1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
c
c md example program due to dieter heermann
c restructured and pdf added by rjh december 1990
c
c the message passing version distributes the computation
c of the forces (order npart**2) over the processes, assuming
c that each process has all of the co-ordinates.
c A global add then gives each process all the information
c needed to compute the next update.
c None of the order npart work has been parallelized so that
c will begin to dominate on many processors.
c
implicit double precision (a-h, o-z)
c parameter (mm = 13, lenpdf = 256)
c parameter (mm = 8, lenpdf = 256)
c parameter (mm = 6, lenpdf = 256)
C$Id: md.f,v 1.2 1995-02-02 23:24:18 d3g681 Exp $
parameter (mm = 4, lenpdf = 256)
c parameter (mm = 3, lenpdf = 256)
parameter (npart = 4*mm*mm*mm)
parameter (maxint = npart*150)
include 'msgtypesf.h'
c
dimension x(1:npart,1:3), vh(1:npart,1:3),f(1:npart,1:3),
& pdf(1:lenpdf+1), times(8), inter(2,maxint)
data times/8*0.0d0/
c
c initalize message passing environment
c
call pbeginf
me = nodeid()
c
c parameter definition (density, volume, temperature ...)
c
den = 0.83134d0
side = (dble(npart) / den)**0.3333333d0
tref = 0.722d0
rcoff = min(3.5d0, side/2.0d0)
c islow = 1 to match the rather large original timestep
islow = 4
h = 0.064d0 / islow
irep = 50
istop = 400
iprint = 10
ineigh = 10 * (1 + islow/4)
movemx = 800
delpdf = 0.5d0*side/lenpdf
rdelp = 1.0d0 / delpdf
c
if (me.eq.0)write(6,1) npart,side,rcoff,tref,h,delpdf,irep,istop,
& iprint,ineigh,movemx
1 format(' molecular dynamics simulation example program'/
& ' ---------------------------------------------'//
& ' number of particles is ............ ',i6/
& ' side length of the box is ......... ',f13.6/
& ' cut off is ........................ ',f13.6/
& ' reduced temperature is ............ ',f13.6/
& ' basic time step is ................ ',f13.6/
& ' pdf sampling interval ............. ',f13.6/
& ' temperature scale interval ........ ',i6/
& ' stop scaling at move .............. ',i6/
& ' print interval .................... ',i6/
& ' update neighbor list every ........ ',i6, ' steps'/
& ' total no. of steps ................ ',i6)
c call flush(6)
c
a = side / dble(mm)
sideh = side * 0.5d0
hsq = h * h
hsq2 = hsq * 0.5d0
npartm = npart - 1
rcoffs = rcoff * rcoff
tscale = 16.0d0 / (1.0d0 * npart - 1.0d0)
vaver = 1.13d0 * sqrt(tref / 24.0d0)
ekinavg = 0.0d0
c
c generate fcc lattice for atoms inside box
c
rjunk = timer()
call fcc(x, npart, mm, a)
times(1) = times(1) + timer()
c
c initialise velocites and forces (which are zero in fcc positions)
c
call mxwell(vh,3*npart,h,tref)
call dfill(3*npart, 0.0d0, f, 1)
times(2) = times(2) + timer()
c
c start of md.
c
if (me.eq.0) write(6,3)
3 format(//1x,' i ',' ke ',' pe ',' e ',
& ' temp ',' pres ',' vel ',' rp'/
& 1x,' -----',' ----------',' ----------',' ----------',
& ' --------',' --------',' --------',' ----')
c call flush(6)
c
do 200 move = 1,movemx
if (move.eq.1 .or. move.eq.(istop+1))
$ call dfill(lenpdf, 0.0d0, pdf, 1)
c
c move the particles and partially update velocities
c
call domove(3*npart,x,vh,f,side)
times(3) = times(3) + timer()
c
c compute forces in the new positions and accumulate the pdf
c virial and potential energy. Have to get the full forces
c on each node, hence the dgop (global add).
c
if (mod(move-1,ineigh).eq.0) then
call neigh(npart, x, side, rcoff, ninter, inter, maxint,
$ pdf, rdelp, lenpdf)
times(8) = times(8) + timer()
endif
call forces(npart, x, f, vir, epot, side, rcoff, ninter, inter)
call dgop(1+MSGDBL, f, 3*npart, '+')
times(4) = times(4) + timer()
c
c scale forces, complete update of velocites and compute k.e.
c
call mkekin(npart,f,vh,hsq2,hsq,ekin)
ekinavg = ekinavg + ekin
times(5) = times(5) + timer()
c
c average the velocity and temperature scale if desired
c
if ((move.le.istop) .and. (mod(move, irep).eq.0)) then
call velavg(npart, vh, vaver, count, vel, h)
sc = sqrt( tref / (tscale * ekinavg / irep) )
call dscal(3*npart, sc, vh, 1)
ekinavg = 0.0d0
endif
times(6) = times(6) + timer()
c
c printout information if desired ... have to do global
c sum to get full potential energy and virial
c
if (mod(move, iprint) .eq. 0) then
call velavg(npart, vh, vaver, count, vel, h)
call dgop(2+MSGDBL, epot, 1, '+')
call dgop(2+MSGDBL, vir, 1, '+')
if (me.eq.0)
$ call prnout(move, ekin, epot, tscale, vir, vel, count,
$ npart, den)
times(7) = times(7) + timer()
endif
c
200 continue
c
c print out the pdf at the end of the calculation
c have first to get contribution from everyone with global add
c
call dgop(2+MSGDBL, pdf, lenpdf, '+')
if (me.eq.0)
$ call prnpdf(lenpdf, pdf, side, delpdf, npart, movemx-istop,
$ ineigh)
times(7) = times(7) + timer()
if (me.eq.0) write(6,431) nnodes(),(times(i),i=1,8)
431 format(' nproc geom mxwell domove forces ekin velscl',
& ' print neigh'
& /1x,i6,8f8.2)
c
if (me.eq.0) call stats
call pend
call fexit
end
subroutine mxwell(vh,n3,h,tref)
implicit double precision (a-h, o-z)
dimension vh(1:n3)
c
c sample maxwell distribution at temperature tref
c
iseed = 4711
ujunk = drand48(iseed)
iseed = 0
npart = n3/3
iof1 = npart
iof2 = npart*2
tscale = 16.0d0 / (1.0d0 * npart - 1.0d0)
do 10 i = 1,n3,2
c
1 u1 = drand48(iseed)
u2 = drand48(iseed)
v1 = 2.0d0 * u1 - 1.0d0
v2 = 2.0d0 * u2 - 1.0d0
s = v1*v1 + v2*v2
if (s.ge.1.0) goto 1
c
r = sqrt(-2.0d0*dlog(s)/s)
vh(i) = v1 * r
vh(i+1) = v2 * r
10 continue
c
ekin = 0.0d0
sp = 0.0d0
do 20 i = 1,npart
sp = sp + vh(i)
20 continue
sp = sp / npart
do 21 i = 1,npart
vh(i) = vh(i) - sp
ekin = ekin + vh(i)*vh(i)
21 continue
sp = 0.0d0
do 22 i = iof1 + 1,iof2
sp = sp + vh(i)
22 continue
sp = sp / npart
do 23 i = iof1 + 1,iof2
vh(i) = vh(i) - sp
ekin = ekin + vh(i)*vh(i)
23 continue
sp = 0.0d0
do 24 i = iof2 + 1,n3
sp = sp + vh(i)
24 continue
sp = sp / npart
do 25 i = iof2 + 1,n3
vh(i) = vh(i) - sp
ekin = ekin + vh(i)*vh(i)
25 continue
ts = tscale * ekin
sc = h * sqrt(tref/ts)
do 30 i = 1,n3
vh(i) = vh(i) * sc
30 continue
c
end
subroutine domove(n3,x,vh,f,side)
implicit double precision (a-h, o-z)
dimension x(n3),vh(n3),f(n3)
c
c move particles
c
do 10 i = 1,n3
x(i) = x(i) + vh(i) + f(i)
c periodic boundary conditions
if (x(i).lt.0.0d0) x(i) = x(i) + side
if (x(i).gt.side) x(i) = x(i) - side
c partial velocity updates
vh(i) = vh(i) + f(i)
c initialise forces for next iteration
f(i) = 0.0d0
10 continue
c
end
subroutine mkekin(npart,f,vh,hsq2,hsq,ekin)
implicit double precision (a-h, o-z)
dimension f(1:npart,3),vh(1:npart,3)
c
c scale forces, update velocites and compute k.e.
c
sum = 0.0d0
do 10 ix = 1,3
do 20 i = 1,npart
f(i,ix) = f(i,ix) * hsq2
vold = vh(i,ix)
vh(i,ix) = vh(i,ix) + f(i,ix)
sum = sum + vh(i,ix) * vh(i,ix)
20 continue
10 continue
ekin = sum / hsq
c
end
subroutine fcc(x, npart, mm, a)
implicit double precision (a-h, o-z)
dimension x(1:npart, 3)
c
c generate fcc lattice for atoms inside box
c
ijk = 0
do 10 lg = 0,1
do 11 i = 0,mm-1
do 12 j = 0,mm-1
do 13 k = 0,mm-1
ijk = ijk + 1
x(ijk,1) = i * a + lg * a * 0.5d0
x(ijk,2) = j * a + lg * a * 0.5d0
x(ijk,3) = k * a
13 continue
12 continue
11 continue
10 continue
do 20 lg = 1,2
do 21 i = 0,mm-1
do 22 j = 0,mm-1
do 23 k = 0,mm-1
ijk = ijk + 1
x(ijk,1) = i * a + (2-lg) * a * 0.5d0
x(ijk,2) = j * a + (lg-1) * a * 0.5d0
x(ijk,3) = k * a + a * 0.5d0
23 continue
22 continue
21 continue
20 continue
c
end
subroutine dfill(n,val,a,ia)
implicit double precision (a-h, o-z)
dimension a(*)
c
c initialise double precision array to scalar value
c
do 10 i = 1,(n-1)*ia+1,ia
a(i) = val
10 continue
c
end
subroutine prnout(move, ekin, epot, tscale, vir, vel, count,
$ npart, den)
implicit double precision (a-h, o-z)
c
c printout interesting (?) information at current timestep
c
ek = 24.0d0 * ekin
epot = 4.0d0 * epot
etot = ek + epot
temp = tscale * ekin
pres = den * 16.0d0 * (ekin - vir) / npart
vel = vel / npart
rp = (count / dble(npart)) * 100.0d0
write(6,2) move,ek,epot,etot,temp,pres,vel,rp
2 format(1x,i6,3f12.4,f10.4,f10.4,f10.4,f6.1)
c call flush(6)
c
end
subroutine velavg(npart, vh, vaver, count, vel, h)
implicit double precision (a-h, o-z)
dimension vh(npart, 3)
c
c compute average velocity
c
vaverh = vaver*h
vel = 0.0d0
count = 0.0d0
do 10 i = 1,npart
sq = sqrt(vh(i,1)**2 + vh(i,2)**2 + vh(i,3)**2)
if (sq.gt.vaverh) count = count + 1.0d0
vel = vel + sq
10 continue
vel = vel / h
c
end
subroutine prnpdf(lenpdf, pdf, side, delpdf, npart, nmove, ineigh)
implicit double precision (a-h, o-z)
dimension pdf(lenpdf)
c
c final scaling and printout of the pdf
c
write(6,1)
1 format(/' pair distribution function written to file pdf.dat'/)
open(1, file='pdf.dat', form='formatted', status='unknown',
$ err=999)
c
coord = 0.0d0
volfac = side*side*side / (4.0d0*delpdf*delpdf*delpdf*3.141593d0)
facnn = 2.0d0 / dble(npart*nmove/ineigh)
facn = 1.0d0 / dble(npart)
do 10 i = 1,lenpdf
ri = dble(i)
grfac = volfac / (ri*ri)
func = pdf(i) * facnn
coord = coord + func
pdf(i) = func * grfac * facn
write(1,2) dble(i)*delpdf,pdf(i),coord
10 continue
2 format(1x,f7.3,f13.6,4x,f9.2)
close(1)
return
c
999 write(6,*) ' error opening pdf.dat'
call parerr(999)
c
end
subroutine neigh(npart, x, side, rcoff, ninter, inter, maxint,
$ pdf, rdelp, lenpdf)
implicit double precision (a-h, o-z)
dimension x(npart, 3), inter(2,maxint), pdf(lenpdf)
c
c Form my part of the neighbour list and also compute the pair
c distribution function.
c
c npart = no. of particles
c x(,) = coords
c side = side of box
c rcoff = cutoff for force
c ninter= returns no. of interactions
c inter(,) = returns interactions
c maxint = size of inter
c
me = nodeid()
nproc = nnodes()
c
sideh = 0.5d0*side
rcoffs = (rcoff*1.2d0)**2
ninter = 0
c
c Get better work distribution by having the same
c processor handle particles (i) and (npart-i)
c Note that assume that npart is even.
c
do 270 ii = me+1, npart/2, nproc
do 275 icase = 1, 2
if (icase .eq. 1) then
i = ii
else
i = npart - ii
endif
xi = x(i,1)
yi = x(i,2)
zi = x(i,3)
do 280 j = i+1,npart
ij = ij + 1
xx = xi - x(j,1)
yy = yi - x(j,2)
zz = zi - x(j,3)
if (xx .lt. -sideh) xx = xx + side
if (xx .gt. sideh) xx = xx - side
if (yy .lt. -sideh) yy = yy + side
if (yy .gt. sideh) yy = yy - side
if (zz .lt. -sideh) zz = zz + side
if (zz .gt. sideh) zz = zz - side
rd = xx*xx + yy*yy + zz*zz
ipdf = min(sqrt(rd),sideh) * rdelp + 1
pdf(ipdf) = pdf(ipdf) + 1.0d0
if (rd .le. rcoffs) then
ninter = ninter + 1
if (ninter.gt.maxint) then
write(6,*) ' too many interactions ', ninter
call parerr(1)
endif
inter(1,ninter) = i
inter(2,ninter) = j
endif
280 continue
275 continue
270 continue
c
c$$$ ij = ninter
c$$$ call igop(99, ij, 1, '+')
c$$$ if (me .eq. 0) then
c$$$ write(6,*) ' No. of interactions per particle = ',
c$$$ $ ij/npart
c$$$ endif
c
end
subroutine forces(npart, x, f, vir, epot, side, rcoff,
$ ninter, inter)
implicit double precision (a-h, o-z)
logical oshift
parameter (oshift = .true.)
dimension x(npart, 3), f(npart, 3), inter(2, ninter)
c
c compute forces driven by the neighbour list
c
vir = 0.0d0
epot = 0.0d0
sideh = 0.5d0*side
rcoffs = rcoff*rcoff
c
c for shifted potential ... set oshift true to enable
c
if (oshift) then
rc6 = 1.0d0 / rcoff**6
rc12 = 1.0d0 / rcoff**12
ecut = rc12 - rc6
fcut = (rc12 - 0.5d0*rc6)/rcoff
efcut = 12.0d0 * fcut
endif
c
do 10 ij = 1, ninter
i = inter(1,ij)
j = inter(2,ij)
xx = x(i,1) - x(j,1)
yy = x(i,2) - x(j,2)
zz = x(i,3) - x(j,3)
if (xx .lt. -sideh) xx = xx + side
if (xx .gt. sideh) xx = xx - side
if (yy .lt. -sideh) yy = yy + side
if (yy .gt. sideh) yy = yy - side
if (zz .lt. -sideh) zz = zz + side
if (zz .gt. sideh) zz = zz - side
rd = xx*xx + yy*yy + zz*zz
if (rd .le. rcoffs) then
rrd = 1.0d0/rd
rrd2 = rrd*rrd
rrd3 = rrd2*rrd
rrd4 = rrd2*rrd2
rrd6 = rrd2*rrd4
rrd7 = rrd6*rrd
epot = epot + (rrd6 - rrd3)
r148 = rrd7 - 0.5d0*rrd4
if (oshift) then
r = sqrt(rd)
epot = epot - ecut + efcut*(r-rcoff)
r148 = r148 - fcut / r
endif
vir = vir - rd*r148
forcex = xx * r148
f(i,1) = f(i,1) + forcex
f(j,1) = f(j,1) - forcex
forcey = yy * r148
f(i,2) = f(i,2) + forcey
f(j,2) = f(j,2) - forcey
forcez = zz * r148
f(i,3) = f(i,3) + forcez
f(j,3) = f(j,3) - forcez
endif
10 continue
c
end
|