1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
|
/**
* Registration cache.
*
* Defensive programming via copious COMEX_ASSERT statements is encouraged.
*/
#if HAVE_CONFIG_H
# include "config.h"
#endif
/* C headers */
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* 3rd party headers */
#include <mpi.h>
/* our headers */
#include "comex.h"
#include "comex_impl.h"
#include "reg_cache.h"
#define STATIC static inline
/* the static members in this module */
static reg_entry_t **reg_cache = NULL; /**< list of caches (one per process) */
static int reg_nprocs = 0; /**< number of caches (one per process) */
/* the static functions in this module */
static reg_return_t seg_cmp(void *reg_addr, size_t reg_len,
void *oth_addr, size_t oth_len, int op);
static reg_return_t seg_intersects(void *reg_addr, size_t reg_len,
void *oth_addr, size_t oth_len);
static reg_return_t seg_contains(void *reg_addr, size_t reg_len,
void *oth_addr, size_t oth_len);
static reg_return_t reg_entry_intersects(reg_entry_t *reg_entry,
void *buf, size_t len);
static reg_return_t reg_entry_contains(reg_entry_t *reg_entry,
void *buf, size_t len);
#define TEST_FOR_INTERSECTION 0
#define TEST_FOR_CONTAINMENT 1
/**
* Detects whether two memory segments intersect or one contains the other.
*
* @param[in] reg_addr starting address of original segment
* @param[in] reg_len length of original segment
* @param[in] oth_addr starting address of other segment
* @param[in] oth_len length of other segment
* @param[in] op op to perform, either TEST_FOR_INTERSECTION or
* TEST_FOR_CONTAINMENT
*
* @pre NULL != reg_beg
* @pre NULL != oth_beg
*
* @return RR_SUCCESS on success
*/
STATIC reg_return_t
seg_cmp(void *reg_addr, size_t reg_len, void *oth_addr, size_t oth_len, int op)
{
ptrdiff_t reg_beg = 0;
ptrdiff_t reg_end = 0;
ptrdiff_t oth_beg = 0;
ptrdiff_t oth_end = 0;
int result = 0;
/* preconditions */
COMEX_ASSERT(NULL != reg_addr);
COMEX_ASSERT(NULL != oth_addr);
/* casts to ptrdiff_t since arithmetic on void* is undefined */
reg_beg = (ptrdiff_t)(reg_addr);
reg_end = reg_beg + (ptrdiff_t)(reg_len);
oth_beg = (ptrdiff_t)(oth_addr);
oth_end = oth_beg + (ptrdiff_t)(oth_len);
/* hack? we had problems with adjacent registered memory regions and
* when the length of the query region was 0 */
if (oth_beg == oth_end) {
oth_end += 1;
}
switch (op) {
case TEST_FOR_INTERSECTION:
result = (reg_beg >= oth_beg && reg_beg < oth_end) ||
(reg_end > oth_beg && reg_end <= oth_end);
#if DEBUG
printf("[%d] TEST_FOR_INTERSECTION "
"(%td >= %td [%d] && %td < %td [%d]) ||"
"(%td > %td [%d] && %td <= %td [%d])\n",
g_state.rank,
reg_beg, oth_beg, (reg_beg >= oth_beg),
reg_beg, oth_end, (reg_beg < oth_end),
reg_end, oth_beg, (reg_end > oth_beg),
reg_end, oth_end, (reg_end <= oth_end));
#endif
break;
case TEST_FOR_CONTAINMENT:
result = reg_beg <= oth_beg && reg_end >= oth_end;
#if DEBUG
printf("[%d] TEST_FOR_CONTAINMENT "
"%td <= %td [%d] && %td >= %td [%d]\n",
g_state.rank,
reg_beg, oth_beg, (reg_beg <= oth_beg),
reg_end, oth_end, (reg_end >= oth_end));
#endif
break;
default:
COMEX_ASSERT(0);
}
if (result) {
return RR_SUCCESS;
}
else {
return RR_FAILURE;
}
}
/**
* Detects whether two memory segments intersect.
*
* @param[in] reg_addr starting address of original segment
* @param[in] reg_len length of original segment
* @param[in] oth_addr starting address of other segment
* @param[in] oth_len length of other segment
*
* @pre NULL != reg_beg
* @pre NULL != oth_beg
*
* @return RR_SUCCESS on success
*/
STATIC reg_return_t
seg_intersects(void *reg_addr, size_t reg_len, void *oth_addr, size_t oth_len)
{
/* preconditions */
COMEX_ASSERT(NULL != reg_addr);
COMEX_ASSERT(NULL != oth_addr);
return seg_cmp(
reg_addr, reg_len,
oth_addr, oth_len,
TEST_FOR_INTERSECTION);
}
/**
* Detects whether the first memory segment contains the other.
*
* @param[in] reg_addr starting address of original segment
* @param[in] reg_len length of original segment
* @param[in] oth_addr starting address of other segment
* @param[in] oth_len length of other segment
*
* @pre NULL != reg_beg
* @pre NULL != oth_beg
*
* @return RR_SUCCESS on success
*/
STATIC reg_return_t
seg_contains(void *reg_addr, size_t reg_len, void *oth_addr, size_t oth_len)
{
/* preconditions */
COMEX_ASSERT(NULL != reg_addr);
COMEX_ASSERT(NULL != oth_addr);
return seg_cmp(
reg_addr, reg_len,
oth_addr, oth_len,
TEST_FOR_CONTAINMENT);
}
/**
* Detects whether two memory segments intersect.
*
* @param[in] reg_entry the registration entry
* @param[in] buf starting address for the contiguous memory region
* @param[in] len length of the contiguous memory region
*
* @pre NULL != reg_entry
* @pre NULL != buf
* @pre len >= 0
*
* @return RR_SUCCESS on success
*/
STATIC reg_return_t
reg_entry_intersects(reg_entry_t *reg_entry, void *buf, size_t len)
{
#if DEBUG
printf("[%d] reg_entry_intersects(reg_entry=%p, buf=%p, len=%d)\n",
g_state.rank, reg_entry, buf, len);
#endif
/* preconditions */
COMEX_ASSERT(NULL != reg_entry);
COMEX_ASSERT(NULL != buf);
COMEX_ASSERT(len >= 0);
return seg_intersects(
reg_entry->buf, reg_entry->len,
buf, len);
}
/**
* Detects whether the first memory segment contains the other.
*
* @param[in] reg_entry the registration entry
* @param[in] buf starting address for the contiguous memory region
* @param[in] len length of the contiguous memory region
*
* @pre NULL != reg_entry
* @pre NULL != buf
* @pre len >= 0
*
* @return RR_SUCCESS on success
*/
STATIC reg_return_t
reg_entry_contains(reg_entry_t *reg_entry, void *buf, size_t len)
{
#if DEBUG
printf("[%d] reg_entry_contains(reg_entry=%p, buf=%p, len=%d)\n",
g_state.rank, reg_entry, buf, len);
#endif
/* preconditions */
COMEX_ASSERT(NULL != reg_entry);
COMEX_ASSERT(NULL != buf);
COMEX_ASSERT(len >= 0);
return seg_contains(
reg_entry->buf, reg_entry->len,
buf, len);
}
/**
* Remove registration cache entry without deregistration.
*
* @param[in] rank the rank where the entry came from
* @param[in] reg_entry the entry
*
* @pre NULL != reg_entry
* @pre 0 <= rank && rank < reg_nprocs
*
* @return RR_SUCCESS on success
*/
STATIC reg_return_t
reg_entry_destroy(int rank, reg_entry_t *reg_entry)
{
#if DEBUG
printf("[%d] reg_entry_destroy(rank=%d, reg_entry=%p)\n"
"buf=%p len=%zu name=%s mapped=%p\n",
g_state.rank, rank, reg_entry,
reg_entry->buf, reg_entry->len,
reg_entry->name, reg_entry->mapped);
#endif
/* preconditions */
COMEX_ASSERT(NULL != reg_entry);
COMEX_ASSERT(0 <= rank && rank < reg_nprocs);
/* free cache entry */
free(reg_entry);
return RR_SUCCESS;
}
/**
* Create internal data structures for the registration cache.
*
* @param[in] nprocs number of registration caches to create i.e. one per
* process
*
* @pre this function is called once to initialize the internal data
* structures and cannot be called again until reg_cache_destroy() has been
* called
*
* @see reg_cache_destroy()
*
* @return RR_SUCCESS on success
*/
reg_return_t
reg_cache_init(int nprocs)
{
int i = 0;
#if DEBUG
printf("[%d] reg_cache_init(nprocs=%d)\n",
g_state.rank, nprocs);
#endif
/* preconditions */
COMEX_ASSERT(NULL == reg_cache);
COMEX_ASSERT(0 == reg_nprocs);
/* keep the number of caches around for later use */
reg_nprocs = nprocs;
/* allocate the registration cache list: */
reg_cache = (reg_entry_t **)malloc(sizeof(reg_entry_t*) * reg_nprocs);
COMEX_ASSERT(reg_cache);
/* initialize the registration cache list: */
for (i = 0; i < reg_nprocs; ++i) {
reg_cache[i] = NULL;
}
return RR_SUCCESS;
}
/**
* Deregister and destroy all cache entries and associated buffers.
*
* @pre this function is called once to destroy the internal data structures
* and cannot be called again until reg_cache_init() has been called
*
* @see reg_cache_init()
*
* @return RR_SUCCESS on success
*/
reg_return_t
reg_cache_destroy()
{
int i = 0;
#if DEBUG
printf("[%d] reg_cache_destroy()\n", g_state.rank);
#endif
/* preconditions */
COMEX_ASSERT(NULL != reg_cache);
COMEX_ASSERT(0 != reg_nprocs);
for (i = 0; i < reg_nprocs; ++i) {
reg_entry_t *runner = reg_cache[i];
while (runner) {
reg_entry_t *previous = runner; /* pointer to previous runner */
/* get next runner */
runner = runner->next;
/* destroy the entry */
reg_entry_destroy(i, previous);
}
}
/* free registration cache list */
free(reg_cache);
reg_cache = NULL;
/* reset the number of caches */
reg_nprocs = 0;
return RR_SUCCESS;
}
/**
* Locate a registration cache entry which contains the given segment
* completely.
*
* @param[in] rank rank of the process
* @param[in] buf starting address of the buffer
* @parma[in] len length of the buffer
*
* @pre 0 <= rank && rank < reg_nprocs
* @pre reg_cache_init() was previously called
*
* @return the reg cache entry, or NULL on failure
*/
reg_entry_t*
reg_cache_find(int rank, void *buf, size_t len)
{
reg_entry_t *entry = NULL;
reg_entry_t *runner = NULL;
#if DEBUG
printf("[%d] reg_cache_find(rank=%d, buf=%p, len=%d)\n",
g_state.rank, rank, buf, len);
#endif
/* preconditions */
COMEX_ASSERT(NULL != reg_cache);
COMEX_ASSERT(0 <= rank && rank < reg_nprocs);
runner = reg_cache[rank];
while (runner && NULL == entry) {
if (RR_SUCCESS == reg_entry_contains(runner, buf, len)) {
entry = runner;
#if DEBUG
printf("[%d] reg_cache_find entry found\n"
"reg_entry=%p buf=%p len=%d\n"
"rank=%d buf=%p len=%zu name=%s mapped=%p\n",
g_state.rank, runner, buf, len,
runner->rank, runner->buf, runner->len,
runner->name, runner->mapped);
#endif
}
runner = runner->next;
}
#ifndef NDEBUG
/* we COMEX_ASSERT that the found entry was unique */
while (runner) {
if (RR_SUCCESS == reg_entry_contains(runner, buf, len)) {
#if DEBUG
printf("[%d] reg_cache_find duplicate found\n"
"reg_entry=%p buf=%p len=%d\n"
"rank=%d buf=%p len=%zu name=%s mapped=%p\n",
g_state.rank, runner, buf, len,
runner->rank, runner->buf, runner->len,
runner->name, runner->mapped);
#endif
COMEX_ASSERT(0);
}
runner = runner->next;
}
#endif
return entry;
}
/**
* Locate a registration cache entry which intersects the given segment.
*
* @param[in] rank rank of the process
* @param[in] buf starting address of the buffer
* @parma[in] len length of the buffer
*
* @pre 0 <= rank && rank < reg_nprocs
* @pre reg_cache_init() was previously called
*
* @return the reg cache entry, or NULL on failure
*/
reg_entry_t*
reg_cache_find_intersection(int rank, void *buf, size_t len)
{
reg_entry_t *entry = NULL;
reg_entry_t *runner = NULL;
#if DEBUG
printf("[%d] reg_cache_find_intersection(rank=%d, buf=%p, len=%d)\n",
g_state.rank, rank, buf, len);
#endif
/* preconditions */
COMEX_ASSERT(NULL != reg_cache);
COMEX_ASSERT(0 <= rank && rank < reg_nprocs);
runner = reg_cache[rank];
while (runner && NULL == entry) {
if (RR_SUCCESS == reg_entry_intersects(runner, buf, len)) {
entry = runner;
}
runner = runner->next;
}
/* we COMEX_ASSERT that the found entry was unique */
while (runner) {
if (RR_SUCCESS == reg_entry_contains(runner, buf, len)) {
COMEX_ASSERT(0);
}
runner = runner->next;
}
return entry;
}
/**
* Create a new registration entry based on the given members.
*
* @pre 0 <= rank && rank < reg_nprocs
* @pre NULL != buf
* @pre 0 <= len
* @pre reg_cache_init() was previously called
* @pre NULL == reg_cache_find(rank, buf, 0)
* @pre NULL == reg_cache_find_intersection(rank, buf, 0)
*
* @return RR_SUCCESS on success
*/
reg_entry_t*
reg_cache_insert(int rank, void *buf, size_t len, const char *name,
#if ENABLE_SYSV
key_t key,
#endif
void *mapped)
{
reg_entry_t *node = NULL;
#if DEBUG
printf("[%d] reg_cache_insert(rank=%d, buf=%p, len=%d, name=%s, mapped=%p)\n",
g_state.rank, rank, buf, len, name, mapped);
#endif
/* preconditions */
COMEX_ASSERT(NULL != reg_cache);
COMEX_ASSERT(0 <= rank && rank < reg_nprocs);
COMEX_ASSERT(NULL != buf);
COMEX_ASSERT(len >= 0);
COMEX_ASSERT(NULL == reg_cache_find(rank, buf, len));
COMEX_ASSERT(NULL == reg_cache_find_intersection(rank, buf, len));
/* allocate the new entry */
node = (reg_entry_t *)malloc(sizeof(reg_entry_t));
COMEX_ASSERT(node);
/* initialize the new entry */
node->rank = rank;
node->buf = buf;
node->len = len;
#if ENABLE_SYSV
node->key = key;
#endif
(void)memcpy(node->name, name, SHM_NAME_SIZE);
node->mapped = mapped;
node->next = NULL;
/* push new entry to tail of linked list */
if (NULL == reg_cache[rank]) {
reg_cache[rank] = node;
}
else {
reg_entry_t *runner = reg_cache[rank];
while (runner->next) {
runner = runner->next;
}
runner->next = node;
}
return node;
}
/**
* Removes the reg cache entry associated with the given rank and buffer.
*
* If this process owns the buffer, it will unregister the buffer, as well.
*
* @param[in] rank
* @param[in] buf
*
* @pre 0 <= rank && rank < reg_nprocs
* @pre NULL != buf
* @pre reg_cache_init() was previously called
* @pre NULL != reg_cache_find(rank, buf, 0)
*
* @return RR_SUCCESS on success
* RR_FAILURE otherwise
*/
reg_return_t
reg_cache_delete(int rank, void *buf)
{
reg_return_t status = RR_FAILURE;
reg_entry_t *runner = NULL;
reg_entry_t *previous_runner = NULL;
#if DEBUG
printf("[%d] reg_cache_delete(rank=%d, buf=%p)\n",
g_state.rank, rank, buf);
#endif
/* preconditions */
COMEX_ASSERT(NULL != reg_cache);
COMEX_ASSERT(0 <= rank && rank < reg_nprocs);
COMEX_ASSERT(NULL != buf);
COMEX_ASSERT(NULL != reg_cache_find(rank, buf, 0));
/* this is more restrictive than reg_cache_find() in that we locate
* exactlty the same region starting address */
runner = reg_cache[rank];
while (runner) {
if (runner->buf == buf) {
break;
}
previous_runner = runner;
runner = runner->next;
}
/* we should have found an entry */
if (NULL == runner) {
COMEX_ASSERT(0);
return RR_FAILURE;
}
/* pop the entry out of the linked list */
if (previous_runner) {
previous_runner->next = runner->next;
}
else {
reg_cache[rank] = reg_cache[rank]->next;
}
status = reg_entry_destroy(rank, runner);
return status;
}
reg_return_t reg_cache_nullify(reg_entry_t *node)
{
#if DEBUG
printf("[%d] reg_cache_nullify(node=%p)\n",
g_state.rank, node);
#endif
node->rank = -1;
node->buf = NULL;
node->len = 0;
(void)memset(node->name, 0, SHM_NAME_SIZE);
node->mapped = NULL;
node->next = NULL;
return RR_SUCCESS;
}
|