1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
<!-- =defdoc regalgebra regalgebra n -->
<HTML>
<HEAD>
<TITLE>Region Algebra</TITLE>
</HEAD>
<BODY>
<!-- =section regalgebra NAME -->
<H2><A NAME="regalgebra">RegAlgebra: Boolean Algebra on Spatial Regions</A></H2>
<!-- =section regalgebra SYNOPSIS -->
<H2>Summary</H2>
<P>
This document describes the boolean arithmetic defined for
region expressions.
<!-- =section regalgebra DESCRIPTION -->
<H2>Description</H2>
<P>
When defining a region, several shapes can be combined using boolean
operations. The boolean operators are (in order of precedence):
<PRE>
Symbol Operator Associativity
------ -------- -------------
! not right to left
& and left to right
^ exclusive or left to right
| inclusive or left to right
</PRE>
For example, to create a mask consisting of a large circle with a
smaller box removed, one can use the <B>and</B> and <B>not</B>
operators:
<PRE>
CIRCLE(11,11,15) & !BOX(11,11,3,6)
</PRE>
and the resulting mask is:
<PRE>
1234567890123456789012345678901234567890
----------------------------------------
1:1111111111111111111111..................
2:1111111111111111111111..................
3:11111111111111111111111.................
4:111111111111111111111111................
5:111111111111111111111111................
6:1111111111111111111111111...............
7:1111111111111111111111111...............
8:1111111111111111111111111...............
9:111111111...1111111111111...............
10:111111111...1111111111111...............
11:111111111...1111111111111...............
12:111111111...1111111111111...............
13:111111111...1111111111111...............
14:111111111...1111111111111...............
15:1111111111111111111111111...............
16:1111111111111111111111111...............
17:111111111111111111111111................
18:111111111111111111111111................
19:11111111111111111111111.................
20:1111111111111111111111..................
21:1111111111111111111111..................
22:111111111111111111111...................
23:..11111111111111111.....................
24:...111111111111111......................
25:.....11111111111........................
26:........................................
27:........................................
28:........................................
29:........................................
30:........................................
31:........................................
32:........................................
33:........................................
34:........................................
35:........................................
36:........................................
37:........................................
38:........................................
39:........................................
40:........................................
</PRE>
A three-quarter circle can be defined as:
<PRE>
CIRCLE(20,20,10) & !PIE(20,20,270,360)
</PRE>
and looks as follows:
<PRE>
1234567890123456789012345678901234567890
----------------------------------------
1:........................................
2:........................................
3:........................................
4:........................................
5:........................................
6:........................................
7:........................................
8:........................................
9:........................................
10:........................................
11:...............111111111................
12:..............11111111111...............
13:............111111111111111.............
14:............111111111111111.............
15:...........11111111111111111............
16:..........1111111111111111111...........
17:..........1111111111111111111...........
18:..........1111111111111111111...........
19:..........1111111111111111111...........
20:..........1111111111111111111...........
21:..........1111111111....................
22:..........1111111111....................
23:..........1111111111....................
24:..........1111111111....................
25:...........111111111....................
26:............11111111....................
27:............11111111....................
28:..............111111....................
29:...............11111....................
30:........................................
31:........................................
32:........................................
33:........................................
34:........................................
35:........................................
36:........................................
37:........................................
38:........................................
39:........................................
40:........................................
</PRE>
Two non-intersecting ellipses can be made into the same region:
<PRE>
ELL(20,20,10,20,90) | ELL(1,1,20,10,0)
</PRE>
and looks as follows:
<PRE>
1234567890123456789012345678901234567890
----------------------------------------
1:11111111111111111111....................
2:11111111111111111111....................
3:11111111111111111111....................
4:11111111111111111111....................
5:1111111111111111111.....................
6:111111111111111111......................
7:1111111111111111........................
8:111111111111111.........................
9:111111111111............................
10:111111111...............................
11:...........11111111111111111............
12:........111111111111111111111111........
13:.....11111111111111111111111111111......
14:....11111111111111111111111111111111....
15:..11111111111111111111111111111111111...
16:.1111111111111111111111111111111111111..
17:111111111111111111111111111111111111111.
18:111111111111111111111111111111111111111.
19:111111111111111111111111111111111111111.
20:111111111111111111111111111111111111111.
21:111111111111111111111111111111111111111.
22:111111111111111111111111111111111111111.
23:111111111111111111111111111111111111111.
24:.1111111111111111111111111111111111111..
25:..11111111111111111111111111111111111...
26:...11111111111111111111111111111111.....
27:.....11111111111111111111111111111......
28:.......111111111111111111111111.........
29:...........11111111111111111............
30:........................................
31:........................................
32:........................................
33:........................................
34:........................................
35:........................................
36:........................................
37:........................................
38:........................................
39:........................................
40:........................................
</PRE>
You can use several boolean operations in a single region expression,
to create arbitrarily complex regions. With the important exception
below, you can apply the operators in any order, using parentheses if
necessary to override the natural precedences of the operators.
<P>
NB: Using a panda shape is always much more efficient than explicitly
specifying "pie & annulus", due to the ability of panda to place a
limit on the number of pixels checked in the pie shape. If you are
going to specify the intersection of pie and annulus, use panda
instead.
<P>
As described in "help regreometry", the <B>PIE</B> slice goes to the
edge of the field. To limit its scope, <B>PIE</B> usually is is
combined with other shapes, such as circles and annuli, using boolean
operations. In this context, it is worth noting that that there is a
difference between <B>-PIE</B> and <B>&!PIE</B>. The former is a
global exclude of all pixels in the <B>PIE</B> slice, while the latter
is a local excludes of pixels affecting only the region(s) with which
the <B>PIE</B> is combined. For example, the following region uses
<B>&!PIE</B> as a local exclude of a single circle. Two other circles
are also defined and are unaffected by the local exclude:
<PRE>
CIRCLE(1,8,1)
CIRCLE(8,8,7)&!PIE(8,8,60,120)&!PIE(8,8,240,300)
CIRCLE(15,8,2)
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
- - - - - - - - - - - - - - -
15: . . . . . . . . . . . . . . .
14: . . . . 2 2 2 2 2 2 2 . . . .
13: . . . 2 2 2 2 2 2 2 2 2 . . .
12: . . 2 2 2 2 2 2 2 2 2 2 2 . .
11: . . 2 2 2 2 2 2 2 2 2 2 2 . .
10: . . . . 2 2 2 2 2 2 2 . . . .
9: . . . . . . 2 2 2 . . . . 3 3
8: 1 . . . . . . . . . . . . 3 3
7: . . . . . . 2 2 2 . . . . 3 3
6: . . . . 2 2 2 2 2 2 2 . . . .
5: . . 2 2 2 2 2 2 2 2 2 2 2 . .
4: . . 2 2 2 2 2 2 2 2 2 2 2 . .
3: . . . 2 2 2 2 2 2 2 2 2 . . .
2: . . . . 2 2 2 2 2 2 2 . . . .
1: . . . . . . . . . . . . . . .
</PRE>
Note that the two other regions are not affected by the <B>&!PIE</B>,
which only affects the circle with which it is combined.
<P>
On the other hand, a <B>-PIE</B> is an global exclude that does
affect other regions with which it overlaps:
<PRE>
CIRCLE(1,8,1)
CIRCLE(8,8,7)
-PIE(8,8,60,120)
-PIE(8,8,240,300)
CIRCLE(15,8,2)
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
- - - - - - - - - - - - - - -
15: . . . . . . . . . . . . . . .
14: . . . . 2 2 2 2 2 2 2 . . . .
13: . . . 2 2 2 2 2 2 2 2 2 . . .
12: . . 2 2 2 2 2 2 2 2 2 2 2 . .
11: . . 2 2 2 2 2 2 2 2 2 2 2 . .
10: . . . . 2 2 2 2 2 2 2 . . . .
9: . . . . . . 2 2 2 . . . . . .
8: . . . . . . . . . . . . . . .
7: . . . . . . 2 2 2 . . . . . .
6: . . . . 2 2 2 2 2 2 2 . . . .
5: . . 2 2 2 2 2 2 2 2 2 2 2 . .
4: . . 2 2 2 2 2 2 2 2 2 2 2 . .
3: . . . 2 2 2 2 2 2 2 2 2 . . .
2: . . . . 2 2 2 2 2 2 2 . . . .
1: . . . . . . . . . . . . . . .
</PRE>
The two smaller circles are entirely contained within the two exclude
<B>PIE</B> slices and therefore are excluded from the region.
<!-- =section regalgebra SEE ALSO -->
<!-- =text See funtools(n) for a list of Funtools help pages -->
<!-- =stop -->
<P>
<A HREF="./help.html">Go to Funtools Help Index</A>
<H5>Last updated: November 17, 2005</H5>
</BODY>
</HTML>
|