1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
# Copyrights (C)
# for this R-port:
# 1999 - 2007, Diethelm Wuertz, GPL
# Diethelm Wuertz <wuertz@itp.phys.ethz.ch>
# info@rmetrics.org
# www.rmetrics.org
# for the code accessed (or partly included) from other R-ports:
# see R's copyright and license files
# for the code accessed (or partly included) from contributed R-ports
# and other sources
# see Rmetrics's copyright file
################################################################################
# FUNCTION: UTILITY FUNCTIONS:
# emaTA Exponential Moving Average
# biasTA EMA-Bias
# medpriceTA Median Price
# typicalpriceTA Typical Price
# wcloseTA Weighted Close Price
# rocTA Rate of Change
# oscTA EMA-Oscillator
# FUNCTION: OSCILLATOR INDICATORS:
# momTA Momentum
# macdTA MACD
# cdsTA MACD Signal Line
# cdoTA MACD Oscillator
# vohlTA High/Low Volatility
# vorTA Volatility Ratio
# FUNCTION: STOCHASTICS INDICATORS:
# stochasticTA Stochastics %K/%D, fast/slow
# fpkTA Fast Percent %K
# fpdTA Fast Percent %D
# spdTA Slow Percent %D
# apdTA Averaged Percent %D
# wprTA Williams Percent %R
# rsiTA Relative Strength Index
# FUNCTION: DESCRIPTION - MORE INDICATORS:
# accelTA Acceleration
# adiTA AD Indicator
# adoscillatorTA AD Oscillator
# bollingerTA Bollinger Bands
# chaikinoTA Chaikin Oscillator
# chaikinvTA Chaikin Volatility
# garmanklassTA Garman-Klass Volatility
# nviTA Negative Volume Index
# obvTA On Balance Volume
# pviTA Positive Volume Index
# pvtrendTA Price-Volume Trend
# williamsadTA Williams AD
# williamsrTA Williams R%
# FUNCTION: SPLUS LIKE MOVING AVERAGES:
# SMA Computes Simple Moving Average
# EWMA Computes Exponentially Weighted Moving Average
# FUNCTION: DESCRIPTION:
# .dailyTA Computes an indicator for technical analysis
# FUNCTION: DESCRIPTION:
# .tradeSignals Computes trade signals from trading positions
# .tradeLengths Computes trade length from trading signals
# .hitRate Computes hit rates from returns and positions
# FUNCTION: DESCRIPTION:
# .emaSlider EMA Slider
################################################################################
test.utilityFunctions =
function()
{
# emaTA - Exponential Moving Average
# biasTA - EMA-Bias
# medpriceTA - Median Price
# typicalpriceTA - Typical Price
# wcloseTA - Weighted Close Price
# rocTA - Rate of Change
# oscTA - EMA-Oscillator
# Data from fEcofin:
X = MSFT
print(head(X))
# Data Records:
x = close = X[, "Close"]
high = X[, "High"]
low = X[, "Low"]
open = X[, "Open"]
volume = X[, "Volume"]
# Exponential Moving Average:
TA = emaTA(x, lambda = 0.1, startup = 0)
dim(TA)
head(TA)
# EMA-Bias:
TA = biasTA(x, lag = 5)
dim(TA)
head(TA)
# Median Price:
TA = medpriceTA(high, low)
dim(TA)
head(TA)
# Typical Price:
TA = typicalpriceTA(high, low, close)
dim(TA)
head(TA)
# Weighted Close Price:
TA = wcloseTA(high, low, close)
dim(TA)
head(TA)
# Rate of Change:
TA = rocTA(x, lag = 5)
dim(TA)
head(TA)
# EMA-Oscillator:
TA = oscTA(x, lag1 = 25, lag2 = 65)
dim(TA)
head(TA)
# Return Value
return()
}
################################################################################
test.oscillatorIndicators =
function()
{
# momTA - Momentum
# macdTA - MACD
# cdsTA - MACD Signal Line
# cdoTA - MACD Oscillator
# vohlTA - High/Low Volatility
# vorTA - Volatility Ratio
# Data from fEcofin:
X = MSFT
print(head(X))
# Data Records:
x = close = X[, "Close"]
high = X[, "High"]
low = X[, "Low"]
open = X[, "Open"]
volume = X[, "Volume"]
# Momentum:
TA = momTA(x, lag = 5)
dim(TA)
head(TA)
# MACD:
TA = macdTA(x, lag1 = 12, lag2 = 26)
dim(TA)
head(TA)
# MACD Signal Line:
TA = cdsTA(x, lag1 = 12, lag2 = 26, lag3 = 9)
dim(TA)
head(TA)
# MACD Oscillator:
TA = cdoTA(x, lag1 = 12, lag2 = 26, lag3 = 9)
dim(TA)
head(TA)
# High/Low Volatility:
TA = vohlTA(high, low)
dim(TA)
head(TA)
# Volatility Ratio:
TA = vorTA(high, low)
dim(TA)
head(TA)
# Return Value:
return()
}
################################################################################
test.stochasticsIndicators =
function()
{
# stochasticTA - Stochastics %K/%D, fast/slow
# fpkTA - Fast Percent %K
# fpdTA - Fast Percent %D
# spdTA - Slow Percent %D
# apdTA - Averaged Percent %D
# wprTA - Williams Percent %R
# rsiTA - Relative Strength Index
# Data from fEcofin:
X = MSFT
print(head(X))
# Data Records:
x = close = X[, "Close"]
high = X[, "High"]
low = X[, "Low"]
open = X[, "Open"]
volume = X[, "Volume"]
# Fast Stochstic:
# Note, returns a 2-colum series as output ...
TA = stochasticTA(close, high, low, lag1 = 5, lag2 = 3, type = "fast")
dim(TA)
head(TA, 10)
# Slow Stochstic:
# Note, returns a 2-colum series as output ...
TA = stochasticTA(close, high, low, lag1 = 5, lag2 = 3, lag3 = 5,
type = "slow")
dim(TA)
head(TA, 10)
# Fast Percent K:
TA = fpkTA(close, high, low, lag = 5)
dim(TA)
head(TA,10)
# Fast Percent D:
TA = fpdTA(close, high, low, lag1 = 5, lag2 = 3)
dim(TA)
head(TA, 10)
# Slow Percent %D
TA = spdTA(close, high, low, lag1 = 5, lag2 = 3, lag3 = 9)
dim(TA)
head(TA, 10)
# Averaged Percent %D
TA = apdTA(close, high, low, lag1 = 5, lag2 = 3, lag3 = 9, lag4 = 9)
dim(TA)
head(TA, 10)
# Williams Percent %R
TA = wprTA(close, high, low, lag = 5)
dim(TA)
head(TA, 10)
# Relative Strength Index
TA = rsiTA(close, lag = 14)
dim(TA)
head(TA, 10)
# Return Value:
return()
}
################################################################################
test.moreIndicators =
function()
{
# accelTA - Acceleration
# adiTA - AD Indicator
# adoscillatorTA - AD Oscillator
# bollingerTA - Bollinger Bands
# chaikinoTA - Chaikin Oscillator
# chaikinvTA - Chaikin Volatility
# garmanklassTA - Garman-Klass Volatility
# nviTA - Negative Volume Index
# obvTA - On Balance Volume
# pviTA - Positive Volume Index
# pvtrendTA - Price-Volume Trend
# williamsadTA - Williams AD
# williamsrTA- Williams R%
# Data from fEcofin:
X = MSFT
print(head(X))
x = close = X[, "Close"]
high = X[, "High"]
low = X[, "Low"]
open = X[, "Open"]
volume = X[, "Volume"]
# Acceleration
TA = accelTA(x, n = 3)
dim(TA)
head(TA, 10)
# AD Indicator
TA = adiTA(high, low, close, volume)
dim(TA)
head(TA, 10)
# AD Oscillator
TA = adoscillatorTA(open, high, low, close)
dim(TA)
head(TA, 10)
# Bollinger Bands
TA = bollingerTA(x, lag = 5, n.sd = 2)
dim(TA)
head(TA, 10)
# Chaikin Oscillator
TA = chaikinoTA(high, low, close, volume, lag1 = 10, lag2 = 3)
dim(TA)
head(TA, 10)
# Chaikin Volatility
TA = chaikinvTA(high, low, lag1 = 5, lag2 = 5)
dim(TA)
head(TA, 10)
# Garman-Klass Volatility
TA = garmanklassTA(open, high, low, close)
dim(TA)
head(TA, 10)
# Negative Volume Index
TA = nviTA(close, volume)
dim(TA)
head(TA, 10)
# On Balance Volume
TA = obvTA(close, volume)
dim(TA)
head(TA, 10)
# Positive Volume Index
TA = pviTA(close, volume)
dim(TA)
head(TA, 10)
# Price-Volume Trend
TA = pvtrendTA(close, volume)
dim(TA)
head(TA, 10)
# Williams AD
TA = williamsadTA(high, low, close)
dim(TA)
head(TA, 10)
# Williams R%
TA = williamsrTA(high, low, close, lag = 5)
dim(TA)
head(TA, 10)
# Return Value:
return()
}
################################################################################
test.splusLikeIndicators =
function()
{
# SMA - Computes Simple Moving Average
# EWMA - Computes Exponentially Weighted Moving Average
# Data from fEcofin:
X = MSFT
print(head(X))
# Data Records:
x = close = X[, "Close"]
high = X[, "High"]
low = X[, "Low"]
open = X[, "Open"]
volume = X[, "Volume"]
# SMA:
TA = SMA(x, n = 5)
dim(TA)
head(TA)
# EMA - Using Decay Length:
TA = EWMA(x, 25)
dim(TA)
head(TA)
# EMA - Using lambda:
TA = EWMA(x, 2/(25+1))
dim(TA)
head(TA)
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.dailyTA =
function()
{
# .dailyTA
# Computes an indicator for technical analysis
# Data from fEcofin:
X = MSFT
print(head(X))
# EMA - Daily TA:
TA = .dailyTA(X, "ema", select = "Close", lag = 5)
head(TA)
# MACD - Daily TA:
TA = .dailyTA(X, "macd", select = "Close", lag = c(lag1 = 12, lag2 = 26))
head(TA)
# ...
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.tradingFunctions =
function()
{
# .tradeSignals - Computes trade signals from trading positions
# .tradeLengths - Computes trade length from trading signals
# .hitRate - Computes hit rates from returns and positions
# Positions:
long = +1
short = -1
neutral = 0
tradePositions = c(+1, +1, +1, -1, -1, +1, +1, -1, +1, +1, +1, -1)
tradeReturns = rnorm(12)
# Compute Trade Signals:
Positions = timeSeries(tradePositions, timeCalendar(), units = "Position")
Positions
tradeSignals = .tradeSignals(Positions)
tradeSignals
# Compute Trade Lengths:
tradeLengths = .tradeLengths(tradeSignals)
tradeLengths
# Compute Hit Rates:
.hitRate(tradeReturns, tradePositions)
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.emaSlider =
function()
{
.emaSlider =
function(x)
{ # A function implemented by Diethelm Wuertz
# Description
# Displays the selected technical indicator
# FUNCTION:
# Internal Function:
refresh.code = function(...)
{
# Sliders:
lambda1 = .sliderMenu(no = 1)
lambda2 = .sliderMenu(no = 2)
startup = .sliderMenu(no = 3)
# Compute Data:
seriesPlot(x)
ema1 = emaTA(x, lambda1, startup)
N1 = ceiling(2/lambda1)-1
lines(ema1, col = "red")
ema2 = emaTA(x, lambda2, startup)
N2 = ceiling(2/lambda2)-1
lines(ema2, col = "green")
mText = paste("EMA1 =", N1, "|", "EMA2 =", N2)
mtext(mText, side = 4, adj = 0, cex = 0.7, col = "grey")
# Difference:
seriesPlot(ema2-ema1, type = "h")
lines(ema2-ema1, col = "red")
# Reset Frame:
par(mfrow = c(2, 1), cex = 0.7)
}
# Open Slider Menu:
N = min(10, dim(x)[1])
print(N)
.sliderMenu(refresh.code,
names = c( "lamda1", "lamda2", "startup" ),
minima = c( 0.01, 0.01, 0 ),
maxima = c( 0.99, 0.99, N ),
resolutions = c( 0.01, 0.01, 1 ),
starts = c( 0.10, 0.25, 0 ))
}
# Chart:
# .emaSlider(tS)
NA
# Return Value:
return()
}
################################################################################
|