1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
|
#include <math.h>
#include <string.h>
#include <stdio.h>
#include "pow.h"
#define DEG2RAD 1.745329252e-2
#define NUM_WCS_TYPES 27
static char wcsProjections[NUM_WCS_TYPES][5] =
{"-AZP", "-SZP", "-TAN", "-STG", "-SIN", "-ARC", "-ZPN", "-ZEA", "-AIR", "-CYP",
"-CEA", "-CAR", "-MER", "-COP", "-COE", "-COD", "-COO", "-SFL", "-PAR", "-MOL",
"-AIT", "-BON", "-PCO", "-TSC", "-CSC", "-QSC", "-HPX"};
void PowInitWCS( WCSdata *WCS, int n )
{
int row, col;
WCS->RaDecSwap = 0;
WCS->nAxis = n;
for( row=0; row<n; row++ ) {
WCS->refVal[row] = 0.0;
WCS->refPix[row] = 0.0;
for( col=0; col<n; col++ ) {
WCS->cdFrwd[row][col] = (row==col?1:0);
WCS->cdRvrs[row][col] = (row==col?1:0);
}
}
memset (WCS->type, '\0', 6);
memset (WCS->graphName, '\0', 1024);
memset (WCS->curveName, '\0', 1024);
WCS->wcs = malloc(sizeof(struct wcsprm));
WCS->wcs->flag = -1;
wcsini (1, n, WCS->wcs);
WCS->haveWCSinfo = 0;
}
int FillinWCSStructure ( WCSdata *WCS )
{
char powFitsHeader[14]="powFitsHeader";
char powFitsHeaderCnt[17]="powFitsHeaderCnt";
int i, relax, HDRcnt, ctrl, nreject=0, nwcs=0;
const char *HDRstring;
int status;
int coordSel;
Tcl_Obj *listObj;
Tcl_Obj *wcsname[27];
/* no wcs info yet */
if ( WCS->graphName[0] != '\0' && strcmp(WCS->graphName, "NULL") != 0 ) {
HDRstring = Tcl_GetVar2(interp,powFitsHeader,WCS->graphName,TCL_GLOBAL_ONLY);
HDRcnt = atoi(Tcl_GetVar2(interp,powFitsHeaderCnt,WCS->graphName,TCL_GLOBAL_ONLY));
} else if ( WCS->curveName[0] != '\0' && strcmp(WCS->curveName, "NULL") != 0 ) {
HDRstring = Tcl_GetVar2(interp,powFitsHeader,WCS->curveName,TCL_GLOBAL_ONLY);
HDRcnt = atoi(Tcl_GetVar2(interp,powFitsHeaderCnt,WCS->curveName,TCL_GLOBAL_ONLY));
} else {
Tcl_SetResult(interp, "Can't construct WCS information." ,TCL_VOLATILE);
Tcl_SetVar(interp,"powWCSTranslation", "1" ,TCL_GLOBAL_ONLY);
return TCL_ERROR;
}
relax = WCSHDR_all;
ctrl = 2;
if (status = wcspih(HDRstring, HDRcnt, relax, ctrl, &nreject, &nwcs, &(WCS->wcs))) {
char errormsg[512];
sprintf(errormsg, "Can't construct WCS information: %s", WCSpih_Message[status]);
Tcl_SetResult(interp, errormsg ,TCL_VOLATILE);
Tcl_SetVar(interp,"powWCSTranslation", WCSpih_Message[status] ,TCL_GLOBAL_ONLY);
return TCL_ERROR;
}
listObj = Tcl_NewObj();
for (i=0; i<nwcs; i++) {
wcsname[i] = Tcl_NewStringObj(WCS->wcs[i].alt,-1);
}
Tcl_ListObjAppendElement( interp, listObj, Tcl_NewIntObj( nwcs ) );
Tcl_ListObjAppendElement( interp, listObj, Tcl_NewListObj(nwcs,wcsname) );
if ( WCS->graphName[0] != '\0' && strcmp(WCS->graphName, "NULL") != 0 ) {
Tcl_SetVar2Ex(interp,"powWCSList", WCS->graphName, listObj, TCL_GLOBAL_ONLY);
} else if ( WCS->curveName[0] != '\0' && strcmp(WCS->curveName, "NULL") != 0 ) {
Tcl_SetVar2Ex(interp,"powWCSList", WCS->curveName, listObj, TCL_GLOBAL_ONLY);
}
if (nwcs > 0 ) {
if ( WCS->graphName[0] != '\0' && strcmp(WCS->graphName, "NULL") != 0 ) {
coordSel = atoi(Tcl_GetVar2(interp,"powWCSName",WCS->graphName,TCL_GLOBAL_ONLY));
} else if ( WCS->curveName[0] != '\0' && strcmp(WCS->curveName, "NULL") != 0 ) {
coordSel = atoi(Tcl_GetVar2(interp,"powWCSName",WCS->curveName,TCL_GLOBAL_ONLY));
}
WCS->wcs[coordSel].crpix[0] = WCS->refPix[0];
WCS->wcs[coordSel].crpix[1] = WCS->refPix[1];
}
WCS->haveWCSinfo = 1;
return TCL_OK;
}
int PowParseWCS( Tcl_Interp *interp, WCSdata *WCS,
int argc, Tcl_Obj *const argv[] )
{
/* Known coordinate types (from worldpos below) */
double xinc,yinc,rot;
double refVal[MAX_WCS_DIMS],refPix[MAX_WCS_DIMS];
double cdFrwd[MAX_WCS_DIMS][MAX_WCS_DIMS],cdRvrs[MAX_WCS_DIMS][MAX_WCS_DIMS];
double norm;
Tcl_Obj **listElems;
int row, col, nElem, nDims, dim;
char *type;
int swap=0;
PowInitWCS( WCS, MAX_WCS_DIMS );
if( argc>7 ) {
Tcl_GetDoubleFromObj(interp,argv[0],refVal+0);
Tcl_GetDoubleFromObj(interp,argv[1],refVal+1);
Tcl_GetDoubleFromObj(interp,argv[2],refPix+0);
Tcl_GetDoubleFromObj(interp,argv[3],refPix+1);
Tcl_GetDoubleFromObj(interp,argv[4],&xinc);
Tcl_GetDoubleFromObj(interp,argv[5],&yinc);
Tcl_GetDoubleFromObj(interp,argv[6],&rot);
type = Tcl_GetStringFromObj(argv[7],NULL);
if( argc>8 ) Tcl_GetBooleanFromObj(interp,argv[8],&swap);
cdFrwd[0][0] = xinc * cos( rot * DEG2RAD );
cdFrwd[0][1] = -yinc * sin( rot * DEG2RAD );
cdFrwd[1][0] = xinc * sin( rot * DEG2RAD );
cdFrwd[1][1] = yinc * cos( rot * DEG2RAD );
nDims = 2;
} else {
nDims = 1;
Tcl_ListObjGetElements(interp,argv[0],&nElem,&listElems);
if( nElem>MAX_WCS_DIMS ) nElem = MAX_WCS_DIMS;
if( nDims < nElem ) nDims = nElem;
for( row=0; row<nElem; row++ )
Tcl_GetDoubleFromObj(interp, listElems[row], refVal+row);
Tcl_ListObjGetElements(interp,argv[1],&nElem,&listElems);
if( nElem>MAX_WCS_DIMS ) nElem = MAX_WCS_DIMS;
if( nDims < nElem ) nDims = nElem;
for( row=0; row<nElem; row++ )
Tcl_GetDoubleFromObj(interp, listElems[row], refPix+row);
Tcl_ListObjGetElements(interp,argv[2],&nElem,&listElems);
dim = (int)(sqrt( (double)nElem )+0.5);
nElem = ( dim>MAX_WCS_DIMS ? MAX_WCS_DIMS : dim );
if( nDims < nElem ) nDims = nElem;
for( row=0; row<nElem; row++ )
for( col=0; col<nElem; col++ )
Tcl_GetDoubleFromObj(interp, listElems[row*dim+col],
&cdFrwd[row][col]);
/* Check if RA/Dec axes are swapped */
Tcl_ListObjGetElements(interp,argv[3],&nElem,&listElems);
if( nElem ) {
type = Tcl_GetStringFromObj(listElems[0],NULL);
if( type[0] && (!strcmp(type, "DEC") || !strcmp(type+1, "LAT")) )
swap = 1;
}
Tcl_ListObjGetElements(interp,argv[4],&nElem,&listElems);
type = Tcl_GetStringFromObj(listElems[0],NULL);
}
if( swap ) { /* Transform WCS data so that it gives RA/Dec */
norm = refVal[0];
refVal[0] = refVal[1];
refVal[1] = norm;
for( col=0; col<nDims; col++ ) {
norm = cdFrwd[0][col];
cdFrwd[0][col] = cdFrwd[1][col];
cdFrwd[1][col] = norm;
}
}
/*
* Test for unknown projection type.
*/
if (strcmp(type, "none") == 0) {
type[0] = '\0';
} else if( nDims != 2 ) { /* Only 2D projections allowed */
type[0] = '\0';
}
/*
* Calculate the inverse transform
*/
if( nDims == 1 ) {
cdRvrs[0][0] = 1.0/cdFrwd[0][0];
} else if( nDims==2 ) {
norm = cdFrwd[0][0]*cdFrwd[1][1] - cdFrwd[0][1]*cdFrwd[1][0];
cdRvrs[0][0] = cdFrwd[1][1] / norm;
cdRvrs[0][1] = - cdFrwd[0][1] / norm;
cdRvrs[1][0] = - cdFrwd[1][0] / norm;
cdRvrs[1][1] = cdFrwd[0][0] / norm;
} else {
return TCL_ERROR;
}
/*
* Copy data into image's WCS structure
*/
WCS->RaDecSwap = swap;
WCS->nAxis = nDims;
if( *type && refVal[0]<0.0 ) refVal[0] += 360.0;
for( row=0; row<nDims; row++ ) {
WCS->refVal[row] = refVal[row];
WCS->refPix[row] = refPix[row];
for( col=0; col<nDims; col++ ) {
WCS->cdFrwd[row][col] = cdFrwd[row][col];
WCS->cdRvrs[row][col] = cdRvrs[row][col];
}
}
if ( *type ) {
strcpy(WCS->type,type);
}
/* PowDumpWCSstructure(WCS); */
return TCL_OK;
}
void PowDumpWCSstructure ( WCSdata *WCS ) {
fprintf(stdout, "**********************************\n");
fprintf(stdout, "WCS->graphName : <%s>\n", WCS->graphName);
fprintf(stdout, "WCS->curveName : <%s>\n", WCS->curveName);
fprintf(stdout, "WCS->type : <%s>\n", WCS->type);
fprintf(stdout, "WCS->RaDecSwap : <%d>\n", WCS->RaDecSwap);
fprintf(stdout, "WCS->nAxis : <%d>\n", WCS->nAxis);
fprintf(stdout, "WCS->refVal[0] : <%20.15f>\n", WCS->refVal[0]);
fprintf(stdout, "WCS->refVal[1] : <%20.15f>\n", WCS->refVal[1]);
fprintf(stdout, "WCS->refPix[0] : <%20.15f>\n", WCS->refPix[0]);
fprintf(stdout, "WCS->refPix[1] : <%20.15f>\n", WCS->refPix[1]);
fprintf(stdout, "WCS->cdFrwd[0] : <%20.15f,%20.15f>\n", WCS->cdFrwd[0][0], WCS->cdFrwd[0][1]);
fprintf(stdout, "WCS->cdFrwd[1] : <%20.15f,%20.15f>\n", WCS->cdFrwd[1][0], WCS->cdFrwd[1][1]);
fprintf(stdout, "WCS->cdRvrs[0] : <%20.15f,%20.15f>\n", WCS->cdRvrs[0][0], WCS->cdRvrs[0][1]);
fprintf(stdout, "WCS->cdRvrs[1] : <%20.15f,%20.15f>\n", WCS->cdRvrs[1][0], WCS->cdRvrs[1][1]);
fprintf(stdout, "WCS->rot : <%20.15f>\n", WCS->rot);
fprintf(stdout, "WCS->haveWCSinfo: <%d>\n", WCS->haveWCSinfo);
fprintf(stdout, "**********************************\n");
fflush(stdout);
}
int PowWCSInitImage( ClientData clientData, Tcl_Interp *interp,
int argc, Tcl_Obj *const argv[] )
{
/* Fills in the origin, increment, and otherend fields in the
specified image using the WCS info provided. This is mainly
used by powCreateImage and by the callback proc for the trace
on powWCS */
double xpos,ypos;
char *imageName;
PowImage *image_ptr;
int n;
if( argc < 6 || argc > 11 ) {
Tcl_SetResult( interp,
"usage: powWCSInitImage image xref yref xrefpix "
"yrefpix xinc yinc rot type ?swap?\n"
" or: powWCSInitImage image {refVal} {refPix} "
"{matrix} {type} {proj}",
TCL_VOLATILE );
return TCL_ERROR;
}
imageName = Tcl_GetStringFromObj(argv[1],NULL);
image_ptr = PowFindImage( imageName );
if (image_ptr == (PowImage *) NULL) {
Tcl_SetResult( interp, "Couldn't find image.", TCL_VOLATILE );
return TCL_ERROR;
}
PowParseWCS(interp, &image_ptr->WCS, argc-2, argv+2);
/* add image name to WCS structure */
strcpy (image_ptr->WCS.graphName, imageName);
image_ptr->WCS.haveWCSinfo = 0;
for( n=0; n<image_ptr->WCS.nAxis; ) {
image_ptr->WCS.refPix[n++]--; /* Makes pixels zero-indexed */
}
if( !image_ptr->WCS.type[0]) {
/* Tcl_SetVar2(interp,"powWCS",imageName,"",TCL_GLOBAL_ONLY); */
}
/*
image_ptr->WCS.xref = (swap?yref:xref);
image_ptr->WCS.yref = (swap?xref:yref);
image_ptr->WCS.xrefpix = xrefpix - 1;
image_ptr->WCS.yrefpix = yrefpix - 1;
image_ptr->WCS.xinc = xinc;
image_ptr->WCS.yinc = (swap?-yinc:yinc);
image_ptr->WCS.rot = (swap?90-rot:rot);
*/
if( PowPixToPos( -0.5, -0.5, &image_ptr->WCS, &xpos, &ypos ) ) {
Tcl_SetResult( interp,
"Couldn't translate pixels to WCS coords for image "
"initialization", TCL_VOLATILE );
return TCL_ERROR;
}
image_ptr->xorigin = xpos;
image_ptr->yorigin = ypos;
if( PowPixToPos( image_ptr->width-0.5, image_ptr->height-0.5,
&image_ptr->WCS, &xpos, &ypos ) ) {
Tcl_SetResult( interp,
"Couldn't translate pixels to WCS coords for "
"image initialization", TCL_VOLATILE );
return TCL_ERROR;
}
image_ptr->xotherend = xpos;
image_ptr->yotherend = ypos;
image_ptr->xinc = ( xpos - image_ptr->xorigin ) / image_ptr->width;
image_ptr->yinc = ( ypos - image_ptr->yorigin ) / image_ptr->height;
return TCL_OK;
}
int PowWCSInitCurve(ClientData clientData, Tcl_Interp *interp,
int argc, Tcl_Obj *const argv[])
{
/* Fills in the WCS structure if info exists. This is mainly
used by powCreateCurve and by the callback proc for the trace
on powWCS */
PowCurve *curve_ptr;
char *curveName;
int str_len;
char *p;
if( argc < 7 || argc > 11 ) {
Tcl_SetResult( interp,
"usage: powWCSInitCurve curve xref yref xrefpix "
"yrefpix xinc yinc rot type ?swap?\n"
" or: powWCSInitCurve curve {refVal} {refPix} "
"{matrix} {type} {proj}",
TCL_VOLATILE );
return TCL_ERROR;
}
curveName = Tcl_GetStringFromObj( argv[1], NULL );
curve_ptr = PowFindCurve( curveName );
if (curve_ptr == (PowCurve *) NULL) {
Tcl_SetResult( interp, "Couldn't find curve.", TCL_VOLATILE );
return TCL_ERROR;
}
PowParseWCS( interp, &curve_ptr->WCS, argc-2, argv+2 );
/* add curve name to WCS structure */
strcpy (curve_ptr->WCS.curveName, curveName);
p = strstr(curveName, "_contour");
if ( p != (char *)NULL ) {
/* input is contour curve, grab its graph handler */
str_len = strlen(curve_ptr->WCS.curveName) - strlen(p);
strncpy(curve_ptr->WCS.graphName, curve_ptr->WCS.curveName, str_len);
curve_ptr->WCS.graphName[str_len] = '\0';
}
if ( curve_ptr->WCS.type[0] == '\0' ) {
/* for some reason, this has to be done for Windows. */
/*
curve_ptr->WCS.refPix[0] = 0.0;
curve_ptr->WCS.refPix[1] = 0.0;
*/
}
FillinWCSStructure(&curve_ptr->WCS);
if ( curve_ptr->WCS.type[0] == '\0' ) {
const char *WCSstring;
WCSstring = Tcl_GetVar2(interp, "powWCS", curveName,TCL_GLOBAL_ONLY);
/* Tcl_SetVar2(interp,"powWCS", curveName, "", TCL_GLOBAL_ONLY); */
}
return TCL_OK;
}
int PowWCSInitGraph( PowGraph *graph, char *curves, char *images,
int x_points_right, int y_points_up)
{
PowCurve *current_curve;
PowImage *current_image;
int index,Argc;
const char **Argv;
char *p;
graph->WCS.type[0] = '\0';
graph->xoff = 0.0;
graph->yoff = 0.0;
if(images != NULL && strstr(images,"NULL") == NULL ) {
if(Tcl_SplitList(interp,images,&Argc,&Argv) != TCL_OK) {
return TCL_ERROR;
}
for( index=0; index<Argc; index++ ) {
current_image = PowFindImage( Argv[index] );
if( current_image->WCS.type[0] ) {
graph->WCS = current_image->WCS;
ckfree( (char *)Argv );
return TCL_OK;
}
}
/* Failed to find a WCS image. Grab first image's WCS structure
anyway... It could still contain linear scaling. */
graph->WCS = PowFindImage( Argv[0] )->WCS;
/* wcsini (1, 2, graph->WCS.wcs); */
p = strstr (images, "imgobj_");
if ( p != (char *)NULL ) {
p += strlen("imgobj_");
strcpy(graph->WCS.graphName, p);
} else {
strcpy(graph->WCS.graphName, images);
}
strcpy(graph->WCS.curveName, "\0");
ckfree( (char *)Argv );
return TCL_OK;
}
if(curves != NULL && strstr(curves,"NULL") == NULL ) {
if(Tcl_SplitList(interp,curves,&Argc,&Argv) != TCL_OK) {
return TCL_ERROR;
}
for( index=0; index<Argc; index++ ) {
current_curve = PowFindCurve( Argv[index] );
if( current_curve->WCS.type[0] ) {
graph->WCS = current_curve->WCS;
strcpy(graph->WCS.graphName, "\0");
strcpy(graph->WCS.curveName, curves);
ckfree( (char *)Argv );
return TCL_OK;
}
}
ckfree( (char *)Argv );
}
PowInitWCS( &graph->WCS, 2 );
if( !x_points_right ) {
graph->WCS.cdFrwd[0][0] = -1.0;
}
if( !y_points_up ) {
graph->WCS.cdFrwd[1][1] = -1.0;
}
return TCL_OK;
}
int PowXYPx(ClientData clientData, Tcl_Interp *interp,
int argc, Tcl_Obj *const argv[])
{
/* Calls the pow_xypx WCS routine, returns list of 2 image pixels*/
double xpix,ypix,xpos,ypos;
Tcl_Obj *res[2];
WCSdata WCS;
if(argc < 11 ) {
Tcl_SetResult( interp,
"usage: powXYPx xpos ypos xref yref xrefpix yrefpix "
"xinc yinc rot type", TCL_VOLATILE );
return TCL_ERROR;
}
Tcl_GetDoubleFromObj(interp,argv[1],&xpos);
Tcl_GetDoubleFromObj(interp,argv[2],&ypos);
PowParseWCS( interp, &WCS, argc-3, argv+3 );
if( PowPosToPix(xpos,ypos,&WCS,&xpix,&ypix) != 0 ) {
Tcl_SetResult( interp, "Couldn't translate WCS coords to pixels",
TCL_VOLATILE );
return TCL_ERROR;
}
res[0] = Tcl_NewDoubleObj( xpix );
res[1] = Tcl_NewDoubleObj( ypix );
Tcl_SetObjResult(interp, Tcl_NewListObj(2, res) );
return TCL_OK;
}
int PowWorldPos(ClientData clientData, Tcl_Interp *interp,
int argc, Tcl_Obj *const argv[])
{
/* Calls the pow_worldpos WCS routine, returns list of 2 graph coords*/
double xpix,ypix,xpos,ypos;
Tcl_Obj *res[2];
WCSdata WCS;
if(argc < 11 ) {
Tcl_SetResult( interp,
"usage: powWorldPos xpix ypix xref yref xrefpix "
"yrefpix xinc yinc rot type", TCL_VOLATILE );
return TCL_ERROR;
}
Tcl_GetDoubleFromObj(interp,argv[1],&xpix);
Tcl_GetDoubleFromObj(interp,argv[2],&ypix);
PowParseWCS( interp, &WCS, argc-3, argv+3 );
if( PowPixToPos(xpix,ypix,&WCS,&xpos,&ypos) != 0 ) {
Tcl_SetResult( interp, "Couldn't translate pixels to WCS coords",
TCL_VOLATILE );
return TCL_ERROR;
}
res[0] = Tcl_NewDoubleObj( xpos );
res[1] = Tcl_NewDoubleObj( ypos );
Tcl_SetObjResult(interp, Tcl_NewListObj(2, res) );
return TCL_OK;
}
/*--------------------------------------------------------------------------*/
int pow_worldpos(double xpix, double ypix,
double refVal[], double refPix[],
double matrix[][MAX_WCS_DIMS],
char *type, double *xpos, double *ypos)
/* PDW 03/00: Add -CAR projection support */
/* PDW 02/00: Change interface to use more general matrix/vector notation */
/* LEB 11/97: change the name of the routine from 'ffwldp' to 'pow_worldpos'
rexmoved 'status' argument, convert to (0,0) based images to
match POW convention. */
/* WDP 1/97: change the name of the routine from 'worldpos' to 'ffwldp' */
/* worldpos.c -- WCS Algorithms from Classic AIPS.
Copyright (C) 1994
Associated Universities, Inc. Washington DC, USA.
This library is free software; you can redistribute it and/or modify it
under the terms of the GNU Library General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
License for more details.
You should have received a copy of the GNU Library General Public License
along with this library; if not, write to the Free Software Foundation,
Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
Correspondence concerning AIPS should be addressed as follows:
Internet email: aipsmail@nrao.edu
Postal address: AIPS Group
National Radio Astronomy Observatory
520 Edgemont Road
Charlottesville, VA 22903-2475 USA
-=-=-=-=-=-=-
These two ANSI C functions, worldpos() and xypix(), perform
forward and reverse WCS computations for 8 types of projective
geometries ("-SIN", "-TAN", "-ARC", "-NCP", "-GLS", "-MER", "-AIT"
and "-STG"):
worldpos() converts from pixel location to RA,Dec
xypix() converts from RA,Dec to pixel location
where "(RA,Dec)" are more generically (long,lat). These functions
are based on the WCS implementation of Classic AIPS, an
implementation which has been in production use for more than ten
years. See the two memos by Eric Greisen
ftp://fits.cv.nrao.edu/fits/documents/wcs/aips27.ps.Z
ftp://fits.cv.nrao.edu/fits/documents/wcs/aips46.ps.Z
for descriptions of the 8 projective geometries and the
algorithms. Footnotes in these two documents describe the
differences between these algorithms and the 1993-94 WCS draft
proposal (see URL below). In particular, these algorithms support
ordinary field rotation, but not skew geometries (CD or PC matrix
cases). Also, the MER and AIT algorithms work correctly only for
CRVALi=(0,0). Users should note that GLS projections with yref!=0
will behave differently in this code than in the draft WCS
proposal. The NCP projection is now obsolete (it is a special
case of SIN). WCS syntax and semantics for various advanced
features is discussed in the draft WCS proposal by Greisen and
Calabretta at:
ftp://fits.cv.nrao.edu/fits/documents/wcs/wcs.all.ps.Z
-=-=-=-
The original version of this code was Emailed to D.Wells on
Friday, 23 September by Bill Cotton <bcotton@gorilla.cv.nrao.edu>,
who described it as a "..more or less.. exact translation from the
AIPSish..". Changes were made by Don Wells <dwells@nrao.edu>
during the period October 11-13, 1994:
1) added GNU license and header comments
2) added testpos.c program to perform extensive circularity tests
3) changed float-->double to get more than 7 significant figures
4) testpos.c circularity test failed on MER and AIT. B.Cotton
found that "..there were a couple of lines of code [in] the wrong
place as a result of merging several Fortran routines."
5) testpos.c found 0h wraparound in xypix() and worldpos().
6) E.Greisen recommended removal of various redundant if-statements,
and addition of a 360d difference test to MER case of worldpos().
*/
/*-----------------------------------------------------------------------*/
/* routine to determine accurate position for pixel coordinates */
/* returns 0 if successful otherwise: */
/* 1 = angle too large for projection; */
/* (WDP 1/97: changed the return value to 501 instead of 1) */
/* does: -SIN, -TAN, -ARC, -NCP, -GLS, -MER, -AIT projections */
/* anything else is linear */
/* Input: */
/* f xpix x pixel number (RA or long without rotation) */
/* f ypiy y pixel number (dec or lat without rotation) */
/* d xref x reference coordinate value (deg) */
/* d yref y reference coordinate value (deg) */
/* f xrefpix x reference pixel */
/* f yrefpix y reference pixel */
/* f xinc x coordinate increment (deg) */
/* f yinc y coordinate increment (deg) */
/* f rot rotation (deg) (from N through E) */
/* c *type projection type code e.g. "-SIN"; */
/* Output: */
/* d *xpos x (RA) coordinate (deg) */
/* d *ypos y (dec) coordinate (deg) */
/*-----------------------------------------------------------------------*/
{
double dx, dy, dz, x, y, z;
double sins, coss, dect, rat, dt, l, m, mg, da, dd, cos0, sin0;
double dec0, ra0;
double geo1, geo2, geo3;
double pi = 3.14159265358979323846;
double cond2r= pi/180.0;
double deps = 1.0e-5;
int itype;
/* Apply Transform Matrix */
dx = matrix[0][0] * (xpix-refPix[0]) + matrix[0][1] * (ypix-refPix[1]);
dy = matrix[1][0] * (xpix-refPix[0]) + matrix[1][1] * (ypix-refPix[1]);
/* find type */
/* WDP 1/97: removed support for default type for better error checking */
for( itype=0; itype<NUM_WCS_TYPES; itype++ )
if( !strncmp(type, wcsProjections[itype], 4) ) break;
/* convert to radians */
ra0 = refVal[0] * cond2r;
dec0 = refVal[1] * cond2r;
l = dx * cond2r;
m = dy * cond2r;
sins = l*l + m*m;
cos0 = cos(dec0);
sin0 = sin(dec0);
/* process by case */
switch (itype) {
case 0: /* -SIN sin*/
if (sins>1.0) return( 501);
coss = sqrt (1.0 - sins);
dt = sin0 * coss + cos0 * m;
if ((dt>1.0) || (dt<-1.0)) return(501);
dect = asin(dt);
rat = cos0 * coss - sin0 * m;
if ((rat==0.0) && (l==0.0)) return(501);
rat = atan2(l, rat) + ra0;
break;
case 1: /* -TAN tan */
x = cos0*cos(ra0) - l*sin(ra0) - m*cos(ra0)*sin0;
y = cos0*sin(ra0) + l*cos(ra0) - m*sin(ra0)*sin0;
z = sin0 + m* cos0;
rat = atan2( y, x );
dect = atan( z / sqrt(x*x+y*y) );
break;
case 2: /* -ARC Arc*/
if (sins>=pi*pi) return(501);
sins = sqrt(sins);
coss = cos(sins);
if (sins!=0.0) sins = sin(sins) / sins;
else
sins = 1.0;
dt = m * cos0 * sins + sin0 * coss;
if ((dt>1.0) || (dt<-1.0)) return(501);
dect = asin(dt);
da = coss - dt * sin0;
dt = l * sins * cos0;
if ((da==0.0) && (dt==0.0)) return(501);
rat = ra0 + atan2(dt, da);
break;
case 3: /* -NCP North celestial pole*/
dect = cos0 - m * sin0;
if (dect==0.0) return(501);
rat = ra0 + atan2(l, dect);
dt = cos(rat-ra0);
if (dt==0.0) return(501);
dect = dect / dt;
if ((dect>1.0) || (dect<-1.0)) return(501);
dect = acos(dect);
if (dec0<0.0) dect = -dect;
break;
case 4: /* -GLS global sinusoid */
dect = dec0 + m;
if (fabs(dect)>pi/2.0) return(501);
coss = cos(dect);
if (fabs(l)>pi*coss) return(501);
rat = ra0;
if (coss>deps) rat = rat + l / coss;
break;
case 5: /* -MER mercator */
/* dt = yinc * cosr + xinc * sinr; */
/* Calculate the declination change for a (1,1) offset from refpix */
dt = matrix[1][0] + matrix[1][1];
if (dt==0.0) dt = 1.0;
dy = (refVal[1]*0.5 + 45.0) * cond2r;
dx = dy + dt / 2.0 * cond2r;
dy = log (tan(dy));
dx = log (tan(dx));
geo2 = dt * cond2r / (dx - dy);
geo3 = geo2 * dy;
geo1 = cos(refVal[1]*cond2r);
if (geo1<=0.0) geo1 = 1.0;
rat = l / geo1 + ra0;
if (fabs(rat - ra0) > pi+pi) return(501);
dt = 0.0;
if (geo2!=0.0) dt = (m + geo3) / geo2;
dt = exp (dt);
dect = 2.0 * atan(dt) - pi / 2.0;
break;
case 6: /* -AIT Aitoff */
/* dt = yinc * cosr + xinc * sinr; */
/* Calculate the declination change for a (1,1) offset from refpix */
dt = matrix[1][0] + matrix[1][1];
if (dt==0.0) dt = 1.0;
dt = dt * cond2r;
dy = dec0;
dx = sin(dy+dt)/sqrt((1.0+cos(dy+dt))/2.0) -
sin(dy)/sqrt((1.0+cos(dy))/2.0);
if (dx==0.0) dx = 1.0;
geo2 = dt / dx;
/* Calculate the right ascension change for a (1,1) offset from refpix */
/* dt = xinc*cosr - yinc* sinr; */
dt = matrix[0][0] + matrix[0][1];
if (dt==0.0) dt = 1.0;
dt = dt * cond2r;
dx = 2.0 * cos(dy) * sin(dt/2.0);
if (dx==0.0) dx = 1.0;
geo1 = dt * sqrt((1.0+cos(dy)*cos(dt/2.0))/2.0) / dx;
geo3 = geo2 * sin(dy) / sqrt((1.0+cos(dy))/2.0);
rat = ra0;
dect = dec0;
if ((l==0.0) && (m==0.0)) break;
dz = 4.0 - l*l/(4.0*geo1*geo1) - ((m+geo3)/geo2)*((m+geo3)/geo2);
if ((dz>4.0) || (dz<2.0)) return(501);
dz = 0.5 * sqrt (dz);
dd = (m+geo3) * dz / geo2;
if (fabs(dd)>1.0) return(501);
dd = asin(dd);
if (fabs(cos(dd))<deps) return(501);
da = l * dz / (2.0 * geo1 * cos(dd));
if (fabs(da)>1.0) return(501);
da = asin(da);
rat = ra0 + 2.0 * da;
dect = dd;
break;
case 7: /* -STG Sterographic*/
dz = (4.0 - sins) / (4.0 + sins);
if (fabs(dz)>1.0) return(501);
dect = dz * sin0 + m * cos0 * (1.0+dz) / 2.0;
if (fabs(dect)>1.0) return(501);
dect = asin(dect);
rat = cos(dect);
if (fabs(rat)<deps) return(501);
rat = l * (1.0+dz) / (2.0 * rat);
if (fabs(rat)>1.0) return(501);
rat = asin(rat);
mg = 1.0 + sin(dect) * sin0 + cos(dect) * cos0 * cos(rat);
if (fabs(mg)<deps) return(501);
mg = 2.0 * (sin(dect) * cos0 - cos(dect) * sin0 * cos(rat)) / mg;
if (fabs(mg-m)>deps) rat = pi - rat;
rat = ra0 + rat;
break;
case 8: /* -CAR Cartesian */
rat = ra0 + l;
dect = dec0 + m;
/* Should do some sperical wrapping, but can't get it to work, yet
if( dect > 0.5*pi ) { dect = pi - dect; rat += pi; }
if( dect < -0.5*pi ) { dect = -pi - dect; rat += pi; }
*/
break;
default:
/* fall through to here on error */
return(504);
}
/* return ra in range */
/* Oh let's not. LEB */
/*
if (rat-ra0> pi) rat -= pi + pi;
if (rat-ra0<-pi) rat += pi + pi;
if (rat < 0.0) rat += pi + pi; // added by DCW 10/12/94
*/
/* correct units back to degrees */
*xpos = rat / cond2r;
*ypos = dect / cond2r;
/* Do bounds check in degree space since values are exact */
if ( *xpos < 0.0 )
*xpos += 360.0;
else if( *xpos >= 360.0 )
*xpos -= 360.0;
return 0;
} /* End of worldpos */
/*--------------------------------------------------------------------------*/
int pow_xypx(double xpos, double ypos,
double refVal[], double refPix[],
double matrixF[][MAX_WCS_DIMS],
double matrixR[][MAX_WCS_DIMS],
char *type, double *xpix, double *ypix)
/* PDW 03/00: Add -CAR projection support */
/* PDW 02/00: Change interface to use more general matrix/vector notation */
/* LEB 11/97: change the name of the routine from 'ffxypx' to 'pow_xypx'
removed 'status' argument, convert to (0,0) based images to match POW
convention. */
/* WDP 1/97: changed name of routine from xypix to ffxypx */
/*-----------------------------------------------------------------------*/
/* routine to determine accurate pixel coordinates for an RA and Dec */
/* returns 0 if successful otherwise: */
/* 1 = angle too large for projection; */
/* 2 = bad values */
/* WDP 1/97: changed the return values to 501 and 502 instead of 1 and 2 */
/* does: -SIN, -TAN, -ARC, -NCP, -GLS, -MER, -AIT projections */
/* anything else is linear */
/* Input: */
/* d xpos x (RA) coordinate (deg) */
/* d ypos y (dec) coordinate (deg) */
/* d xref x reference coordinate value (deg) */
/* d yref y reference coordinate value (deg) */
/* f xrefpix x reference pixel */
/* f yrefpix y reference pixel */
/* f xinc x coordinate increment (deg) */
/* f yinc y coordinate increment (deg) */
/* f rot rotation (deg) (from N through E) */
/* c *type projection type code e.g. "-SIN"; */
/* Output: */
/* f *xpix x pixel number (RA or long without rotation) */
/* f *ypiy y pixel number (dec or lat without rotation) */
/*-----------------------------------------------------------------------*/
{
double dx, dy, ra0, dec0, ra, dec, coss, sins, dt, da, dd, sint;
double cos0, sin0, dRA;
double l, m, geo1, geo2, geo3;
double deps=1.0e-5;
double pi = 3.14159265358979323846;
double cond2r= pi/180.0;
int itype;
/* find type */
/* WDP 1/97: removed support for default type for better error checking */
for( itype=0; itype<NUM_WCS_TYPES; itype++ )
if (!strncmp(type, wcsProjections[itype], 4)) break;
if ( xpos < 0.0 )
xpos += 360.0;
/* Non linear position */
ra0 = refVal[0] * cond2r;
dec0 = refVal[1] * cond2r;
ra = xpos * cond2r;
dec = ypos * cond2r;
dRA = ra-ra0;
if( dRA > pi ) dRA -= pi + pi;
else if( dRA <= -pi ) dRA += pi + pi;
/* compute direction cosine */
coss = cos(dec);
sins = sin(dec);
cos0 = cos(dec0);
sin0 = sin(dec0);
l = sin(dRA) * coss;
sint = sins * sin0 + coss * cos0 * cos(dRA);
/* process by case */
switch (itype) {
case 0: /* -SIN sin*/
if (sint<0.0) return(501);
m = sins * cos(dec0) - coss * sin(dec0) * cos(dRA);
break;
case 1: /* -TAN tan */
if (sint<=0.0) return(501);
if( cos0<0.001 ) {
/* Do a first order expansion around pole */
m = (coss * cos(dRA)) / (sins * sin0);
m = (-m + cos0 * (1.0 + m*m)) / sin0;
} else {
m = ( sins/sint - sin0 ) / cos0;
}
if( fabs(sin(ra0)) < 0.3 ) {
l = coss*sin(ra)/sint - cos0*sin(ra0) + m*sin(ra0)*sin0;
l /= cos(ra0);
} else {
l = coss*cos(ra)/sint - cos0*cos(ra0) + m*cos(ra0)*sin0;
l /= -sin(ra0);
}
break;
case 2: /* -ARC Arc*/
m = sins * sin(dec0) + coss * cos(dec0) * cos(dRA);
if (m<-1.0) m = -1.0;
if (m>1.0) m = 1.0;
m = acos(m);
if (m!=0)
m = m / sin(m);
else
m = 1.0;
l = l * m;
m = (sins * cos(dec0) - coss * sin(dec0) * cos(dRA)) * m;
break;
case 3: /* -NCP North celestial pole*/
if (dec0==0.0)
return(501); /* can't stand the equator */
else
m = (cos(dec0) - coss * cos(dRA)) / sin(dec0);
break;
case 4: /* -GLS global sinusoid */
if (fabs(dec) >pi*0.5) return(501);
if (fabs(dec0)>pi*0.5) return(501);
m = dec - dec0;
l = dRA * coss;
break;
case 5: /* -MER mercator */
/* dt = yinc * cosr + xinc * sinr; */
/* Calculate the declination change for a (1,1) offset from refpix */
dt = matrixF[1][0] + matrixF[1][1];
if (dt==0.0) dt = 1.0;
dy = (dec0 + 90.0 * cond2r) * 0.5;
dx = dy + (dt * 0.5) * cond2r;
dy = log (tan(dy));
dx = log (tan(dx));
geo2 = dt * cond2r / (dx - dy);
geo3 = geo2 * dy;
l = dRA * cos(dec0);
dt = dec * 0.5 + pi * 0.25;
dt = tan(dt);
if (dt<deps) return(502);
m = geo2 * log (dt) - geo3;
break;
case 6: /* -AIT Aitoff */
da = 0.5 * dRA;
if (fabs(dRA)>pi) return(501);
/* Calculate the declination change for a (1,1) offset from refpix */
/* dt = yinc * cosr + xinc * sinr; */
dt = matrixF[1][0] + matrixF[1][1];
if (dt==0.0) dt = 1.0;
dt = dt * cond2r;
dy = dec0;
dx = sin(dy+dt)/sqrt((1.0+cos(dy+dt))/2.0) -
sin(dy)/sqrt((1.0+cos(dy))/2.0);
if (dx==0.0) dx = 1.0;
geo2 = dt / dx;
/* Calculate the RA change for a (1,1) offset from refpix */
/* dt = xinc*cosr - yinc* sinr; */
dt = matrixF[0][0] + matrixF[0][1];
if (dt==0.0) dt = 1.0;
dt = dt * cond2r;
dx = 2.0 * cos(dy) * sin(dt/2.0);
if (dx==0.0) dx = 1.0;
geo1 = dt * sqrt((1.0+cos(dy)*cos(dt/2.0))/2.0) / dx;
geo3 = geo2 * sin(dy) / sqrt((1.0+cos(dy))/2.0);
dt = sqrt ((1.0 + cos(dec) * cos(da))/2.0);
if (fabs(dt)<deps) return(503);
l = 2.0 * geo1 * cos(dec) * sin(da) / dt;
m = geo2 * sin(dec) / dt - geo3;
break;
case 7: /* -STG Sterographic*/
if (fabs(dec)>0.5*pi) return(501);
dd = 1.0 + sins * sin(dec0) + coss * cos(dec0) * cos(dRA);
if (fabs(dd)<deps) return(501);
dd = 2.0 / dd;
l = l * dd;
m = dd * (sins * cos(dec0) - coss * sin(dec0) * cos(dRA));
break;
case 8: /* -CAR Cartesian */
/* l = ra - ra0; */
l = dRA;
m = dec - dec0;
break;
default:
/* fall through to here on error */
return(504);
} /* end of itype switch */
/* back to degrees */
dx = l / cond2r;
dy = m / cond2r;
/* Apply Transform Matrix */
*xpix = matrixR[0][0] * dx + matrixR[0][1] * dy + refPix[0];
*ypix = matrixR[1][0] * dx + matrixR[1][1] * dy + refPix[1];
return 0;
} /* end xypix */
|