File: UnitrootTests.R

package info (click to toggle)
funitroots 2100.76-3
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 1,808 kB
  • sloc: fortran: 502; makefile: 13
file content (362 lines) | stat: -rw-r--r-- 11,716 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# General Public License for more details.
#
# A copy of the GNU General Public License is available via WWW at
# http://www.gnu.org/copyleft/gpl.html.  You can also obtain it by
# writing to the Free Software Foundation, Inc., 59 Temple Place,
# Suite 330, Boston, MA  02111-1307  USA.

# Copyrights (C)
# for this R-port:
#   1999 - 2007, Diethelm Wuertz, GPL
#   Diethelm Wuertz <wuertz@itp.phys.ethz.ch>
#   info@rmetrics.org
#   www.rmetrics.org
# for the code accessed (or partly included) from other R-ports:
#   see R's copyright and license files
# for the code accessed (or partly included) from contributed R-ports
# and other sources
#   see Rmetrics's copyright file


################################################################################
# FUNCTION:                ADF TESTS:
#  adfTest                  ADF unit root test using Banarjee's test statistics
#  unitrootTest             ADF unit root test using McKinnon's test statistics
# FUNCTION:                UNITROOT TEST SUITE:
#  .urTest                  Unit Root Test Suite
################################################################################



adfTest =
function(x, lags = 1, type = c("nc", "c", "ct"), title = NULL,
description = NULL)
{   # A function implemented by Diethelm Wuertz

    # Description:
    #   Tests the null hypothesis of a unit root in y.

    # Arguments:
    #   x - numeric vector
    #   type - specifies the regression model to be estimatied and the
    #       null hypothesis, "nc" no constant and no trend, "c" add
    #       constant, "ct" add constant and trend.
    #   lags - specifies the number of lagged differences of x to be
    #       included in the regression model. If 'lags' = h, a term
    #       sum_{i=1}^{h-1} beta_i * diff(x)_(t-h) is added to the
    #       regression equation.

    # Value:
    #   A list of class "htest" containing the following components:
    #   statistic - the value of the test statistic (t-statistic)
    #   parameter - the number of lags.
    #   p.value - the p-value of the test
    #   method - a character string indicating what type of test was performed
    #   data.name - a character string giving the name of the data y

    # Reference:
    #   S. E. SAID and D. A. DICKEY (1984): Testing for Unit Roots in
    #   Autoregressive-Moving Average Models of Unlag.diffnown Order.
    #   Biometrika 71, 599607.

    # Source:
    #   This function is an augmented version of Adrian Trapletti's
    #   function adf.test() which considers type "ct" only. We have added
    #   the types "c" and "nc" together with the appropriate statistics.

    # Call:
    CALL = match.call()

    # Test:
    test = list()

    # Data Set Name:
    DNAME = deparse(substitute(x))
    test$data.name = DNAME

    # Transform:
    if (class(x) == "timeSeries") x = series(x)
    x = as.vector(x)

    # Check Arguments:
    if (lags < 0) stop("Lags are negative")

    # Settings:
    doprint = FALSE
    type = type[1]
    lags = lags + 1
    y = diff(x)
    n = length(y)
    z = embed(y, lags)
    y.diff = z[, 1]
    y.lag.1 = x[lags:n]
    tt = lags:n

    # Regression:
    if (lags > 1) {
        y.diff.lag = z[,2:lags]
        if (type == "nc"){
            res = lm(y.diff ~ y.lag.1 - 1 + y.diff.lag) }
        if (type == "c"){
            res = lm(y.diff ~ y.lag.1 + 1 +  y.diff.lag) }
        if (type == "ct") {
            res = lm(y.diff ~ y.lag.1 + 1 + tt + y.diff.lag) }
    } else {
        if (type == "nc") {
            res = lm(y.diff ~ y.lag.1 - 1) }
        if (type == "c"){
            res = lm(y.diff ~ y.lag.1 + 1) }
        if (type == "ct") {
            res = lm(y.diff ~ y.lag.1 + 1  + tt)  }
    }

    # Regression Summary:
    res.sum = summary(res)
    if (doprint) print(res.sum)

    # Statistic:
    if (type == "nc") coefNum = 1 else coefNum = 2
    STAT = res.sum$coefficients[coefNum, 1] / res.sum$coefficients[coefNum, 2]
    names(STAT) = "Dickey-Fuller"
    test$statistic = STAT

    # P Value:
    if (type == "nc")
        table = cbind(
            c(-2.66, -2.26, -1.95, -1.60, +0.92, +1.33, +1.70, +2.16),
            c(-2.62, -2.25, -1.95, -1.61, +0.91, +1.31, +1.66, +2.08),
            c(-2.60, -2.24, -1.95, -1.61, +0.90, +1.29, +1.64, +2.03),
            c(-2.58, -2.23, -1.95, -1.62, +0.89, +1.29, +1.63, +2.01),
            c(-2.58, -2.23, -1.95, -1.62, +0.89, +1.28, +1.62, +2.00),
            c(-2.58, -2.23, -1.95, -1.62, +0.89, +1.28, +1.62, +2.00))
    if (type == "c")
        table = cbind(
            c(-3.75, -3.33, -3.00, -2.63, -0.37, +0.00, +0.34, +0.72),
            c(-3.58, -3.22, -2.93, -2.60, -0.40, -0.03, +0.29, +0.66),
            c(-3.51, -3.17, -2.89, -2.58, -0.42, -0.05, +0.26, +0.63),
            c(-3.46, -3.14, -2.88, -2.57, -0.42, -0.06, +0.24, +0.62),
            c(-3.44, -3.13, -2.87, -2.57, -0.43, -0.07, +0.24, +0.61),
            c(-3.43, -3.12, -2.86, -2.57, -0.44, -0.07, +0.23, +0.60))
    if (type == "ct")
        table = cbind(
            c(-4.38, -3.95, -3.60, -3.24, -1.14, -0.80, -0.50, -0.15),
            c(-4.15, -3.80, -3.50, -3.18, -1.19, -0.87, -0.58, -0.24),
            c(-4.04, -3.73, -3.45, -3.15, -1.22, -0.90, -0.62, -0.28),
            c(-3.99, -3.69, -3.43, -3.13, -1.23, -0.92, -0.64, -0.31),
            c(-3.98, -3.68, -3.42, -3.13, -1.24, -0.93, -0.65, -0.32),
            c(-3.96, -3.66, -3.41, -3.12, -1.25, -0.94, -0.66, -0.33))
    table = t(table)
    tablen = dim(table)[2]
    tableT = c(25, 50, 100, 250, 500, 1e+05)
    tablep = c(0.01, 0.025, 0.05, 0.1, 0.9, 0.95, 0.975, 0.99)
    tableipl = numeric(tablen)
    for (i in (1:tablen))
        tableipl[i] = approx(tableT, table[, i], n, rule = 2)$y
    PVAL = approx(tableipl, tablep, STAT, rule = 2)$y
    if (is.na(approx(tableipl, tablep, STAT, rule = 1)$y)) {
        if (PVAL == min(tablep)) {
            warning("p-value smaller than printed p-value")
        } else {
            warning("p-value greater than printed p-value")
        }
    }
    names(PVAL) = ""
    test$p.value = PVAL

    # Parameter:
    PARAMETER = lags - 1
    names(PARAMETER) = "Lag Order"
    test$parameter = PARAMETER

    # Add:
    if (is.null(title)) title = "Augmented Dickey-Fuller Test"
    if (is.null(description)) description = date()

    # Add Regression:
    test$lm = res

    # Return Value:
    new("fHTEST",
        call = CALL,
        data = list(x = x),
        test = test,
        title = as.character(title),
        description = description()
        )
}


# ------------------------------------------------------------------------------


unitrootTest =
function(x, lags = 1, type = c("nc", "c", "ct"), title = NULL,
description = NULL)
{   # A function implemented by Diethelm Wuertz

    # Description:
    #   Tests the null hypothesis of a unit root in x.

    # Arguments:
    #   x - numeric vector
    #   type - specifies the regression model to be estimatied and the
    #       null hypothesis, "nc" no constant and no trend, "c" add
    #       constant, "ct" add constant and trend.
    #   lags - specifies the number of lagged differences of x to be
    #       included in the regression model. If 'lags' = h, a term
    #       sum_{i=1}^{h-1} beta_i * diff(x)_(t-h) is added to the
    #       regression equation.

    # Value:
    #   A list with class "htest" containing the following components:
    #   statistic - the value of the test statistic (t-statistic)
    #   parameter - the number of lags.
    #   p.value - the p-value of the test
    #   method - a character string indicating what "trend" type of
    #       the test was performed
    #   data.name - a character string giving the name of the data y

    # Reference:
    #   Said S.E., Dickey D.A. (1984): Testing for Unit Roots in
    #   Autoregressive-Moving Average Models of Unlag.diffnown Order.
    #   Biometrika 71, 599-607.

    # Source:
    #   This function is an augmented version of Adrian Trapletti's
    #   function adf.test() which considers trend "ct" only. We have added
    #   the trend types "c" and "nc" together with the appropriate statistics.

    # FUNCTION:

    # Call:
    CALL = match.call()

    # Test:
    test = list()

    # Data Set Name:
    DNAME = deparse(substitute(x))
    test$data.name = DNAME

    # Transform:
    if (class(x) == "timeSeries") x = series(x)
    x = as.vector(x)

    # Check Arguments:
    if (lags < 0) stop("Lags are negative")

    # Settings:
    type = type[1]
    lags = lags + 1
    y = diff(x)
    n = length(y)
    z = embed(y, lags)
    y.diff = z[, 1]
    y.lag.1 = x[lags:n]
    tt = lags:n

    # Regression:
    if (lags > 1) {
        y.diff.lag = z[,2:lags]
        if (type == "nc"){
            res = lm(y.diff ~ y.lag.1 - 1 + y.diff.lag) }
        if (type == "c"){
            res = lm(y.diff ~ y.lag.1 + 1 +  y.diff.lag) }
        if (type == "ct") {
            res = lm(y.diff ~ y.lag.1 + 1 + tt + y.diff.lag) }
        if (type == "ctt") {
            res = lm(y.diff ~ y.lag.1 + 1 + tt + tt^2 + y.diff.lag) }
    } else {
        if (type == "nc") {
            res = lm(y.diff ~ y.lag.1 - 1) }
        if (type == "c"){
            res = lm(y.diff ~  y.lag.1 + 1) }
        if (type == "ct") {
            res = lm(y.diff ~ y.lag.1 + 1  + tt)  }
        if (type == "ctt") {
            res = lm(y.diff ~ y.lag.1 + 1 + tt + tt^2) }
    }
    res.sum = summary(res)
    test$regression = res.sum

    # Statistic:
    if (type == "nc") coefNum = 1 else coefNum = 2
    STATISTIC =
        res.sum$coefficients[coefNum, 1] / res.sum$coefficients[coefNum, 2]
    names(STATISTIC) = "DF"
    test$statistic = STATISTIC

    # P Value:
    if (type == "nc") { itv = 1 }
    if (type == "c")  { itv = 2 }
    if (type == "ct") { itv = 3 }
    if (type == "ctt"){ itv = 4 }
    # Statistic == "t" : itt = 1
    PVAL1 =
        .urcval(arg = STATISTIC, nobs = n, niv = 1, itt = 1, itv = itv, nc = 2)
    # Statistic == "n" : itt = 2
    PVAL2 =
        .urcval(arg = STATISTIC, nobs = n, niv = 1, itt = 2, itv = itv, nc = 2)
    PVAL = c(PVAL1, PVAL2)
    names(PVAL) = c("t", "n")
    test$p.value = PVAL

    # Parameter:
    PARAMETER = lags - 1
    names(PARAMETER) = "Lag Order"
    test$parameter = PARAMETER

    # Add:
    if (is.null(title)) title = "Augmented Dickey-Fuller Test"
    if (is.null(description)) description = date()

    # Return Value:
    new("fHTEST",
        call = CALL,
        data = list(x = x),
        test = test,
        title = as.character(title),
        description = description()
        )
}


################################################################################


.urTest =
function(x, method = c("unitroot", "adf", "urers", "urkpss", "urpp",
"ursp", "urza"), title = NULL, description = NULL, ...)
{   # A function implemented by Diethelm Wuertz

    # Description:
    #   Unit Root Test Suite

    # FUNCTION:

    # Match Function:
    funTest = match.fun(paste(method[1], "Test", sep = ""))

    # Test:
    ans = funTest(x = x, ...)

    # Add:
    if (!is.null(title)) ans@title = as.character(title)
    if (!is.null(description)) ans@description = description()

    # Return Value:
    ans
}


################################################################################