1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
# This file is a real calculation.
# It builds a Wulff shape for a 2-dimensional Ising model
# using Onsager solution for the surface tension.
# The final plot is the shape of a droplet together with
# the polar plot of the surface tension.
# It is square at low temperature and circular at higher T.
# T are in units of Tc.
# Calculations are using expressions found in:
# Avron et al., J. Phys. A 15, L81 (1982).
# Never mind.....
#
# Play safe
free @all
# Plot temperature dependence of epsilon
# fitting preamble
pmode
# set term uniterm
# set term X11
# set term postscript
# set output 'fig.ps'
# set size 3.5/5.0, 3.5/3.5
set grid
set nokey
set data style line
# set xrange [0:1.1]
set auto
set format '% .1lf'
set polar
fmode
# define variables
# Critical temperature of the Ising model
let tc = -2.0/ln(sqrt(2)-1)
set data 50
# A macro to take rough derivative
# Syntax deriv X Y
# creates vector DY
macro deriv 2
cmode
for (i=2;i<data;i++) {
D$2[i] = ($2[i+1] - $2[i-1])/($1[i+1] - $1[i-1])
}
D$2[1] = D$2[2]
D$2[data] = D$2[data-1]
fmode
stop
# build angular vectors from 0 to pi/2
cmode
n=1
tmp = data + 1
PHI = n++/tmp
PHI *= pi/2
THETA = PHI
CF = cos(PHI)
CF2 = CF^2
C2F = cos(2 * PHI)
C2F2 = C2F^2
SF = sin(PHI)
SF2 = SF^2
S2F = sin(2 * PHI)
S2F2 = S2F^2
fmode
# polar vector WULF to be minimized
# with the following cmode function
cmode
func minim(x, y) {
if (x < y) {
return(x)
}
return(y)
}
fmode
# define macro for temperature dependence
macro phimake 2
echo Doing T = $1
cmode
# build scalars
tt = $1
t = tt*tc
x = exp(-2/t)
x2 = x * x
dx = -2 * x
a = (1 + x2)^2
a2 = a^2
da = -8 * x2 * (1 + x2)
p = 2 * x * (1 - x2)
p2 = p^2
dp = -4 * x * (1 - 3 * x2)
# build vectors
B = sqrt(0.25 * a2 * S2F2 + p2 * C2F2)
DB = (0.25 * a * da * S2F2 + p * dp * C2F2)/B
NUM1 = (a2 * SF2 + p2 * C2F)
DNM1 = (a * SF2 + B)
AL1 = acosh(NUM1/(DNM1 * p))
NUM2 = (a2 * CF2 - p2 * C2F)
DNM2 = (a * CF2 + B)
AL2 = acosh(NUM2/(DNM2 * p))
DNUM1 = 2 * (a * da * SF2 + p * dp * C2F)
DDNM1 = (da * SF2 + DB)
DNUM2 = 2 * (a * da * CF2 - p * dp * C2F)
DDNM2 = (da * CF2 + DB)
TMP1 = (DNUM1 * DNM1 - NUM1 * DDNM1)/(DNM1 * DNM1)
TMP2 = (DNUM2 * DNM2 - NUM2 * DDNM2)/(DNM2 * DNM2)
DAL1 = (TMP1 - dp * cosh(AL1))/(p * sinh(AL1))
DAL2 = (TMP2 - dp * cosh(AL2))/(p * sinh(AL2))
S = (AL1 * SF + AL2 * CF) * t
E = DAL1 * SF + DAL2 * CF
# build Wulff vector
WULF = S
for (i=1;i<=data;i++) {
for (j=1;j<=data;j++) {
TMP[j] = S[j]/cos(PHI[i] - THETA[j])
WULF[i] = minim(WULF[i], TMP[j])
}
}
fmode
# take derivative -> creates vector DWULF
deriv PHI WULF
# recalculate E(BETA) to average
cmode
BETA = PHI - atan(DWULF/WULF)
CA = cos(BETA)
CA2 = CA^2
C2A = cos(2 * BETA)
C2A2 = C2A^2
SA = sin(BETA)
SA2 = SA^2
S2A = sin(2 * BETA)
S2A2 = S2A^2
B = sqrt(0.25 * a2 * S2A2 + p2 * C2A2)
DB = (0.25 * a * da * S2A2 + p * dp * C2A2)/B
NUM1 = (a2 * SA2 + p2 * C2A)
DNM1 = (a * SA2 + B)
AL1 = acosh(NUM1/(DNM1 * p))
NUM2 = (a2 * CA2 - p2 * C2A)
DNM2 = (a * CA2 + B)
AL2 = acosh(NUM2/(DNM2 * p))
DNUM1 = 2 * (a * da * SA2 + p * dp * C2A)
DDNM1 = (da * SA2 + DB)
DNUM2 = 2 * (a * da * CA2 - p * dp * C2A)
DDNM2 = (da * CA2 + DB)
TMP1 = (DNUM1 * DNM1 - NUM1 * DDNM1)/(DNM1 * DNM1)
TMP2 = (DNUM2 * DNM2 - NUM2 * DDNM2)/(DNM2 * DNM2)
DAL1 = (TMP1 - dp * cosh(AL1))/(p * sinh(AL1))
DAL2 = (TMP2 - dp * cosh(AL2))/(p * sinh(AL2))
EOFB = DAL1 * SA + DAL2 * CA
tote = totl = 0
for (i=1;i<=data;i++) {
tote += WULF[i] * EOFB[i]
totl += WULF[i]
}
tote /= totl
fmode
save vec PHI E S WULF BETA $Tmp.$2
append var tt tote /tmp/ener.wulf
stop
# make a few
! rm -f /tmp/ener.wulf
phimake 0.01 0
let temperature = 0.1
let plotnum = 1
while (temperature <= 0.9)
phimake $temperature $plotnum
let plotnum++
let temperature+=0.1
end
phimake 0.95 10
pmode
# plot '$Tmp.0', '$Tmp.1', '$Tmp.2', '$Tmp.3' , '$Tmp.4', '$Tmp.5'
# plot '$Tmp.0' us 1:3, '$Tmp.1' us 1:3, '$Tmp.2' us 1:3, \
# '$Tmp.3' us 1:3, '$Tmp.4' us 1:3, \
# '$Tmp.0', '$Tmp.1', '$Tmp.2', '$Tmp.3' , '$Tmp.4'
plot '$Tmp.0' us 1:3, '$Tmp.0' us 1:4,\
'$Tmp.4' us 1:3, '$Tmp.4' us 1:4,\
'$Tmp.7' us 1:3, '$Tmp.7' us 1:4
fmode
|