File: distCheck.R

package info (click to toggle)
futilities 270.73-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 804 kB
  • ctags: 5
  • sloc: makefile: 13
file content (143 lines) | stat: -rw-r--r-- 4,722 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received A copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA  02111-1307  USA

# Copyrights (C)
# for this R-port:
#   1999 - 2008, Diethelm Wuertz, Rmetrics Foundation, GPL
#   Diethelm Wuertz <wuertz@itp.phys.ethz.ch>
#   www.rmetrics.org
# for the code accessed (or partly included) from other R-ports:
#   see R's copyright and license files
# for the code accessed (or partly included) from contributed R-ports
# and other sources
#   see Rmetrics's copyright file


################################################################################
# FUNCTION:                 DESCRIPTION:
#  .distCheck                Checks consistency of distributions
################################################################################


distCheck <- 
    function(fun = "norm", n = 1000, robust = TRUE, subdivisions = 100, ...)
{   
    # A function implemented by Diethelm Wuertz

    # Description:
    #   Checks consistency of distributions
    
    # Arguments:
    #   fun - a character string denoting the name of the distribution
    #   n - an integer specifying the number of random variates to be
    #       generated
    #   robust -  a logical flag, should robust estimates be used? By
    #       default \code{TRUE}
    #   subdivisions - an integer specifying the numbers of subdivisions
    #       in integration
    #   ... - the distributional parameters
    
    # Examples:
    #   .distCheck("norm", mean = 1, sd = 1)
    #   .distCheck("t", df = 4)
    #   .distCheck("exp", rate = 2)
    #   .distCheck("weibull", shape = 1)

    # FUNCTION:
    
    # Distribution Functions:
    cat("\nDistribution Check for:", fun, "\n ")
    CALL = match.call()
    cat("Call: ")
    cat(paste(deparse(CALL), sep = "\n", collapse = "\n"), "\n", sep = "") 
    dfun = match.fun(paste("d", fun, sep = ""))
    pfun = match.fun(paste("p", fun, sep = ""))
    qfun = match.fun(paste("q", fun, sep = ""))
    rfun = match.fun(paste("r", fun, sep = ""))
    
    # Range:
    xmin = qfun(p = 0.01, ...)
    xmax = qfun(p = 0.99, ...)
    
    # Check 1 - Normalization:
    NORM = integrate(dfun, lower = -Inf, upper = Inf, 
        subdivisions = subdivisions, stop.on.error = FALSE, ...)
    cat("\n1. Normalization Check:\n NORM ")
    print(NORM)
    normCheck = (abs(NORM[[1]]-1) < 0.01)
    
    # Check 2:
    cat("\n2. [p-pfun(qfun(p))]^2 Check:\n ")
    p = c(0.001, 0.01, 0.1, 0.5, 0.9, 0.99, 0.999)
    P = pfun(qfun(p, ...), ...)
    pP = round(rbind(p, P), 3)
    print(pP)
    RMSE = sd(p-P)
    print(c(RMSE = RMSE))
    rmseCheck = (abs(RMSE) < 0.0001)
    
    # Check 3:
    cat("\n3. r(", n, ") Check:\n", sep = "")
    r = rfun(n = n, ...)
    if (!robust) {
        SAMPLE.MEAN = mean(r)
        SAMPLE.VAR = var(r)
    } else {
        robustSample = MASS::cov.mcd(r, quantile.used = floor(0.95*n))
        SAMPLE.MEAN = robustSample$center
        SAMPLE.VAR = robustSample$cov[1,1]
    }
    SAMPLE = data.frame(t(c(MEAN = SAMPLE.MEAN, "VAR" = SAMPLE.VAR)), 
        row.names = "SAMPLE")
    print(signif(SAMPLE, 3))
    fun1 = function(x, ...) { x * dfun(x, ...) }
    fun2 = function(x, M, ...) { x^2 * dfun(x, ...) }   
    MEAN = integrate(fun1, lower = -Inf, upper = Inf, 
        subdivisions = 5000, stop.on.error = FALSE,...)
    cat("   X   ")
    print(MEAN)
    VAR = integrate(fun2, lower = -Inf, upper = Inf, 
        subdivisions = 5000, stop.on.error = FALSE, ...)  
    cat("   X^2 ")
    print(VAR)
    EXACT = data.frame(t(c(MEAN = MEAN[[1]], "VAR" = VAR[[1]] - MEAN[[1]]^2)),
        row.names = "EXACT ")
    print(signif(EXACT, 3))
    meanvarCheck = (abs(SAMPLE.VAR-EXACT$VAR)/EXACT$VAR < 0.1)
    cat("\n")
    
    # Done:
    ans = list(
        normCheck = normCheck, 
        rmseCheck = rmseCheck, 
        meanvarCheck = meanvarCheck)
        
    # Return Value:
    unlist(ans)
}


# ------------------------------------------------------------------------------


.distCheck <- distCheck

    # Keep for older Rmetrics Versions



################################################################################