1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include "macdecls.h"
#include "ga.h"
#include "mp3.h"
#define NDIM 16384
#define MAX_FACTOR 1024
void grid_factor(int p, int xdim, int ydim, int *idx, int *idy) {
int i, j;
int ip, ifac, pmax, prime[MAX_FACTOR];
int fac[MAX_FACTOR];
int ix, iy, ichk;
i = 1;
/**
* factor p completely
* first, find all prime numbers, besides 1, less than or equal to
* the square root of p
*/
ip = (int)(sqrt((double)p))+1;
pmax = 0;
for (i=2; i<=ip; i++) {
ichk = 1;
for (j=0; j<pmax; j++) {
if (i%prime[j] == 0) {
ichk = 0;
break;
}
}
if (ichk) {
pmax = pmax + 1;
if (pmax > MAX_FACTOR) printf("Overflow in grid_factor\n");
prime[pmax-1] = i;
}
}
/**
* find all prime factors of p
*/
ip = p;
ifac = 0;
for (i=0; i<pmax; i++) {
while(ip%prime[i] == 0) {
ifac = ifac + 1;
fac[ifac-1] = prime[i];
ip = ip/prime[i];
}
}
/**
* p is prime
*/
if (ifac==0) {
ifac++;
fac[0] = p;
}
/**
* find two factors of p of approximately the same size
*/
*idx = 1;
*idy = 1;
for (i = ifac-1; i >= 0; i--) {
ix = xdim/(*idx);
iy = ydim/(*idy);
if (ix >= iy && ix > 1) {
*idx = fac[i]*(*idx);
} else if (iy >= ix && iy > 1) {
*idy = fac[i]*(*idy);
} else {
printf("Too many processors in grid factoring routine\n");
}
}
}
int main(int argc, char **argv) {
int s_a, g_v, g_av;
int one;
int64_t one_64;
int me, nproc;
int idim, jdim;
int64_t xdim, ydim;
int ipx, ipy, idx, idy;
int64_t ilo, ihi, jlo, jhi;
int64_t i, j;
int iproc, ld, ncols, ncnt;
double val;
double *vptr;
double *vbuf, *vsum;
int64_t *iptr = NULL, *jptr = NULL;
int ok;
double r_one = 1.0;
double ir, jr, ldr;
/* Intitialize a message passing library */
one = 1;
one_64 = 1;
MP_INIT(argc,argv);
/* Initialize GA */
NGA_Initialize();
xdim = NDIM;
ydim = NDIM;
idim = NDIM;
jdim = NDIM;
me = GA_Nodeid();
nproc = GA_Nnodes();
/* factor array */
grid_factor(nproc, idim, jdim, &ipx, &ipy);
if (me == 0) {
printf("Testing sparse array on %d processors\n",nproc);
printf("\n Using %d X %d processor grid\n",ipx,ipy);
printf("\n Matrix size is %d X %d\n",idim,jdim);
}
/* figure out process location in proc grid */
idx = me%ipx;
idy = (me-idx)/ipx;
/* find bounding indices for this processor */
ilo = (xdim*idx)/ipx;
if (idx < ipx-1) {
ihi = (xdim*(idx+1))/ipx-1;
} else {
ihi = xdim-1;
}
jlo = (ydim*idy)/ipy;
if (idy < ipy-1) {
jhi = (ydim*(idy+1))/ipy-1;
} else {
jhi = ydim-1;
}
/* create sparse array */
s_a = NGA_Sprs_array_create64(xdim, ydim, C_DBL);
if (ydim%2 == 0) {
ld = ydim/2;
} else {
ld = (ydim-1)/2+1;
}
ldr = (double)ld;
/* add elements to array. Every other element is zero */
for (i=ilo; i<=ihi; i++) {
ir = (double)(i/2);
for (j=jlo; j<=jhi; j++) {
jr = (double)(j/2);
if (i%2 == 0 && j%2 == 0) {
val = (ir)*ldr+jr;
NGA_Sprs_array_add_element64(s_a,i,j,&val);
}
}
}
if (NGA_Sprs_array_assemble(s_a) && me == 0) {
printf("\n Sparse array assembly completed\n");
}
/* construct vector */
g_v = NGA_Create_handle();
NGA_Set_data64(g_v,one,&ydim,C_DBL);
NGA_Allocate(g_v);
g_av = GA_Duplicate(g_v, "dup");
GA_Zero(g_av);
/* set vector values */
NGA_Distribution64(g_v,me,&ilo,&ihi);
NGA_Access64(g_v,&ilo,&ihi,&vptr,&one_64);
for (i=ilo;i<=ihi;i++) {
vptr[i-ilo] = (double)i;
}
if (me == 0) {
printf("\n Vector initialized\n");
}
NGA_Release64(g_v,&ilo,&ihi);
/* access array blocks and check values for correctness */
NGA_Sprs_array_row_distribution64(s_a,me,&ilo,&ihi);
ok = 1;
ncnt = 0;
for (iproc=0; iproc<nproc; iproc++) {
NGA_Sprs_array_column_distribution64(s_a,iproc,&jlo,&jhi);
void *tptr;
NGA_Sprs_array_access_col_block64(s_a,iproc,&iptr,&jptr,&tptr);
vptr = (double*)tptr;
if (vptr != NULL) {
for (i=ilo; i<=ihi; i++) {
ncols = iptr[i+1-ilo]-iptr[i-ilo];
for (j=0; j<ncols; j++) {
ncnt++;
idy = jptr[iptr[i-ilo]+j];
if (i%2 != 0 || idy%2 != 0) ok = 0;
ir = (double)(i/2);
jr = (double)(idy/2);
val = ir*ldr+jr;
if (fabs(val-vptr[iptr[i-ilo]+j]) > 1.0e-5) {
ok = 0;
printf("p[%d] i: %d j: %d val: %f\n",me,(int)i,
(int)jptr[iptr[i-ilo]+j],vptr[iptr[i-ilo]+j]);
}
}
}
}
}
GA_Igop(&ncnt,one,"+");
if (ncnt != (idim/2)*(jdim/2)) ok = 0;
if (ok && me==0) {
printf("\n Values in sparse array are correct\n");
}
/* multiply sparse matrix by sparse vector */
vsum = (double*)malloc((ihi-ilo+1)*sizeof(double));
for (i=ilo; i<=ihi; i++) {
vsum[i-ilo] = 0.0;
}
for (iproc=0; iproc<nproc; iproc++) {
NGA_Sprs_array_column_distribution64(s_a,iproc,&jlo,&jhi);
void *tptr;
NGA_Sprs_array_access_col_block64(s_a,iproc,&iptr,&jptr,&tptr);
vptr = (double*)tptr;
if (vptr != NULL) {
vbuf = (double*)malloc((jhi-jlo+1)*sizeof(double));
NGA_Get64(g_v,&jlo,&jhi,vbuf,&one_64);
for (i=ilo; i<=ihi; i++) {
ncols = iptr[i+1-ilo]-iptr[i-ilo];
for (j=0; j<ncols; j++) {
vsum[i-ilo] += vptr[iptr[i-ilo]+j]*vbuf[jptr[iptr[i-ilo]+j]-jlo];
/*
printf("i: %d j: %d a: %f v: %f j': %d tot: %f\n",i,jptr[iptr[i-ilo]+j],
vptr[iptr[i-ilo]+j],vbuf[jptr[iptr[i-ilo]+j]-1-jlo],
jptr[iptr[i-ilo]+j]-1-jlo,vsum[i-ilo]);
*/
}
/*
printf("i: %d vsum: %f\n",i,vsum[i-ilo]);
*/
}
free(vbuf);
}
}
if (ihi>=ilo) NGA_Acc64(g_av,&ilo,&ihi,vsum,&one_64,&r_one);
GA_Sync();
free(vsum);
/* check product vector */
ok = 1;
NGA_Distribution64(g_av,me,&ilo,&ihi);
NGA_Access64(g_av,&ilo,&ihi,&vptr,&one_64);
/*
printf("ilo: %d ihi: %d\n",ilo,ihi);
*/
for (i=ilo; i<=ihi; i++) {
val = 0.0;
if (i%2 == 0) {
for (j=0; j<ydim; j++) {
if (j%2 == 0) {
/*
printf("i: %d j: %d a: %d v: %d\n",i+1,j+1,(i/2)*ld+(j/2),j);
*/
ir = (double)i;
jr = (double)j;
val += (ir*ldr+jr)*jr*0.5;
}
}
if (fabs(val-vptr[i-ilo]) >= 1.0e-5) {
ok = 0;
printf("Error for element %d expected: %f actual: %f\n",
(int)i,val,vptr[i-ilo]);
}
} else {
if (fabs(vptr[i-ilo]) >= 1.0e-5) {
ok = 0;
printf("Error for element %d expected: 0.00000 actual: %f\n",
(int)i,vptr[i-ilo]);
}
}
}
if (ok && me==0) {
printf("\n Matrix-vector product is correct\n\n");
}
NGA_Sprs_array_destroy(s_a);
NGA_Destroy(g_v);
NGA_Destroy(g_av);
NGA_Terminate();
/**
* Tidy up after message-passing library
*/
MP_FINALIZE();
}
|