1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
\name{UnitrootUrcaInterface}
\title{Unit Root Time Series Tests}
\alias{UnitrootUrcaInterface}
\alias{urdfTest}
\alias{urersTest}
\alias{urkpssTest}
\alias{urppTest}
\alias{urspTest}
\alias{urzaTest}
\description{
A collection and description of functions
for unit root testing. This is a Rmetrics
conform interface to the unitroot tests implemented by B. Pfaff
available through the \R package "\pkg{urca}" which is required here.
Added functions based on the \pkg{urca} package include:
\tabular{ll}{
\code{urdfTest} \tab Augmented Dickey--Fuller test for unit roots, \cr
\code{urersTest} \tab Elliott--Rothenberg--Stock test for unit roots, \cr
\code{urkpssTest} \tab KPSS unit root test for stationarity, \cr
\code{urppTest} \tab Phillips--Perron test for unit roots, \cr
\code{urspTest} \tab Schmidt--Phillips test for unit roots, \cr
\code{urzaTest} \tab Zivot--Andrews test for unit roots.
}
}
\note{
The functions \code{ur*Test()} fullfill the naming conventions
of Rmetrics, return an S4 object named \code{fHTEST} as any other
hypothesis test from Rmetrics, and allow for \code{timeSeries} objects
as input. These are the only differences to the original implementation
of the functions.
Fur further details we refer to the manual pages of the
\pkg{urca} package which is required for all these.
}
\usage{
urdfTest(x, lags = 1, type = c("nc", "c", "ct"), doplot = TRUE)
urersTest(x, type = c("DF-GLS", "P-test"), model = c("constant", "trend"),
lag.max = 4, doplot = TRUE)
urkpssTest(x, type = c("mu", "tau"), lags = c("short", "long", "nil"),
use.lag = NULL, doplot = TRUE)
urppTest(x, type = c("Z-alpha", "Z-tau"), model = c("constant", "trend"),
lags = c("short", "long"), use.lag = NULL, doplot = TRUE)
urspTest(x, type = c("tau", "rho"), pol.deg = c(1, 2, 3, 4),
signif = c(0.01, 0.05, 0.1), doplot = TRUE)
urzaTest(x, model = c("intercept", "trend", "both"), lag, doplot = TRUE)
}
\arguments{
%\item{description}{
% a character string which allows for a brief description.
% }
\item{doplot}{
[ur*Test] - \cr
a logical flag, by default \code{TRUE}. Should a diagnostical
plot be displayed?
}
\item{lag.max}{
[urersTest] - \cr
the maximum numbers of lags used for testing of a decent lag
truncation for the \code{"P-test"}, BIC used, or the maximum
number of lagged differences to be included in the test
regression for \code{"DF-GLS"}.
}
\item{lag}{
[urzaTest] - \cr
the highest number of lagged endogenous differenced variables
to be included in the test regression.
}
\item{lags}{
[urkpssTest][urppTest] - \cr
the maximum number of lags used for error term correction.
}
\item{model}{
[urersTest] - \cr
a character string dennoting the deterministic model used for
detrending, either \code{"constant"}, the default, or
\code{"trend"}. \cr
[urppTest] - \cr
a character string which determines the deterministic part in
the test regression, either \code{"constant"}, the default, or
\code{"trend"}. \cr
[urzaTest] - \cr
a character string specifying if the potential break occured
in either the \code{"intercept"}, the linear \code{"trend"} or
in \code{"both"}.
}
\item{pol.deg}{
[urspTest] - \cr
the polynomial degree in the test regression.
}
\item{signif}{
[urspTest] - \cr
the significance level for the critical value of the test
statistic.
}
%\item{title}{
% a character string which allows for a project title.
% }
\item{type}{
[urkpssTest] - \cr
a character string which denotes the type of deterministic part,
either \code{"mu"}, the default, or \code{"tau"}.
\cr
[urppTest] - \cr
a character string which specifies the test type, either
\code{"Z-alpha"}, the default, or \code{"Z-tau"}.
\cr
[urspTest] - \cr
a character string which specifies the test type, either
\code{"tau"}, the default, or \code{"rho"}.
}
\item{use.lag}{
[urkpssTest] - \cr
a character string specifying the number of lags. Allowed
arguments are \code{lags=c("short", "long", "nil")}, for more
information see the details section.\cr
[urppTest] - \cr
Use of a different lag number, specified by the user.
}
\item{x}{
a numeric vector or time series object.
}
}
\details{
\bold{Unit Root Tests from Berhard Pfaff's "\pkg{urca}" Package:}
\cr
\emph{Elliott--Rothenberg--Stock Test for Unit Roots:}
\cr
To improve the power of the unit root test, Elliot, Rothenberg and
Stock proposed a local to unity detrending of the time series. ERS
developed a feasible point optimal test, \code{"P-test"}, which
takes serial correlation of the error term into account. The second
test type is the \code{"DF-GLS"} test, which is an ADF-type test
applied to the detrended data without intercept. Critical values
for this test are taken from MacKinnon in case of \code{model="constant"}
and else from Table 1 of Elliot, Rothenberg and Stock. \cr
\code{[urca:ur.ers]} \cr
\emph{KPSS Test for Unit Roots:}
\cr
Performs the KPSS unit root test, where the Null hypothesis is
stationarity. The test types specify as deterministic component
either a constant \code{"mu"} or a constant with linear trend
\code{"tau"}. \code{lags="short"} sets the number of lags to
\emph{root 4 of [4 times (n/100)}, whereas \code{lags="long"}
sets the number of lags to \emph{root 4 of [12 times (n/100)]}.
If \code{lags="nil"} is choosen, then no error correction is made.
Furthermore, one can specify a different number of maximum lags
by setting use.lag accordingly. \cr
\code{[urca:ur.kpss]} \cr
\emph{Phillips--Perron Test for Unit Roots:}
\cr
Performs the Phillips and Perron unit root test. Beside the
Z statistics Z-alpha and Z-tau, the Z statistics for the
deterministic part of the test regression are computed, too.
For correction of the error term a Bartlett window is used. \cr
\code{[urca:ur.pp]} \cr
\emph{Schmidt--Phillips Test for Unit Roots:}
\cr
Performs the Schmidt and Phillips unit root test, where under
the Null and Alternative Hypothesis the coefficients of the
deterministic variables are included. Two test types are available:
the \code{"rho-test"} and the \code{"tau-test"}. Both tests are
extracted from the LM principle. \cr
\code{[urca:ur.sp]} \cr
\emph{Zivot--Andrews Test for Unit Roots:}
\cr
Performs the Zivot and Andrews unit root test, which allows a
break at an unknown point in either the intercept, the linear
trend or in both. This test is based upon the recursive estimation
of a test regression. The test statistic is defined as the
minimum t-statistic of the coeffcient of the lagged endogenous
variable. \cr
\code{[urca:ur.za]}
}
\value{
All tests return an object of class \code{"fHTEST"} with the
following slots:
\item{@call}{
the function call.
}
\item{@data}{
a data frame with the input data.
}
\item{@data.name}{
a character string giving the name of the data frame.
}
\item{@test}{
a list object which holds the output of the underlying
test function.
}
\item{@title}{
a character string with the name of the test.
}
\item{@description}{
a character string with a brief description of the
test.
}
The entries of the \code{@test} slot include the following components:
\item{$statistic}{
the value of the test statistic.
}
\item{$parameter}{
the lag order.
}
\item{$p.value}{
the p-value of the test.
}
\item{$method}{
a character string indicating what type of test was
performed.
}
\item{$data.name}{
a character string giving the name of the data.
}
\item{$alternative}{
a character string describing the alternative
hypothesis.
}
\item{$name}{
the name of the underlying function, which may be wrapped.
}
\item{$output}{
additional test results to be printed.
}
}
\references{
Banerjee A., Dolado J.J., Galbraith J.W., Hendry D.F. (1993);
\emph{Cointegration, Error Correction, and the Econometric
Analysis of Non-Stationary Data},
Oxford University Press, Oxford.
Dickey, D.A., Fuller, W.A. (1979);
\emph{Distribution of the estimators for autoregressive time
series with a unit root},
Journal of the American Statistical Association 74, 427--431.
Kwiatkowski D., Phillips P.C.B, Schmidt P., Shin Y. (1992);
\emph{Testing the Null Hypothesis of Stationarity against
the Alternative of a Unit Root},
Journal of Econometrics 54, 159--178.
Perron P. (1988);
\emph{Trends and Random Walks in Macroeconomic Time Series},
Journal of Economic Dynamics and Control 12, 297--332.
Phillips P.C.B., Perron P. (1988);
\emph{Testing for a unit root in time series regression},
Biometrika 75, 335--346.
Said S.E., Dickey D.A. (1984);
\emph{Testing for Unit Roots in Autoregressive-Moving Average
Models of Unknown Order},
Biometrika 71, 599--607.
Schwert G.W. (1989);
\emph{Tests for Unit Roots: A Monte Carlo Investigation},
Journal of Business and Economic Statistics 2, 147--159.
}
\author{
Bernhard Pfaff for the tests implemented in R's "\pkg{urca}" package,\cr
Diethelm Wuertz for the Rmetrics \R-port.
}
\examples{
## Time Series
# A time series which contains no unit-root:
x <- rnorm(1000)
# A time series which contains a unit-root:
y <- cumsum(c(0, x))
## ERS Test:
if(require("urca")) {
urersTest(x)
urersTest(y)
}
}
\keyword{htest}
|