File: testsparse.c

package info (click to toggle)
ga 5.9.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 18,472 kB
  • sloc: ansic: 192,963; fortran: 53,761; f90: 11,218; cpp: 5,784; makefile: 2,248; sh: 1,945; python: 1,734; perl: 534; csh: 134; asm: 106
file content (289 lines) | stat: -rw-r--r-- 7,029 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#include <stdlib.h>
#include <math.h>
#include <stdio.h>

#include "macdecls.h"
#include "ga.h"
#include "mp3.h"

#define NDIM 16384

#define MAX_FACTOR 1024
void grid_factor(int p, int xdim, int ydim, int *idx, int *idy) {
  int i, j; 
  int ip, ifac, pmax, prime[MAX_FACTOR];
  int fac[MAX_FACTOR];
  int ix, iy, ichk;

  i = 1;
/**
 *   factor p completely
 *   first, find all prime numbers, besides 1, less than or equal to 
 *   the square root of p
 */
  ip = (int)(sqrt((double)p))+1;
  pmax = 0;
  for (i=2; i<=ip; i++) {
    ichk = 1;
    for (j=0; j<pmax; j++) {
      if (i%prime[j] == 0) {
        ichk = 0;
        break;
      }
    }
    if (ichk) {
      pmax = pmax + 1;
      if (pmax > MAX_FACTOR) printf("Overflow in grid_factor\n");
      prime[pmax-1] = i;
    }
  }
/**
 *   find all prime factors of p
 */
  ip = p;
  ifac = 0;
  for (i=0; i<pmax; i++) {
    while(ip%prime[i] == 0) {
      ifac = ifac + 1;
      fac[ifac-1] = prime[i];
      ip = ip/prime[i];
    }
  }
/**
 *  p is prime
 */
  if (ifac==0) {
    ifac++;
    fac[0] = p;
  }
/**
 *    find two factors of p of approximately the same size
 */
  *idx = 1;
  *idy = 1;
  for (i = ifac-1; i >= 0; i--) {
    ix = xdim/(*idx);
    iy = ydim/(*idy);
    if (ix >= iy && ix > 1) {
      *idx = fac[i]*(*idx);
    } else if (iy >= ix && iy > 1) {
      *idy = fac[i]*(*idy);
    } else {
      printf("Too many processors in grid factoring routine\n");
    }
  }
}

int main(int argc, char **argv) {
  int s_a, g_v, g_av;
  int one;
  int64_t one_64;
  int me, nproc;
  int idim, jdim;
  int64_t xdim, ydim;
  int ipx, ipy, idx, idy;
  int64_t ilo, ihi, jlo, jhi;
  int64_t i, j;
  int  iproc, ld, ncols, ncnt;
  double val;
  double *vptr;
  double *vbuf, *vsum;
  int64_t *iptr = NULL, *jptr = NULL;
  int ok;
  double r_one = 1.0;
  double ir, jr, ldr;
  /* Intitialize a message passing library */
  one = 1;
  one_64 = 1;
  MP_INIT(argc,argv);
  /* Initialize GA */
  NGA_Initialize();

  xdim = NDIM;
  ydim = NDIM;
  idim = NDIM;
  jdim = NDIM;
  me = GA_Nodeid();
  nproc = GA_Nnodes();

  /* factor array */
  grid_factor(nproc, idim, jdim, &ipx, &ipy);
  if (me == 0) {
    printf("Testing sparse array on %d processors\n",nproc);
    printf("\n    Using %d X %d processor grid\n",ipx,ipy);
    printf("\n    Matrix size is %d X %d\n",idim,jdim);
  }
  /* figure out process location in proc grid */
  idx = me%ipx;
  idy = (me-idx)/ipx;
  /* find bounding indices for this processor */
  ilo = (xdim*idx)/ipx;
  if (idx < ipx-1) {
    ihi = (xdim*(idx+1))/ipx-1;
  } else {
    ihi = xdim-1;
  }
  jlo = (ydim*idy)/ipy;
  if (idy < ipy-1) {
    jhi = (ydim*(idy+1))/ipy-1;
  } else {
    jhi = ydim-1;
  }
 
  /* create sparse array */
  s_a = NGA_Sprs_array_create64(xdim, ydim, C_DBL);
  if (ydim%2 == 0) {
    ld = ydim/2;
  } else {
    ld = (ydim-1)/2+1;
  }
  ldr = (double)ld;
  /* add elements to array. Every other element is zero */
  for (i=ilo; i<=ihi; i++) {
    ir = (double)(i/2);
    for (j=jlo; j<=jhi; j++) {
      jr = (double)(j/2);
      if (i%2 == 0 && j%2 == 0) {
        val = (ir)*ldr+jr;
        NGA_Sprs_array_add_element64(s_a,i,j,&val);
      }
    }
  }
  if (NGA_Sprs_array_assemble(s_a) && me == 0) {
    printf("\n    Sparse array assembly completed\n");
  }

  /* construct vector */
  g_v = NGA_Create_handle();
  NGA_Set_data64(g_v,one,&ydim,C_DBL);
  NGA_Allocate(g_v);
  g_av = GA_Duplicate(g_v, "dup");
  GA_Zero(g_av);

  /* set vector values */
  NGA_Distribution64(g_v,me,&ilo,&ihi);
  NGA_Access64(g_v,&ilo,&ihi,&vptr,&one_64);
  for (i=ilo;i<=ihi;i++) {
    vptr[i-ilo] = (double)i;
  }
  if (me == 0) {
    printf("\n    Vector initialized\n");
  }
  NGA_Release64(g_v,&ilo,&ihi);


  /* access array blocks and check values for correctness */
  NGA_Sprs_array_row_distribution64(s_a,me,&ilo,&ihi);
  ok = 1;
  ncnt = 0;
  for (iproc=0; iproc<nproc; iproc++) {
    NGA_Sprs_array_column_distribution64(s_a,iproc,&jlo,&jhi);
    void *tptr;
    NGA_Sprs_array_access_col_block64(s_a,iproc,&iptr,&jptr,&tptr);
    vptr = (double*)tptr;
    if (vptr != NULL) {
      for (i=ilo; i<=ihi; i++) {
        ncols = iptr[i+1-ilo]-iptr[i-ilo];
        for (j=0; j<ncols; j++) {
          ncnt++;
          idy = jptr[iptr[i-ilo]+j];
          if (i%2 != 0 || idy%2 != 0) ok = 0;
          ir = (double)(i/2);
          jr = (double)(idy/2);
          val = ir*ldr+jr;
          if (fabs(val-vptr[iptr[i-ilo]+j]) > 1.0e-5) {
            ok = 0;
            printf("p[%d] i: %d j: %d val: %f\n",me,(int)i,
                (int)jptr[iptr[i-ilo]+j],vptr[iptr[i-ilo]+j]);
          }
        }
      }
    }
  }
  GA_Igop(&ncnt,one,"+");
  if (ncnt != (idim/2)*(jdim/2)) ok = 0;
  if (ok && me==0) {
    printf("\n    Values in sparse array are correct\n");
  }

  /* multiply sparse matrix by sparse vector */
  vsum = (double*)malloc((ihi-ilo+1)*sizeof(double));
  for (i=ilo; i<=ihi; i++) {
    vsum[i-ilo] = 0.0;
  }
  for (iproc=0; iproc<nproc; iproc++) {
    NGA_Sprs_array_column_distribution64(s_a,iproc,&jlo,&jhi);
    void *tptr;
    NGA_Sprs_array_access_col_block64(s_a,iproc,&iptr,&jptr,&tptr);
    vptr = (double*)tptr;
    if (vptr != NULL) {
      vbuf = (double*)malloc((jhi-jlo+1)*sizeof(double));
      NGA_Get64(g_v,&jlo,&jhi,vbuf,&one_64);
      for (i=ilo; i<=ihi; i++) {
        ncols = iptr[i+1-ilo]-iptr[i-ilo];
        for (j=0; j<ncols; j++) {
          vsum[i-ilo] += vptr[iptr[i-ilo]+j]*vbuf[jptr[iptr[i-ilo]+j]-jlo];
          /*
          printf("i: %d j: %d a: %f v: %f j': %d tot: %f\n",i,jptr[iptr[i-ilo]+j],
              vptr[iptr[i-ilo]+j],vbuf[jptr[iptr[i-ilo]+j]-1-jlo],
              jptr[iptr[i-ilo]+j]-1-jlo,vsum[i-ilo]);
              */
        }
        /*
        printf("i: %d vsum: %f\n",i,vsum[i-ilo]);
        */
      }
      free(vbuf);
    }
  }
  if (ihi>=ilo) NGA_Acc64(g_av,&ilo,&ihi,vsum,&one_64,&r_one);
  GA_Sync();
  free(vsum);

  /* check product vector */
  ok = 1;
  NGA_Distribution64(g_av,me,&ilo,&ihi);
  NGA_Access64(g_av,&ilo,&ihi,&vptr,&one_64);
  /*
  printf("ilo: %d ihi: %d\n",ilo,ihi);
  */
  for (i=ilo; i<=ihi; i++) {
    val = 0.0;
    if (i%2 == 0) {
      for (j=0; j<ydim; j++) {
        if (j%2 == 0) {
          /*
          printf("i: %d j: %d a: %d v: %d\n",i+1,j+1,(i/2)*ld+(j/2),j);
          */
          ir = (double)i;
          jr = (double)j;
          val += (ir*ldr+jr)*jr*0.5;
        }
      }
      if (fabs(val-vptr[i-ilo]) >= 1.0e-5) {
        ok = 0;
        printf("Error for element %d expected: %f actual: %f\n",
            (int)i,val,vptr[i-ilo]);
      }
    } else {
      if (fabs(vptr[i-ilo]) >= 1.0e-5) {
        ok = 0;
        printf("Error for element %d expected: 0.00000 actual: %f\n",
            (int)i,vptr[i-ilo]);
      }
    }
  }
  if (ok && me==0) {
    printf("\n    Matrix-vector product is correct\n\n");
  }

  NGA_Sprs_array_destroy(s_a);
  NGA_Destroy(g_v);
  NGA_Destroy(g_av);

  NGA_Terminate();
  /**
   *  Tidy up after message-passing library
   */
  MP_FINALIZE();
}