1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
<!-- =defdoc funidx funidx n -->
<HTML>
<HEAD>
<TITLE>Table Filtering with Indexes</TITLE>
</HEAD>
<BODY>
<!-- =section funidx NAME -->
<H2><A NAME="funidx">Funidx: Using Indexes to Filter Rows in a Table</A></H2>
<!-- =section funidx SYNOPSIS -->
<H2>Summary</H2>
<P>
This document contains a summary of the user interface for
filtering rows in binary tables with indexes.
<!-- =section funidx DESCRIPTION -->
<H2>Description</H2>
<P>
Funtools <A HREF="./filters.html">Table Filtering</A> allows rows in a
table to be selected based on the values of one or more columns in the
row. Because the actual filter code is compiled on the fly, it is very
efficient. However, for very large files (hundreds of Mb or larger),
evaluating the filter expression on each row can take a long time. Therefore,
funtools supports index files for columns, which are used automatically during
filtering to reduce dramatically the number of row evaluations performed.
The speed increase for indexed filtering can be an order of magnitude or
more, depending on the size of the file.
<P>
The <A HREF="./programs.html#funindex">funindex</A> program creates an
index on one or more columns in a binary table. For example, to create an index
for the column pi in the file huge.fits, use:
<PRE>
funindex huge.fits pi
</PRE>
This will create an index named huge_pi.idx.
<P>
When a filter expression is initialized for row evaluation, funtools
looks for an index file for each column in the filter expression. If
found, and if the file modification date of the index file is later
than that of the data file, then the index will be used to reduce the
number of rows that are evaluated in the filter. When
<A HREF="./regions.html">Spatial Region Filtering</A> is part of the
expression, the columns associated with the region are checked for index
files.
<P>
If an index file is not available for a given column, then in general,
all rows must be checked when that column is part of a filter
expression. This is not true, however, when a non-indexed column is
part of an AND expression. In this case, only the rows that pass the
other part of the AND expression need to be checked. Thus, in some cases,
filtering speed can increase significantly even if all columns are not
indexed.
<P>
Also note that certain types of filter expression syntax cannot make
use of indices. For example, calling functions with column names as
arguments implies that all rows must be checked against the function
value. Once again, however, if this function is part of an AND
expression, then a significant improvement in speed still is possible
if the other part of the AND expression is indexed.
<P>
For example, note below the dramatic speedup in searching a 1 Gb
file using an AND filter, even when one of the columns (pha) has no
index:
<PRE>
time fundisp \
huge.fits'[idx_activate=0,idx_debug=1,pha=2348&&cir 4000 4000 1]' \
"x y pha"
x y pha
---------- ----------- ----------
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
42.36u 13.07s 6:42.89 13.7%
time fundisp \
huge.fits'[idx_activate=1,idx_debug=1,pha=2348&&cir 4000 4000 1]' \
"x y pha"
x y pha
---------- ----------- ----------
idxeq: [INDEF]
idxand sort: x[ROW 8037025:8070128] y[ROW 5757665:5792352]
idxand(1): INDEF [IDX_OR_SORT]
idxall(1): [IDX_OR_SORT]
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
1.55u 0.37s 1:19.80 2.4%
</PRE>
When all columns are indexed, the increase in speed can be even more dramatic:
<PRE>
time fundisp \
huge.fits'[idx_activate=0,idx_debug=1,pi=770&&cir 4000 4000 1]' \
"x y pi"
x y pi
---------- ----------- ----------
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
42.60u 12.63s 7:28.63 12.3%
time fundisp \
huge.fits'[idx_activate=1,idx_debug=1,pi=770&&cir 4000 4000 1]' \
"x y pi"
x y pi
---------- ----------- ----------
idxeq: pi start=9473025,stop=9492240 => pi[ROW 9473025:9492240]
idxand sort: x[ROW 8037025:8070128] y[ROW 5757665:5792352]
idxor sort/merge: pi[ROW 9473025:9492240] [IDX_OR_SORT]
idxmerge(5): [IDX_OR_SORT] pi[ROW]
idxall(1): [IDX_OR_SORT]
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
1.67u 0.30s 0:24.76 7.9%
</PRE>
<P>
The miracle of indexed filtering (and indeed, of any indexing) is the
speed of the binary search on the index, which is of order log2(n)
instead of n. (The funtools binary search method is taken from
http://www.tbray.org/ongoing/When/200x/2003/03/22/Binary, to whom
grateful acknowledgement is made.) This means that the larger the
file, the better the performance. Conversely, it also means that for
small files, using an index (and the overhead involved) can slow
filtering down somewhat. Our tests indicate that on a file containing
a few tens of thousands of rows, indexed filtering can be 10 to 20
percent slower than non-indexed filtering. Of course, your mileage
will vary with conditions (disk access speed, amount of available
memory, process load, etc.)
<p>
Any problem encountered during index processing will result in
indexing being turned off, and replaced by filtering all rows. You can turn
filtering off manually by setting the idx_activate variable to 0 (in a filter
expression) or the FILTER_IDX_ACTIVATE environment variable to 0 (in the global
environment). Debugging output showing how the indexes are being processed can
be displayed to stderr by setting the idx_debug variable to 1 (in a filter
expression) or the FILTER_IDX_DEBUG environment variable to 1 (in the global
environment).
<p>
Currently, indexed filtering only works with FITS binary tables and raw
event files. It does not work with text files. This restriction might be
removed in a future release.
<!-- =section funidx SEE ALSO -->
<!-- =text See funtools(n) for a list of Funtools help pages -->
<!-- =stop -->
<P>
<A HREF="./help.html">Go to Funtools Help Index</A>
<H5>Last updated: August 3, 2007</H5>
</BODY>
</HTML>
|