||
			 (deallocationType == m_alloc_free         && au->allocationType == m_alloc_calloc   ) ||
			 (deallocationType == m_alloc_free         && au->allocationType == m_alloc_realloc  ) ||
			 (deallocationType == m_alloc_unknown                                                ) );

		// If you hit this assert, then the "break on dealloc" flag for this allocation unit is set. Interrogate the 'au'
		// variable to determine information about this allocation unit.
		m_assert(au->breakOnDealloc == false);

		// Wipe the deallocated RAM with a new pattern. This doen't actually do us much good in debug mode under WIN32,
		// because Microsoft's memory debugging & tracking utilities will wipe it right after we do. Oh well.

		wipeWithPattern(au, releasedPattern);

		// Do the deallocation

		free(au->actualAddress);

		// Remove this allocation unit from the hash table

		unsigned int	hashIndex = ((unsigned int) au->reportedAddress >> 4) & (hashSize - 1);
		if (hashTable[hashIndex] == au)
		{
			hashTable[hashIndex] = au->next;
		}
		else
		{
			if (au->prev)	au->prev->next = au->next;
			if (au->next)	au->next->prev = au->prev;
		}

		// Remove this allocation from our stats

		stats.totalReportedMemory -= au->reportedSize;
		stats.totalActualMemory   -= au->actualSize;
		stats.totalAllocUnitCount--;

		// Add this allocation unit to the front of our reservoir of unused allocation units

		memset(au, 0, sizeof(sAllocUnit));
		au->next = reservoir;
		reservoir = au;

		// Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
		// source (i.e. they didn't include our H file) then we won't think it was the last allocation.

		resetGlobals();

		// Validate every single allocated unit in memory

		if (alwaysValidateAll) m_validateAllAllocUnits();

		// If we're in the midst of static deinitialization time, track any pending memory leaks

		if (staticDeinitTime) dumpLeakReport();
	}
	catch(const char *err)
	{
		// Deal with errors

		log("[!] %s", err);
		resetGlobals();
	}

	#ifdef TEST_MEMORY_MANAGER
	log("[D] EXIT : m_deallocator()");
	#endif
}

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- The following utilitarian allow you to become proactive in tracking your own memory, or help you narrow in on those tough
// bugs.
// ---------------------------------------------------------------------------------------------------------------------------------

bool	m_validateAddress(const void *reportedAddress)
{
	// Just see if the address exists in our allocation routines

	return findAllocUnit(reportedAddress) != NULL;
}

// ---------------------------------------------------------------------------------------------------------------------------------

bool	m_validateAllocUnit(const sAllocUnit *allocUnit)
{
	// Make sure the padding is untouched

	long	*pre = (long *) allocUnit->actualAddress;
	long	*post = (long *) ((char *)allocUnit->actualAddress + allocUnit->actualSize - paddingSize * sizeof(long));
	bool	errorFlag = false;
	for (unsigned int i = 0; i < paddingSize; i++, pre++, post++)
	{
		if (*pre != (long) prefixPattern)
		{
			log("[!] A memory allocation unit was corrupt because of an underrun:");
			m_dumpAllocUnit(allocUnit, "  ");
			errorFlag = true;
		}

		// If you hit this assert, then you should know that this allocation unit has been damaged. Something (possibly the
		// owner?) has underrun the allocation unit (modified a few bytes prior to the start). You can interrogate the
		// variable 'allocUnit' to see statistics and information about this damaged allocation unit.
		m_assert(*pre == (long) prefixPattern);

		if (*post != (long) postfixPattern)
		{
			log("[!] A memory allocation unit was corrupt because of an overrun:");
			m_dumpAllocUnit(allocUnit, "  ");
			errorFlag = true;
		}

		// If you hit this assert, then you should know that this allocation unit has been damaged. Something (possibly the
		// owner?) has overrun the allocation unit (modified a few bytes after the end). You can interrogate the variable
		// 'allocUnit' to see statistics and information about this damaged allocation unit.
		m_assert(*post == (long) postfixPattern);
	}

	// Return the error status (we invert it, because a return of 'false' means error)

	return !errorFlag;
}

// ---------------------------------------------------------------------------------------------------------------------------------

bool	m_validateAllAllocUnits()
{
	// Just go through each allocation unit in the hash table and count the ones that have errors

	unsigned int	errors = 0;
	unsigned int	allocCount = 0;
	for (unsigned int i = 0; i < hashSize; i++)
	{
		sAllocUnit	*ptr = hashTable[i];
		while(ptr)
		{
			allocCount++;
			if (!m_validateAllocUnit(ptr)) errors++;
			ptr = ptr->next;
		}
	}

	// Test for hash-table correctness

	if (allocCount != stats.totalAllocUnitCount)
	{
		log("[!] Memory tracking hash table corrupt!");
		errors++;
	}

	// If you hit this assert, then the internal memory (hash table) used by this memory tracking software is damaged! The
	// best way to track this down is to use the alwaysLogAll flag in conjunction with STRESS_TEST macro to narrow in on the
	// offending code. After running the application with these settings (and hitting this assert again), interrogate the
	// memory.log file to find the previous successful operation. The corruption will have occurred between that point and this
	// assertion.
	m_assert(allocCount == stats.totalAllocUnitCount);

	// If you hit this assert, then you've probably already been notified that there was a problem with a allocation unit in a
	// prior call to validateAllocUnit(), but this assert is here just to make sure you know about it. :)
	m_assert(errors == 0);

	// Log any errors

	if (errors) log("[!] While validting all allocation units, %d allocation unit(s) were found to have problems", errors);

	// Return the error status

	return errors != 0;
}

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Unused RAM calculation routines. Use these to determine how much of your RAM is unused (in bytes)
// ---------------------------------------------------------------------------------------------------------------------------------

unsigned int	m_calcUnused(const sAllocUnit *allocUnit)
{
	const unsigned long	*ptr = (const unsigned long *) allocUnit->reportedAddress;
	unsigned int		count = 0;

	for (unsigned int i = 0; i < allocUnit->reportedSize; i += sizeof(long), ptr++)
	{
		if (*ptr == unusedPattern) count += sizeof(long);
	}

	return count;
}

// ---------------------------------------------------------------------------------------------------------------------------------

unsigned int	m_calcAllUnused()
{
	// Just go through each allocation unit in the hash table and count the unused RAM

	unsigned int	total = 0;
	for (unsigned int i = 0; i < hashSize; i++)
	{
		sAllocUnit	*ptr = hashTable[i];
		while(ptr)
		{
			total += m_calcUnused(ptr);
			ptr = ptr->next;
		}
	}

	return total;
}

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- The following functions are for logging and statistics reporting.
// ---------------------------------------------------------------------------------------------------------------------------------

void	m_dumpAllocUnit(const sAllocUnit *allocUnit, const char *prefix)
{
	log("[I] %sAddress (reported): %010p",       prefix, allocUnit->reportedAddress);
	log("[I] %sAddress (actual)  : %010p",       prefix, allocUnit->actualAddress);
	log("[I] %sSize (reported)   : 0x%08X (%s)", prefix, allocUnit->reportedSize, memorySizeString(allocUnit->reportedSize));
	log("[I] %sSize (actual)     : 0x%08X (%s)", prefix, allocUnit->actualSize, memorySizeString(allocUnit->actualSize));
	log("[I] %sOwner             : %s(%d)::%s",  prefix, allocUnit->sourceFile, allocUnit->sourceLine, allocUnit->sourceFunc);
	log("[I] %sAllocation type   : %s",          prefix, allocationTypes[allocUnit->allocationType]);
	log("[I] %sAllocation number : %d",          prefix, allocUnit->allocationNumber);
}

// ---------------------------------------------------------------------------------------------------------------------------------

void	m_dumpMemoryReport(const char *filename, const bool overwrite)
{
	// Open the report file

	FILE	*fp = NULL;

	if (overwrite)	fp = fopen(filename, "w+b");
	else		fp = fopen(filename, "ab");

	// If you hit this assert, then the memory report generator is unable to log information to a file (can't open the file for
	// some reason.)
	m_assert(fp);
	if (!fp) return;

        // Header

        static  char    timeString[25];
        memset(timeString, 0, sizeof(timeString));
        time_t  t = time(NULL);
        struct  tm *tme = localtime(&t);
	fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
        fprintf(fp, "|                                             Memory report for: %02d/%02d/%04d %02d:%02d:%02d                                               |\r\n", tme->tm_mon + 1, tme->tm_mday, tme->tm_year + 1900, tme->tm_hour, tme->tm_min, tme->tm_sec);
	fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
	fprintf(fp, "\r\n");
	fprintf(fp, "\r\n");

	// Report summary

	fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
	fprintf(fp, "|                                                           T O T A L S                                                            |\r\n");
	fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
	fprintf(fp, "              Allocation unit count: %10s\r\n", insertCommas(stats.totalAllocUnitCount));
	fprintf(fp, "            Reported to application: %s\r\n", memorySizeString(stats.totalReportedMemory));
	fprintf(fp, "         Actual total memory in use: %s\r\n", memorySizeString(stats.totalActualMemory));
	fprintf(fp, "           Memory tracking overhead: %s\r\n", memorySizeString(stats.totalActualMemory - stats.totalReportedMemory));
	fprintf(fp, "\r\n");

	fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
	fprintf(fp, "|                                                            P E A K S                                                             |\r\n");
	fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
	fprintf(fp, "              Allocation unit count: %10s\r\n", insertCommas(stats.peakAllocUnitCount));
	fprintf(fp, "            Reported to application: %s\r\n", memorySizeString(stats.peakReportedMemory));
	fprintf(fp, "                             Actual: %s\r\n", memorySizeString(stats.peakActualMemory));
	fprintf(fp, "           Memory tracking overhead: %s\r\n", memorySizeString(stats.peakActualMemory - stats.peakReportedMemory));
	fprintf(fp, "\r\n");

	fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
	fprintf(fp, "|                                                      A C C U M U L A T E D                                                       |\r\n");
	fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
	fprintf(fp, "              Allocation unit count: %s\r\n", memorySizeString(stats.accumulatedAllocUnitCount));
	fprintf(fp, "            Reported to application: %s\r\n", memorySizeString(stats.accumulatedReportedMemory));
	fprintf(fp, "                             Actual: %s\r\n", memorySizeString(stats.accumulatedActualMemory));
	fprintf(fp, "\r\n");

	fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
	fprintf(fp, "|                                                           U N U S E D                                                            |\r\n");
	fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
	fprintf(fp, "    Memory allocated but not in use: %s\r\n", memorySizeString(m_calcAllUnused()));
	fprintf(fp, "\r\n");

	dumpAllocations(fp);

	fclose(fp);
}

// ---------------------------------------------------------------------------------------------------------------------------------

sMStats	m_getMemoryStatistics()
{
	return stats;
}

// ---------------------------------------------------------------------------------------------------------------------------------
// mmgr.cpp - End of file
// ---------------------------------------------------------------------------------------------------------------------------------