File: eval.web

package info (click to toggle)
fweb 1.62-14.1
  • links: PTS
  • area: main
  • in suites: sid
  • size: 7,400 kB
  • sloc: ansic: 41,945; makefile: 411; sh: 152
file content (1305 lines) | stat: -rw-r--r-- 30,640 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
@z --- eval.web ---

FWEB version 1.62 (September 25, 1998)

Based on version 0.5 of S. Levy's CWEB [copyright (C) 1987 Princeton University]

@x-----------------------------------------------------------------------------


\Title{EVAL.WEB} % Expression evaluation for FTANGLE.

@c

@* EXPRESSION EVALUATION. The following code is used to evaluate
arithmetic, logical, and bit expressions. This is needed in particular in
order to parse conditional expressions for the macro preprocessor, and can
also be called up with the built-in macro |$EVAL|.

Three data types are allowed: |int|, |double|, and |sixteen_bits|
(identifier tokens). These are represented by the enumerated types |Int|,
|Double|, and |Id|. The identifier tokens are only allowed in conjunction
with the |defined| command taken from ANSI~C, which is implemented as a
unary operator with the highest precedence. (Actually, the |int|'s are
really |long|, to accomodate the pc~people. We didn't see the need to have
separate |int| and |long| types.)

In addition, a fourth type, |Op|, is used to represent unary or binary
operators. 

Although the expression evaluator is patterned after ANSI~C, it isn't
complete, and it doesn't behave exactly identically.  In particular, the
order of evaluation isn't necessarily left-to-right.  Presently, I don't
see the need for anything more elaborate, but time will tell.

@m _EVaL_ /* Note that the fully upper-case form conflicts with the
		built-in |_EVAL_|! */
@d _EVAL_h

@A
@<Include files@>@;
@<Typedef declarations@>@;
@<Prototypes@>@;
@<Global variables@>@;

@I typedefs.hweb

@I texts.hweb
@I trunc.hweb

@ The function prototypes must appear before the global variables.
@<Proto...@>=

#include "e_type.h" // Function prototypes for \.{eval}.
#include "r_type.h" // Prototypes for \.{ratfor}.

@ Something from \.{ratfor.web}.

@f sixteen_bits int
@f token x

@I t_codes.hweb

@i val.hweb

@ For the error messages, we have a function that returns a pointer to the
name of the type.
@a
outer_char *stype FCN((type))
	TYPE type C1("Type whose name is desired.")@;
{
switch(type)
	{
	case Int: return OC("Int");
	case Double: return OC("Double");
	case Id: return OC("Id");
	case Op: return OC("Op");
	default: return OC("UNKNOWN");
	}
}

@ Using the previous ingredients, we represent each token by a |VAL|
structure. First, |evaluate| parses the incoming tokens and fills a |VAL|
structure with the correct data value or operator token; it then links it
into a list, which it later traverses to effect the expression evaluation.
The linkage is necessary because items must be removed as unary operators
are evaluated.

@<Typedef...@>=

/* A static heap of available |VAL| structures. */
VAL HUGE *val_heap; // Allocated at outer level of |evaluate|.
VAL HUGE *val_ptr; // Next available |VAL| in heap.

@ The outermost expression evaluator |eval| used for the preprocessor must
return either~1 for true or~0 for false. The actual evaluation routine
|evaluate| is recursive; the following macro makes the outer call to it. It
also allocates and frees the |VAL| heap used during the evaluation.

@a
boolean eval FCN((p0,p1))
	CONST eight_bits HUGE *p0 C0("Beginning of tokens.")@;
	CONST eight_bits HUGE *p1 C1("End of tokens.")@;
{
VAL val;

EVALUATE(val,p0,p1);

switch(val.type)
	{
	case Int: return (boolean)(val.value.i != 0);
	case Double: return (boolean)(val.value.d != 0.0);
	default: 
		EMACRO_ERR("! Non-numeric type returned from eval \
(undefined macro?); assumed FALSE",YES);
		return 0;	// Error in evaluation.
	}
}

@ A related routine returns an integer that is the evaluation of the
expression. 
@a
int neval FCN((p0,p1))
	CONST eight_bits HUGE *p0 C0("Beginning of tokens.")@;
	CONST eight_bits HUGE *p1 C1("End of tokens.")@;
{
VAL val;

EVALUATE(val,p0,p1);

switch(val.type)
	{
	case Int: return (int)(val.value.i);
	case Double: return (int)(val.value.d);
	default: 
		EMACRO_ERR("! Non-numeric type returned from neval \
(undefined macro?); assumed 0",YES);
		return 0;	// Error in evaluation.
	}
}

@ Related to |eval| are an important internal macro |$EVAL|, which
evaluates a string expression.
@<Define internal macros@>=

SAVE_MACRO("$EVAL(expr)$$EVAL(expr)"); // Expand the expression.

@ Here is the function that evaluates the value of a string.
@a
SRTN i_eval_ FCN((n,pargs))
	int n C0("")@;
	PARGS pargs C1("")@;
{
VAL val;
eight_bits HUGE *p0;

CHK_ARGS("$EVAL",1);

p0 = pargs[0] + 1;
EVALUATE(val, p0, pargs[1]);

@<Write the expansion directly into the |macrobuf|@>;
}

@ Here the result of the evaluation is written directly into the
|macrobuf|. If the result failed to evaluate to a number, the original
expression is just copied over.
@<Write the expansion...@>=
{
MCHECK0(2, "expansion |constant|"); 
	// Takes care of the two bracketing |constant|s. 
*mp++ = constant; // Beginning of the |constant|.

switch(val.type)
	{
   case Int: 
	NSPRINTF((outer_char *)mp,"%ld",val.value.i); 
	break;

   case Double: 
	NSPRINTF((outer_char *)mp,"%#.*g", DBL_DIG, val.value.d); 
// Format guarantees a decimal point.
	break; 

   case Id:
	MCHECK0(pargs[1] - p0,"Id");
	mp--; // Backspace to beginning of |constant|.
	while(p0<pargs[1]) *mp++ = *p0++; // Copy it over.
	return;

   default:
	EMACRO_ERR("! Invalid type returned from _eval_",YES);
	return;
	}

fin_constant(val.type);
}

@ The fundamental recursive routine |evaluate| parses a bounded string of
tokens, possibly ended by a special delimiter. It then evaluates the
resulting expression, fills a |VAL| structure with the value, and returns a
pointer to the next unprocessed token.

If an error occurs, a cascade of additional messages would be possible. To
prevent this, we use |setjmp| and |longjmp| to get out fast. Because the
evaluation is recursive, we have to jump all the way out of that (with a
|longjmp|), so we make the top level of |evaluate| simple, and call |eval0|
to do the hard work.

@m EVAL_ERR(...) 
	{
	EMACRO_ERR(#.); longjmp(top_of_evaluate,1); /* Non-zero
		value signifies the second return from |setjmp|. */
	}

@m EMACRO_ERR(...) if(eval_msgs) MACRO_ERR(#.)@;

@f jmp_buf int

@<Glob...@>=

static jmp_buf top_of_evaluate; // Environment for the |setjmp|--|longjmp|./
boolean eval_msgs ESET(YES); // Sometimes we want to suppress the msgs.

@ In the top level, we first call |setjmp|. The first call to |setjmp| is
guaranteed to return~0; from this normal return we call |eval0| to actually
evaluate the expression. If a |longjmp| is executed (see the |EVAL_ERR|
macro, it returns from |setjmp| with a nonzero value; we then fill |val|
with a bad data value and return. The function returns a pointer to the
next token to be examined. 
@a
CONST eight_bits HUGE *evaluate FCN((val,p0,p1))
	VAL HUGE *val C0("Return the evaluated |DATA| structure here.")@;
	CONST eight_bits HUGE *p0 C0("Beginning of the input tokens.")@;
	CONST eight_bits HUGE *p1 C1("End of the input tokens.")@;
{
if(setjmp(top_of_evaluate) == 0) return eval0(val,p0,p1,(eight_bits)'\0');
	// Evaluate the expression.
else
	{ /* Get here from |longjmp|. */
	val->type = Id; // Flag for bad expression.
	val->value.id = ignore;
	return p1;
	}
}

@ The fundamental expression evaluator must be recursive because of
parenthesized expressions. The basic procedure is simple. (1)~Convert the
input string to a linked list, with some added information such as the
precedence of the operators for efficiency; (2)~scan the list (from left to
right) and evaluate all unary operators, proceeding from highest to lowest
precedence; (3)~scan again to evaluate binary operators. This last scan is
done recursively, proceeding from lowest to highest precedence. At a given
precedence, the list is split to the left and to the right of the given
binary operator; each part is evaluated recursively; then the binary
operator is applied. In order to ensure that the final evaluation is from
left to right at a given precedence, the splitting must be done from right
to left. For example, $2\times 2/4$ must be evaluated as $(2\times 2)/(4)$,
not $2\times(2/4)$.  For ease of coding, the first and last |VAL|s in the
list are dummies, having no values. Only their addresses are used to help
terminate the scans.

To help speed things up, the array |found_op| is introduced. When the |VAL|
list is first being formed, |found_op| keeps track of how many operators of
a given precedence were encountered. If there are none at a given
precedence, then the list need not be scanned for it. Also, when an
operator is applied, |found_op| is decremented. At the end, |found_op|
should be identically zero.

@a
CONST eight_bits HUGE *eval0 FCN((val,p0,p1,delim))
	VAL HUGE *val C0("Return the evaluated |DATA| structure here.")@;
	CONST eight_bits HUGE *p0 C0("Beginning of the input tokens.")@;
	CONST eight_bits HUGE *p1 C0("End of the input tokens.")@;
	eight_bits delim C1("End the scan when this token is encountered.")@;
{
CONST eight_bits HUGE *p;
eight_bits a;
sixteen_bits id;
VAL v_root,v_end; // Dummies to help terminate the list.
VAL HUGE *v; // Current |VAL|.
VAL HUGE *v0= &v_root, HUGE *v1= &v_end; /* Point to the first and
		last elements in the chain. */ 
VAL HUGE *vlast, HUGE *vnext;	// Temporaries.
int prec;
boolean at_start; // Are we at start of list?
eight_bits last_op; /* The first of two consecutive operator tokens. Also
	used as a |boolean| operator; if it's non-zero, the last token was an
	operator. */
int k,found_op[HIGHEST_PRECEDENCE+1];

/* Initialize the speed array. */
for(k=LOWEST_PRECEDENCE; k<=HIGHEST_PRECEDENCE; k++) found_op[k] = 0;

/* Check for invalid, null expression. */
if(p0>=p1 || *p0==delim)
	{
	EMACRO_ERR("! Null expression encountered during expression \
evaluation; 0 assumed",YES);
	val->type = Int;
	val->value.i = 0;
	
	if(*p0 == delim) return p0+1;
	else return p1;
	}

@<Construct the |VAL| list@>@;
@<Reduce the unary operators@>@;

/* Traverse the chain beginning at~|v0| and ending at~|v1|, and reduce
binary operations according to precedence. */
v0 = eval1(v0,v1,(PRECEDENCE)LOWEST_PRECEDENCE,found_op);
val->type = v0->type;
val->value = v0->value;

for(k=LOWEST_PRECEDENCE; k<=HIGHEST_PRECEDENCE; k++)
	if(found_op[k]) 
		EVAL_ERR("! Missing operand(s) at precedence \
level %d (null macro?)", YES, k);

return p;
}

@ Here we scan the input string, converting it into a doubly-linked list.
Note that the |VAL| heap was allocated at the beginning; it's not allocated
during recursive calls to |eval0|.

One annoyance is that one must pay attention to the two possible uses of a
minus sign. We assume that if it comes first or after another operator
token, it's the unary minus; otherwise, it's the binary operator. To help
us here, we introduce the flag |at_start|.
@<Construct the |VAL|...@>=
{
at_start = YES; // In case of a leading unary minus.
last_op = ignore;

for(p=p0,vlast=v0,v=v0->next= ++val_ptr,v->last=vlast; p<p1; )
	{
	if(TOKEN1(a= *p++)) 
		@<Process single-byte token for |VAL| list@>@;
	else 
		@<Process identifier token for |VAL| list@>@;

/* This statement is put here rather than as part of the |for| so we can
skip over it if we're skipping a string. */
	vlast=v; @+ v = v->next = ++val_ptr; @+ v->last=vlast;
	}

vlast->next = v1; // Terminate the chain forward.
v1->last = vlast;
}

@
@<Process single-byte token...@>=
{
if(a==delim) 
	break; // The token |delim| ends the scan.

reswitch:
switch(a)
	{
   case @'(':
	last_op = ignore;
	p = eval0(v,p,p1,@')'); 
		// Recursively evaluate parenthesized expressions. 
	break;

   case dot_const:
	{
	extern DOTS dots0[];
	DOTS *d;
	int num = *p++;

	if(num > PREDEFINED_DOTS) EVAL_ERR("! May only use predefined dot \
constants such as .AND. here",YES);

	d = dots0 + num;

	if(d->cat == expr) EVAL_ERR("! .FALSE. and .TRUE. are not handled \
by the expression evaluator.  Please use 0 or 1 instead",YES)@;
	if(d->cat != binop) EVAL_ERR("! Invalid dot constant during \
expression evaluation; was expecting binary operator",YES)@;
	a = d->token; // The translation.
	goto reswitch;
	}

   case constant:
	last_op = ignore;
	p = vfill(v,p,p1); // Convert constant to data. 
	break;

   case stringg:
	while(*p++ != stringg); /* Skip over embedded string, to
overlook verbatim comments. */
	continue;

   case @' ':
   case tab_mark:
	continue; // These sneak in during nuweb mode.

   case @'-':
	if(last_op || at_start) a = UNARY_MINUS;
	last_op = ignore; // Falls through to |default|.

   default:
	if( (prec=(int)precedence(a)) > 0)
		{
		if(last_op && ((IS_UNARY(last_op) && IS_UNARY(a))
|| (IS_BINARY(last_op) && IS_BINARY(a)))) 
			EVAL_ERR("! Adjacent operators \"%s %s\" \
not allowed in expression",YES,op_name(last_op),op_name(a))@;

		v->type = Op;
		last_op = v->value.op.token = a;
		found_op[(int)(v->value.op.precedence =	(PRECEDENCE)prec)]++;  
		}
	else EVAL_ERR(_Xx("! Invalid token '%c' (0x%x) in \
expression"),YES,a >= @' ' ? a : '?',a)@;
	break;
	}

at_start = NO;
}

@
@<Process identifier token...@>=
{
at_start = NO; @+ last_op = ignore;

if( (id = IDENTIFIER(a,*p++)) == id_defined)
	{
	v->type = Op;
	last_op = v->value.op.token = DEFINED_TOKEN;
	found_op[(int)(v->value.op.precedence =	precedence(DEFINED_TOKEN))]++; 
	}
else
	{
	v->type = Id; // This had better be the argument of |defined|.
	v->value.id = id;
	}
}

@ The previous fragment uses the |vfill| function, which
converts a constant expression to bit form and returns a pointer to the
next token to be processed. Note that we must make special provision for
hex, octal, and binary constants, since when programming in~C these are not
converted automatically.
@a
CONST eight_bits HUGE *vfill FCN((v,p0,p1))
	VAL HUGE *v C0("To be filled.")@;
	CONST eight_bits HUGE *p0 C0("Start of expression.")@;
	CONST eight_bits HUGE *p1 C1("End of expression.")@;
{
CONST eight_bits HUGE *p;
eight_bits a;
ASCII temp[100]; // Should be error checked.
ASCII HUGE *t;
TYPE type = Int;

/* Put the stuff between |constant| into a temporary buffer. */
for(p=p0,t=temp; p<p1; )
	{
	if( (a=*p++) == constant) break; // Terminating delimiter found.
	
	if(a==@'.' || a==@'e' || a==@'E' || a==@'d' || a==@'D') type = Double;

	*t++ = a;
	}

*t = '\0';

/* Convert the buffer. */
switch(v->type=type)
	{
   case Int:
	if(temp[0] == @'0')
		if(temp[1] == @'x' || temp[1] == @'X') 
			v->value.i = xtoi(temp,t);
		else if(temp[1] == @'b' || temp[1] == @'B') 
			v->value.i = btoi(temp,t);
		else v->value.i = otoi(temp,t);
	else v->value.i = ATOL(to_outer(temp));
	break;

   case Double:
	v->value.d = ATOF(to_outer(temp));
	break;

   default: 
	CONFUSION("vfill","Type must be Int or Double here");
	}

return p;
}

@ Here we scan for and reduce the unary operators. This must be done in
order of decreasing precedence.
@<Reduce the unary...@>=

for(prec = (int)HIGHEST_UNARY; prec >= (int)UNARY; prec--)
   if(found_op[prec])
	for(v=v0->next; v != v1; v=vnext)
		{
		vnext = v->next;

		if(v->type == Op && v->value.op.precedence == (PRECEDENCE)prec)
			{
			switch(v->value.op.token)
				{
				case DEFINED_TOKEN:
					@<Apply |defined| operator@>; @+ break;

				case @'!':
					@<Negate@>; @+ break;

				case @'~':
					@<Complement@>;@+ break;

				case UNARY_MINUS:
					@<Unary minus@>; @+ break;
				}

/* The value is now where the unary operator was; remove the original value
from the list. */
			v->next = vnext->next;
			v->next->last = v;
			vnext = v->next;

			if(!(--found_op[prec])) break;
			}
		}

@ The routine |eval1| that actually reduces the expressions is recursive.
We scan for operators with the highest precedence and handle those first.
All unary operators with the same precedence can be evaluated on the same
pass. For binary operators, we split into the expressions to the left and
to the right of the operator, and apply |eval1| recursively to each half.
(The splitting must proceed from right to left in order that the final
order of evaluation is left to right.)  Then we can return the result of
the binary operation.

@a
VAL HUGE *eval1 FCN((v0,v1,prec0,found_op))
	CONST VAL HUGE *v0 C0("Start of list.")@;
	CONST VAL HUGE *v1 C0("End of list.")@;
	PRECEDENCE prec0 C0("Start scanning with this value of precedence.")@;
	int found_op[] C1("Array of flags---was an operator found at \
each precedence level?")@;
{
int prec;
VAL HUGE *v, 
	HUGE *val0, HUGE *val1; /* Returned pointers from |eval1| to the
left and right operands of a binary operator. */

if(v0->next == v1->last) return v0->next; // Reduced down to constant.

for(prec=(int)prec0; prec < (int)UNARY; prec++)
   if(found_op[prec])
	for(v=v1->last; v != v0; v=v->last)
		{
		if(v->type == Op && v->value.op.precedence == (PRECEDENCE)prec)
			{
			val0 = eval1(v0,v,(PRECEDENCE)LOWEST_PRECEDENCE,
					found_op); // Left-hand expression. 
			val1 = eval1(v,v1,(PRECEDENCE)(prec+1),found_op); 
					// Right-hand expression.
			promote(val0,val1);

			@<Process an operator token@>@;

			found_op[prec]--;
			return val0;
			}
		}

EVAL_ERR("! Missing binary operator, or undefined macro",YES)@;

DUMMY_RETURN(NULL);
}

@ In the following, note the use of the pseudo-expression to help out the
formatting.
@<Process an operator...@>=

switch(v->value.op.token)
	{
	case star_star:
		@<Exponentiate@>; @+ break;

	case @'*': ARITH(*@e);
	case @'/': chk_zero('/',val1); @+ ARITH(@e/@e); 
	case @'%': chk_zero('%',val1); @+ BIT(@e%@e);

	case @'+': ARITH(@e+@e);
	case @'-': ARITH(-@e);

	case lt_lt: BIT(@e<<@e);
	case gt_gt: BIT(@e>>@e);

	case @'<': LOG(@e<@e);
	case lt_eq: LOG(@e<=@e);
	case @'>': LOG(@e>@e);
	case gt_eq: LOG(@e>=@e);

	case eq_eq: 
		if(val0->type == Id && val1->type == Id)
			{
			val0->value.i = val0->value.id == val1->value.id;
			val0->type = Int;
			break;
			}
		else
			LOG(@e==@e);

	case not_eq: 
		if(val0->type == Id && val1->type == Id)
			{
			val0->value.i = val0->value.id != val1->value.id;
			val0->type = Int;
			break;
			}
		else
			LOG(@e!=@e);

	case @'&': BIT(&@e);
	case @'^': case neqv: BIT(@e^@e);
	case @'|': BIT(@e|@e);

	case and_and: BIT(@e&&@e);
	case or_or: BIT(@e||@e);
	}


@ Check an operand for zero.
@a
SRTN chk_zero FCN((c,pv))
	outer_char c C0("Operator.")@;
	CONST VAL HUGE *pv C1("Right-hand operand.")@;
{
boolean is_zero = NO;

switch(pv->type)
	{
	case Int:
		if(pv->value.i == 0) is_zero = YES;
		break;

	case Double:
		if(pv->value.d == 0.0) is_zero = YES;
		break;

	default:
		EVAL_ERR("! Right operand of '%c' must have type Int or \
Double",YES,c)@;
	}

if(is_zero) EVAL_ERR("! RIGHT OPERAND OF '%c' IS ZERO",YES,c)@;
}

@ Effect logical negation. The result is always |int|.
@<Negate@>=

switch(vnext->type)
	{
	case Int:
		v->value.i = !(vnext->value.i);
		break;

	case Double:
		v->value.i = !(vnext->value.d);
		break;

	default:
		EVAL_ERR("! Can't negate type %s",YES,stype(vnext->type))@;
	}

v->type = Int@;


@ One's complement.
@<Complement@>=

if(vnext->type != Int) 
	{
	EMACRO_ERR("! Can't take one's complement of type %s; \
operand converted to integer",YES,stype(vnext->type));
	v->value.i = (long)(vnext->value.d);
	}

v->type = Int;
v->value.i = ~vnext->value.i@;

@ The unary minus is straightforward.
@<Unary minus@>=

switch(v->type = vnext->type)
	{
	case Int:
		v->value.i = -(vnext->value.i); @+ break;

	case Double:
		v->value.d = -(vnext->value.d); @+ break;

	default:
		EVAL_ERR("! Missing or invalid operand of unary minus \
has type %s",
			NO, stype(v->type))@;
	}

@ ANSI's |defined| command is implemented as a unary operator with the
highest precedence. 

@<Apply |defined|...@>=
{
text_pointer m;

if(vnext->type != Id)
	EVAL_ERR("! 'defined' must act on identifier, not type %s",
		NO,stype(vnext->type))@;
else v->value.i = ((m=mac_lookup(vnext->value.id)) != NULL && !(m->built_in));

v->type = Int;
}

@ Computing the binary operation is aided by some macros.

@d BINARY(l,token) switch(val0->type)
	{
	case Int:
		val0->value.i = val0->value.i token val1->value.i;
		break;

	case Double:
		val0->value.l = val0->value.d token val1->value.d; 
		break;

	case Id:
		misplaced_id(val0->value.id,val1->value.id);

	default:
		EVAL_ERR("! Shouldn't have type Op here",YES)@;
	}

@d ARITH(token) BINARY(d,token)@; break@;

@d LOG(token) BINARY(i,token)@; val0->type = Int; break@;

@d BIT(token) if(val0->type != Int) EVAL_ERR("! Invalid type %s in bit \
operation. (Macro not defined?)",YES,stype(val0->type))@;
	val0->value.i = val0->value.i token val1->value.i;
	break@;

@ An error routine.
@a
SRTN misplaced_id FCN((a0,a1))
	sixteen_bits a0 C0("Left-hand token.")@;
	sixteen_bits a1 C1("Right-hand token.")@;
{
outer_char left_id[MAX_ID_LENGTH],right_id[MAX_ID_LENGTH];

STRCPY(left_id,name_of(a0));
STRCPY(right_id,name_of(a1));

EVAL_ERR("! Identifier not allowed as binary operand:  \
left = \"%s\" (%d), right = \"%s\" (%d).  (Undefined WEB macro?)",
	NO,left_id,a0,right_id,a1)@;
}

@ Since C~doesn't have an explicit exponentation token, we have to
implement explicit code.
@<Unused@>=

@#if 0
@#if !ANSI
double pow PROTO((double x,double y));
double atof();
@#endif
@#endif

@ 
@<Exponentiate@>=

switch(val0->type)
	{
	case Int:
		val0->value.i = 
		   (long)pow((double)val0->value.i,(double)val1->value.i);
		break;

	case Double:
		val0->value.d = pow(val0->value.d,val1->value.d);
		break;

	default:
		EVAL_ERR("! Invalid operand of exponentiate has type %s",
			NO,stype(val0->type))@;
	}

@* PRECEDENCE. A simple routine returns the precedence of a given token. 

@d DEFINED_TOKEN OCTAL(23)
@d UNARY_MINUS OCTAL(24)

@d LOWEST_PRECEDENCE 1
@d HIGHEST_PRECEDENCE 13

/* In the following, the casting shouldn't be necessary, since according to
ANSI |enum|s behave like integers. But it's necessary to keep the |DSU|
compiler happy. */
@d IS_UNARY(token) ((int)precedence(token) >= (int)UNARY)
@d IS_BINARY(token) ((int)precedence(token) < (int)UNARY)

@ This function returns the proper precedence of an operator.
@a
PRECEDENCE precedence FCN((token))
	eight_bits token C1("Operator token whose precedence is desired.")@;
{
switch(token)
	{
	case DEFINED_TOKEN:
		return HIGHEST_UNARY;

/* --- The unary operators: Logical negation, one's complement, unary minus. */
	case @'!':
	case @'~':
	case UNARY_MINUS:
		return UNARY;

/* --- Exponentiation --- */
	case star_star:
		return EXP;

/* --- Multiplication, division, modulus --- */
	case @'*':
	case @'/':
	case @'%':
		return TIMES;

/* --- Addition, subtraction --- */
	case @'+':
	case @'-':
		return PLUS_MINUS;

/* --- Bit shift --- */
	case lt_lt:
	case gt_gt:
		return BIT_SHIFT;

/* --- Less than, greater than --- */
	case @'<': case lt_eq:
	case @'>': case gt_eq:
		return LOG_LT;

/* --- Equals, not equals --- */
	case eq_eq:
	case not_eq:
		return LOG_EQ;

/* --- Bitwise AND --- */
	case @'&':
		return BIT_AND;

/* --- Bitwise EXCLUSIVE OR --- */
	case @'^':
	case neqv:
		return BIT_XOR;

/* --- Bitwise OR --- */
	case @'|':
		return BIT_OR;

/* --- Logical AND --- */
	case and_and:
		return AND_AND;

/* --- Logical OR --- */
	case or_or:
		return OR_OR;

	default:
		return BAD_TOKEN;
	}
}

@ Return a readable representation of an operator token.
@a

#define NAME(token,name) case token: return OC(name)@;

outer_char *op_name FCN((token))
	eight_bits token C1("Operator token whose name is desired.")@;
{
switch(token)
	{
	NAME(DEFINED_TOKEN,"defined");
	NAME(@'!',"!");
	NAME(@'~',"~");
	NAME(UNARY_MINUS,"-");
	NAME(star_star,"**");
	NAME(@'*',"*");
	NAME(@'/',"/");
	NAME(@'%',"%");
	NAME(@'+',"+");
	NAME(@'-',"-");
	NAME(lt_lt,"<<");
	NAME(gt_gt,">>");
	NAME(@'<',"<");
	NAME(lt_eq,"<=");
	NAME(@'>',">");
	NAME(gt_eq,">=");
	NAME(eq_eq,"==");
	NAME(not_eq,"!=");
	NAME(@'&',"&");
	NAME(@'^',"^");
	NAME(neqv,"?=");
	NAME(@'|',"|");
	NAME(and_and,"&&");
	NAME(or_or,"||");

	default: return OC("(UNKNOWN)");
	}
}

#undef NAME

@ Promote operands to same type.

@d TO_DOUBLE(v)	CONVERT_TO(Double,d,double,v)
@d TO_ID(v) CONVERT_TO(Id, id, sixteen_bits, v)

@d CONVERT_TO(t,lhs,cast,v) if(v->type != t) 
	{
	v->value.lhs = (cast)v->value.i;
	v->type = t;
	}

@a
SRTN promote FCN((v0,v1))
	VAL HUGE *v0 C0("Left-hand value.")@;
	VAL HUGE *v1 C1("Right-hand value.")@;
{
if((int)v0->type > (int)v1->type) convert_to(v0->type,v0,v1);
else convert_to(v1->type,v0,v1);
}

SRTN convert_to FCN((type,v0,v1))
	TYPE type C0("Type to be converted to.")@;
	VAL HUGE *v0 C0("Left-hand value.")@;
	VAL HUGE *v1 C1("Right-hand value.")@;
{
switch(type)
	{
	case Int: break;

	case Double:
		TO_DOUBLE(v0);
		TO_DOUBLE(v1);
		break;

	case Id:
		TO_ID(v0);
		TO_ID(v1);
		break;

	default:
		EVAL_ERR("! Invalid data type %s in promotion",
			NO,stype(type))@;
	}
}

@* BUILT-IN FUNCTIONS.
Here is a language facility for the preprocessor.

@a
SRTN i_lang_ FCN((n,pargs))
	int n C0("")@;
	PARGS pargs C1("")@;
{
outer_char temp[5],*temp1=temp+1;
sixteen_bits l; // The number of the language identifier.

CHK_ARGS("$LANGUAGE",0);

/* Initialize to \Fortran--77. */
STRCPY(temp,"$N"); // Some compilers don't allow auto initialization.

switch(language)
	{
	case C:
		*temp1 = 'C'; @+ break;

	case C_PLUS_PLUS:
		STRCPY(temp1,"CPP"); @+ break;

	case RATFOR:
		if(!RAT_OK("(_LANGUAGE)")) 
			CONFUSION("_lang_",
				"Language shouldn't be Ratfor here");
		*temp1 = 'R'; @+ break;

	case RATFOR_90:
		if(!RAT_OK("(_LANGUAGE)")) 
			CONFUSION("_lang_",
				"Language shouldn't be Ratfor here");
		STRCPY(temp1,"R90"); @+ break;

	case TEX:
		*temp1 = 'X'; @+ break;

	case LITERAL:
		*temp1 = 'V'; @+ break;

	case FORTRAN:
	default:
		*temp1 = 'N'; @+ break;

	case FORTRAN_90:
		STRCPY(temp1,"N90"); @+ break;
	}

to_ASCII(temp);
l = ID_NUM((ASCII HUGE *)temp,(ASCII HUGE *)(temp+STRLEN(temp))); 
	// Get number of the language identifier.
MCHECK0(2,"language token");
*mp++ = LEFT(l,ID0); // Return the language token.
*mp++ = RIGHT(l);
}

@ For |$IFCASE| statements, it is useful to obtain the number of the
current language.
@a
SRTN i_lnum_ FCN((n,pargs))
	int n C0("")@;
	PARGS pargs C1("")@;
{
num_to_mbuf(n,pargs,"$LANGUAGE_NUM",0,"language number",stnd_num(language));
}

@ We need a standardized numbering system for use by the external world.
This numbering should never change, regardless of what we do internally.
@a
unsigned stnd_num FCN((Language))
	LANGUAGE Language C1("")@;
{
proper_language:
 switch(Language)
	{
   case C:		return 0;
   case C_PLUS_PLUS:	return 1;
   case FORTRAN:	return 2;
   case FORTRAN_90:	return 3;
   case RATFOR:		return 4;
   case RATFOR_90:	return 5;
   case TEX:		return 6;
   case LITERAL:	return 7;
   default:
	Language = global_language;
	goto proper_language;
	}
}

@ For completeness, we have an exponentiation built-in.
@<Define internal...@>=

SAVE_MACRO("$POW(x,y)$EVAL((x)^^(y))");

@ This is an interface to |predefine_macros| in \FTANGLE. 
@a
SRTN e_macros(VOID)
{
@<Define internal...@>;
}


@ Now we generate some mathematical constants.
@<Define internal...@>=

SAVE_MACRO("$PI(...)$$CONST(\"$PI\", \".31415926535897932384626433832795028\
8419716939937510\",#.)");

SAVE_MACRO("$E(...)$$CONST(\"$E\", \".2718281828459045235360287471352662497\
75724709369995\",#.)");

SAVE_MACRO("$EXP(x)$POW($E, x)");
SAVE_MACRO("$SQRT(x)$POW(x, 0.5)");

@
@a
SRTN i_const_ FCN((n,pargs))
	int n C0("")@;
	PARGS pargs C1("")@;
{
VAL val;
int prec, carry;

if(n == 2)
	prec = DBL_DIG;
else
	{
	CHK_ARGS("$$CONST", 3);
	EVALUATE(val, pargs[2]+1, pargs[3]);
	if(val.type != Int)
		{
		EMACRO_ERR("! Precision argument of $PI or $E must be an \
integer; default precision of %d assumed", YES, DBL_DIG);
		prec = DBL_DIG;
		}
	else
		{
		prec = (int)MIN(val.value.i, 49L);
		prec = MAX(prec, 0);
		}
	}

prec += 2; // Take account of the leading digit and the decimal point.

MCHECK0(prec+2, "math constant");

*mp++ = constant;
STRNCPY(mp, pargs[1]+3, prec+1); 
	/* The '3' accounts for comma, |constant|, and quote.  We get one
extra so we can round. */

n = prec;
carry = (mp[n--] >= @'5');

while(carry)
	{
	mp[n] += 1;

	if(mp[n] > @'9')
		mp[n--] = @'0';
	else
		break;
	}

mp[0] = mp[1];
mp[1] = @'.';

mp += prec;

if(FORTRAN_LIKE(language))
	{ /* In \Fortran, it isn't |double precision| unless one says so
explicitly. */
	MCHECK0(2, "d0");
	*mp++ = @'d';
	*mp++ = @'0';
	}

*mp++ = constant;
}

@
@
@<Define internal...@>=

SAVE_MACRO("$LOG(x)$$LOG(0, x)");
SAVE_MACRO("$LOG10(x)$$LOG(1, x)");

@
@a
SRTN i_log_ FCN((n,pargs))
	int n C0("")@;
	PARGS pargs C1("")@;
{
int m;
VAL val;
double x,y;

m = *(pargs[0]+2) - @'0';
EVALUATE(val, pargs[1]+1, pargs[2]);

if(val.type == Int)
	x = (double)val.value.i;
else if(val.type == Double)
	x = val.value.d;
else 
	{
	EMACRO_ERR("! Invalid argument to $LOG or $LOG10 (undefined \
macro?); expansion aborted", YES);
	return;
	}

if(m==0)
	y = log(x);
else
	y = log10(x);

MCHECK0(DBL_DIG+2, "$$LOG");
*mp++ = constant;
sprintf((char *)mp, "%#.*g", DBL_DIG, y);

fin_constant(Double);
}

@ Here we finish the process of putting a constant into the macro buffer.
Fundamentally we must convert it to |ASCII| and terminate it with
|constant|.  Also, if the constant is floating point, we kill off trailing
zeros, except we leave one zero after the decimal point.

@a
SRTN fin_constant FCN((type))
	TYPE type C1("")@;
{
int n = STRLEN(mp);

if(type == Double)
	while(mp[n-1] == @'0')
		{
		if(mp[n-2] == @'.')
			break;

		n--;
		}
	
to_ASCII(mp);
mp += n;
*mp++ = constant;
}

@
@<Define internal...@>=

SAVE_MACRO("$MIN(a,...)$$MIN_MAX(0, a, #.)");
SAVE_MACRO("$MAX(a,...)$$MIN_MAX(1, a, #.)");

@ The |$MIN| amd |$MAX| functions take at least one, possibly more
arguments.  The annoyance in the logic is to avoid promoting |int|s to
|double|s if everything is an |int|.

@a
SRTN i_min_max_ FCN((n,pargs))
	int n C0("")@;
	PARGS pargs C1("")@;
{
int m = *(pargs[0]+2) - @'0';
long l = 0; // Accumulator for integers.
double z = 0; // Acuumulator for floating point.
double v = 0;
VAL val;
TYPE type;
int k;

EVALUATE(val, pargs[1]+1, pargs[2]); // Obtain the first value.

type = val.type;

if(type == Int)
	l = val.value.i;
else
	z = val.value.d;

for(k=2; k<n; k++)
	{
	EVALUATE(val, pargs[k]+1, pargs[k+1]);

	if(val.type == Double)
		{
		if(type == Int)
			z = (double)l; // From now, accumulate floating point.

		type = Double;
		}

	if(type == Double)
		if(val.type == Int)
			v = (double)val.value.i;
		else
			v = val.value.d;

	if(type == Int)
		if(m == 0)
			{
			if(val.value.i < l)
				l = val.value.i;
			}
		else
			{
			if(val.value.i > l)
				l = val.value.i;
			}
	else
		if(m == 0)
			{
			if(v < z)
				z = v;
			}
		else
			{
			if(v > z)
				z = v;
			}
	}

MCHECK0(DBL_DIG+2, "min_max");
*mp++ = constant;

if(type == Int)
	sprintf((char *)mp, "%ld", l);
else
	sprintf((char *)mp, "%#.*g", DBL_DIG, z);

fin_constant(type);
}
		
@* INDEX.