1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
|
(***********************************************************************)
(* *)
(* GALAX *)
(* XQuery Engine *)
(* *)
(* Copyright 2001-2007. *)
(* Distributed only by permission. *)
(* *)
(***********************************************************************)
(* $Id: code_sc_join.ml,v 1.19 2007/05/23 22:12:59 simeon Exp $ *)
(* Module: Code_sc_join
Description:
This module contains code building for operators that implement
StairCase Joins.
*)
open Error
open Dynamic_stack
open Xquery_algebra_ast
open Xquery_algebra_ast_util
open Xquery_common_ast
open Code_selection_context
open Execution_context
open Datatypes
open Dm_types
open Dm_atomic
open Dm
open Dm_util
open Physical_value
open Physical_item
open Physical_item_util
open Physical_sequence
open Physical_value_util
open Physical_table
open Physical_name_index
open Code_util
open Code_util_xpath
open Algebra_type
(*******************************************************)
(* ALGORITHM: Staircase Join *)
(* Accelerating XPath Evaluation in Any RDMSMatching *)
(* Grust, Van Keulen, Teubner *)
(* ACM TODS, Vol 29 No 1, March 2004 *)
(*******************************************************)
(* Some error defs *)
let leaf_code_error =
(Query
(Code_Selection
"[Staircase Join] Attempt to generate code for leaf node."))
and node_test_error =
(Query
(Code_Selection
"[Staircase Join] No node test for non-root pattern node (None)."))
and out_field_error =
(Query
(Code_Selection
"[Staircase Join] No output field for pattern node (None)."))
and not_supported_err =
(Query
(Code_Selection
"[Staircase Join] Only name tests supported in SC-Join."))
and no_index_found_err =
(Query
(Code_Selection
"[Staircase Join] No index found for node test."))
type compare_op =
| Less
| Greater
| Equal
(* fetches the set of BTrees matching the node test *)
let nameindex_of_node_test code_ctxt nt =
match nt with
| APNameTest symbol ->
begin
match Code_selection_context.get_name_index code_ctxt symbol with
| Some index -> symbol, index
| None -> raise no_index_found_err
end
| _ -> raise not_supported_err
let get_pre_post_for_item item =
let n = getNode (Physical_util.get_item (cursor_of_sequence ( item ))) in
match n#docorder() with
| (_,Nodeid.PrePostInt(_,pre,post)) -> pre, post
| _ -> raise (Query (Internal_Error "No full pre/post order description available (sc_join.get_pre_post_from_item)"))
let restore_fun restore_code item =
let actual_item = Physical_util.get_item (cursor_of_sequence item) in
let _ = restore_code (materialized_of_list [actual_item]) in
empty_tuple
let eval_node_test_single_node stat_ctxt nt node =
let c = eval_axis_node_test stat_ctxt Self nt node in
not (Cursor.cursor_is_empty c)
(* *** DESCENDANT *** DESCENDANT-OR-SELF ****************************)
(* Descendant can be evaluated best by identifying the index window *)
(* that contains all the descendants. A lookup in the name index *)
(* will define the boundaries of this window, so that we can return *)
(* a cursor that scans the window. *)
(* **************************************************************** *)
let sc_join_descendant code_ctxt input output nt include_self =
let restore_code = build_create_dom_tuple_code code_ctxt output in
let retrieve_code = build_retrieve_dom_tuple_code code_ctxt input in
let stat_ctxt = static_context_from_code_selection_context code_ctxt in
let item_fun index tu =
let item = retrieve_code () in
let pre, post = get_pre_post_for_item item in
(* Note: following implements scanning AND skipping at a cost of log(|doc|) *)
(* Note: for desc-or-self, include self here *)
let curs = pre_cursor_of_name_index_from_window index pre post in
let curs' =
if include_self then
let node = getNode (Physical_util.get_item (cursor_of_sequence ( item ))) in
if eval_node_test_single_node stat_ctxt nt node then
Cursor.cursor_append (Cursor.cursor_of_singleton item) curs
else curs
else curs
in
Cursor.cursor_map (restore_fun restore_code) curs'
in
fun () eval alg_ctxt input_cursor ->
let sym, index = nameindex_of_node_test code_ctxt nt in
let axis = Xquery_common_ast.Descendant in
let prune_code =
Code_prune.build_default_prune_code code_ctxt axis input
in
Cursor.cursor_map_concat (item_fun index) (prune_code alg_ctxt input_cursor)
(* *** CHILD ***************************************** *)
(* - This simply boils down to the pathstack algorithm *)
(* for a single step *)
(* *************************************************** *)
let get_min_source indices_curs () =
let min = ref (-1) in
let current = ref None in
for i = 0 to (Array.length indices_curs) -1 do
begin
let next_item = Cursor.cursor_peek indices_curs.(i) in
match next_item with
| Some item ->
begin
let node = getNode (Physical_util.get_item (cursor_of_sequence ( item ))) in
match !current with
| Some node' ->
if node_precedes node node' then
ignore(current := Some node; min := i)
| _ ->
ignore(current := Some node; min := i)
end
| _ -> ()
end
done;
if !min < 0
then None
else Some !min
let get_parent_pre node =
match node#parent None with
| Some p ->
begin
match p#docorder() with
| (_,Nodeid.PrePostInt(_,pre,_)) -> pre
| _ -> -1
end
| None -> -1
let sc_join_child code_ctxt input output nt =
let retrieve_code = build_retrieve_dom_tuple_code code_ctxt input in
let restore_code = build_create_dom_tuple_code code_ctxt output in
let dummy = (sequence_empty(), (-1), (-1)) in
fun () eval alg_ctxt curs ->
let stack = Dynamic_stack.make 16 dummy in
let sym, index = nameindex_of_node_test code_ctxt nt in
let input_source = Code_util_tj.common_cursor_of_input_cursor curs retrieve_code in
let win_pre, win_post = Code_util_tj.get_index_window input_source in
let index_source =
if win_pre < 0 || win_post < 0 then
pre_cursor_of_name_index_at_pos index 1
else
pre_cursor_of_name_index_from_window index win_pre win_post
in
let sources = [| input_source; index_source |] in
let source_cursor = Cursor.cursor_of_function (get_min_source sources) in
let item_fun src =
begin
let item = Cursor.cursor_next sources.(src) in
let node = getNode (Physical_util.get_item (cursor_of_sequence item)) in
let pre, post = get_pre_post_for_item item in
let _ = if Debug.default_debug() then
let msg =
Format.sprintf "Next node from source %i is (%i;%i)\n" src pre post
in
Debug.print_default_debug msg
in
(* clean stack *)
let get_top_post s = let (_,_,post') = top s in post' in
let _ =
while not(empty stack) && ((get_top_post stack) < post) do
ignore(pop stack)
done
in
if src == 0 then
let _ = push stack (item, pre, post) in
Cursor.cursor_empty ()
else if not(empty stack) then
begin
(* parent-child test here *)
let _, pre', _ = top stack in
if (get_parent_pre node) = pre' then
Cursor.cursor_of_singleton
(restore_fun restore_code item)
else
Cursor.cursor_empty ()
end
else
(* if stack is empty, jump over desc nodes *)
let _ =
match Cursor.cursor_peek sources.(0) with
| Some item ->
let jump_to, _ = get_pre_post_for_item item in
let new_cursor =
if win_post < 0
then pre_cursor_of_name_index_at_pos index (jump_to +1)
else pre_cursor_of_name_index_from_window index (jump_to +1) win_post
in
sources.(1) <- new_cursor
| None -> ()
in
Cursor.cursor_empty ()
end
in
Cursor.cursor_map_concat item_fun source_cursor
(* *** ANCESTOR *** ANCESTOR-OR-SELF *** PARENT ********************* *)
(* Not really SC-Join. *)
(* By evaluating this axis nested-loop style, but with intermediate *)
(* pruning, we obtain the best performance. Once again, pure SC join *)
(* is inefficient due to our inability to directly access elements *)
(* based on their pre/post numbers *)
(* ****************************************************************** *)
let sc_join_ancestor code_ctxt input output nt include_self =
let restore_code = build_create_dom_tuple_code code_ctxt output in
let retrieve_code = build_retrieve_dom_tuple_code code_ctxt input in
let stat_ctxt = static_context_from_code_selection_context code_ctxt in
let eval_node_test_fun = eval_axis_node_test stat_ctxt Self nt in
let prev_pre = ref (-1) in
let prev_post = ref (-1) in
let prev_ctxt = ref [] in
let scan_partition curs item =
let pre, post = get_pre_post_for_item item in
(* get all ancestors -- using the DOM-way *)
(* conditions: (1) match node test *)
(* (2) remain within partition *)
let rec get_parents item' =
let node = getNode (Physical_util.get_item (cursor_of_sequence ( item' ))) in
match node#parent None with
| Some p ->
let item_seq = LSeq [Item_Node p] in
let pre', post' = get_pre_post_for_item item_seq in
if pre' = !prev_pre && pre > !prev_pre && post < !prev_post
|| pre' > !prev_pre
then
begin
let x = eval_node_test_fun p in
if not(Cursor.cursor_is_empty x)
then
get_parents item_seq @ [item_seq]
else
get_parents item_seq
end
else []
| None -> []
in
let _ =
if Debug.default_debug() then
let msg =
begin
(Format.sprintf "Conext: (%i;%i), prev: (%i;%i)\n" pre post !prev_pre !prev_post) ^
(Format.sprintf " pre > !prev_pre = %b\n" (pre > !prev_pre)) ^
(Format.sprintf " post > !prev_post = %b\n" (post > !prev_post)) ^
(Format.sprintf " Cursor.cursor_is_empty curs = %b\n" (Cursor.cursor_is_empty curs))
end
in
Debug.print_default_debug msg
in
let include_prev_context = pre > !prev_pre && post > !prev_post && include_self in
let include_current_context = Cursor.cursor_is_empty curs && include_self in
let ancs = get_parents item in
let ancs' =
if include_prev_context && List.length !prev_ctxt = 1 then
let n = getNode (Physical_util.get_item (cursor_of_sequence ( List.hd !prev_ctxt ))) in
if eval_node_test_single_node stat_ctxt nt n then !prev_ctxt @ ancs else ancs
else
ancs
in
let ancs'' =
let curnode = getNode (Physical_util.get_item (cursor_of_sequence ( item ))) in
if include_current_context then
if eval_node_test_single_node stat_ctxt nt curnode then ancs' @ [item] else ancs'
else
ancs'
in
let _ = prev_ctxt := [item] in
let _ = prev_pre := pre; prev_post := post in
let anc_cursor = (Cursor.cursor_of_list ancs'') in
Cursor.cursor_map (fun x -> restore_fun restore_code x) anc_cursor
in
let item_fun curs tu =
let item = retrieve_code () in
scan_partition curs item
in
fun () eval alg_ctxt input_cursor ->
(* let sym, index = nameindex_of_node_test code_ctxt nt in *)
(* Note: pruning inlined in algo *)
let _ = prev_pre := -1; prev_post := -1 in
Cursor.cursor_map_concat (item_fun input_cursor) input_cursor
(* *** FOLLOWING *** ********************************************** *)
(* Priciple: *)
(* - pruning should leave us exactly one context node *)
(* namely, the deepest descendant of the first context, or the *)
(* first context itself if no descendant is in the list *)
(* - Next, we estimate the first follower of that node *)
(* - we scan the index until we reach the first actual follower *)
(* - everything from that point on is output *)
(* **************************************************************** *)
let rec fast_forward_to_foll curs pre post =
match Cursor.cursor_peek curs with
| Some item ->
let pre', post' = get_pre_post_for_item item in
if pre' > pre && post' > post then
curs
else
let _ = Cursor.cursor_next curs in
fast_forward_to_foll curs pre post
| None -> curs
let sc_join_following code_ctxt input output nt =
let restore_code = build_create_dom_tuple_code code_ctxt output in
let retrieve_code = build_retrieve_dom_tuple_code code_ctxt input in
fun () eval alg_ctxt input_cursor ->
let sym, index = nameindex_of_node_test code_ctxt nt in
let prev_pre = ref (-1) in
let prev_post = ref (-1) in
let past_descendant = ref false in
let item_fun i =
let item = retrieve_code () in
let pre, post = get_pre_post_for_item item in
let _ = if Debug.default_debug()
then
let msg =
Format.sprintf "- Cur ctxt: (%i;%i), prev (%i, %i)"
pre post !prev_pre !prev_post
in
Debug.print_default_debug msg
in
let out_curs =
if Cursor.cursor_is_empty input_cursor && not(!past_descendant) then
(*let _ = Printf.printf "ctxt: (%i;%i): Empty input cursor, continuing at post\n" pre post in*)
let curs = pre_cursor_of_name_index_at_pos index post in
let _ = fast_forward_to_foll curs pre post in
Cursor.cursor_map (restore_fun restore_code) curs
else if (pre > !prev_pre && post > !prev_post
&& !prev_pre > 0 && !prev_post > 0)
then
begin
if not(!past_descendant) then
let _ = past_descendant := true in
let curs = pre_cursor_of_name_index_at_pos index !prev_post in
let _ = fast_forward_to_foll curs !prev_pre !prev_post in
(*let _ = Printf.printf "ctxt: (%i;%i): Past deepest desc, continuing at post\n" pre post !prev_post in*)
Cursor.cursor_map (restore_fun restore_code) curs
else
Cursor.cursor_empty ()
end
else
(* implicit pruning, skip to deepest decendant *)
Cursor.cursor_empty ()
in
let _ = prev_pre := pre; prev_post := post in
out_curs
in
Cursor.cursor_map_concat item_fun input_cursor
(* *** PRECEDING *** ******************************************* *)
(* Modus operandus: *)
(* if a node a' is a preceding of a node b' and there exists *)
(* a node c' such that b' << c', then *)
(* a' is also a preceding of c' *)
(* Use this property to simultaniously scan the document from *)
(* the starting position (0) and consume the context list *)
(* ************************************************************* *)
let sc_join_preceding code_ctxt input output nt =
let restore_code = build_create_dom_tuple_code code_ctxt output in
let retrieve_code = build_retrieve_dom_tuple_code code_ctxt input in
let prev_pre = ref (-1) in
let prev_post = ref (-1) in
let rec scan_reg sc pre post () =
match Cursor.cursor_peek sc with
| Some item ->
let pre', post' = get_pre_post_for_item item in
let _ =
if Debug.default_debug()
then
let msg =
Format.sprintf "*** PREC Scanning item (%i,%i)" pre' post'
in
Debug.print_default_debug msg
in
if pre' >= pre then
let _ =
if Debug.default_debug()
then
Debug.print_default_debug "*** PREC Reached context (stop)"
in
(* reached context item, continue with next one *)
None
else if pre' < pre && post' < post then
let _ =
if Debug.default_debug()
then Debug.print_default_debug "*** PREC output"
in
let _ = Cursor.cursor_next sc in
Some (restore_fun restore_code item)
else
let _ =
if Debug.default_debug()
then Debug.print_default_debug "*** PREC Ancestor (skip)"
in
let _ = (Cursor.cursor_next sc) in
scan_reg sc pre post ()
| None -> None
in
(*
let item_fun in_curs scanner i =
let item = retrieve_code () in
let pre, post = get_pre_post_for_item item in
let _ =
if Debug.default_debug() then Printf.printf
"PREC Current ctxt item: (%i;%i), previous (%i,%i)\n"
pre post !prev_pre !prev_post
in
match Cursor.cursor_peek in_curs with
| None ->
let _ = if Debug.misc_debug() then
Printf.printf "PREC END: Scanning to: (%i;%i)\n" pre post in
Cursor.cursor_of_function (scan_reg scanner pre post)
| _ ->
(* implicit pruning *)
if !prev_pre < 0 || pre < !prev_pre || post < !prev_post then
let _ = if Debug.misc_debug() then
Printf.printf "PREC Skipping (%i;%i)\n" !prev_pre !prev_post in
let _ = prev_pre := pre in
let _ = prev_post := post in
Cursor.cursor_empty ()
else
let _ = if Debug.misc_debug() then
Printf.printf "Scanning to: (%i;%i)\n" !prev_pre !prev_post in
let curs = Cursor.cursor_of_function (scan_reg scanner !prev_pre !prev_post) in
let _ = prev_pre := pre in
let _ = prev_post := post in
curs
in
*)
let item_fun in_curs scanner i =
match Cursor.cursor_peek in_curs with
| None ->
let item = retrieve_code () in
let pre, post = get_pre_post_for_item item in
Cursor.cursor_of_function (scan_reg scanner pre post)
| Some _ -> Cursor.cursor_empty()
in
fun () eval alg_ctxt input_cursor ->
let _ = prev_pre := -1 in
let _ = prev_post := -1 in
let sym, index = nameindex_of_node_test code_ctxt nt in
let sc = pre_cursor_of_name_index_at_pos index 0 in
Cursor.cursor_map_concat (item_fun input_cursor sc) input_cursor
(* ***************************** *)
(* Build code for a single step *)
(* ***************************** *)
let build_single_step_sc_join code_ctxt input output axis nt =
match axis with
| Xquery_common_ast.Self ->
fun () eval alg_ctxt input_cursor ->
let restore_code = build_create_dom_tuple_code code_ctxt output in
let retrieve_code = build_retrieve_dom_tuple_code code_ctxt input in
let stat_ctxt = static_context_from_code_selection_context code_ctxt in
let item_fun tu =
let item = retrieve_code () in
let node = getNode (Physical_util.get_item (cursor_of_sequence ( item ))) in
let c = eval_axis_node_test stat_ctxt Self nt node in
if not (Cursor.cursor_is_empty c) then
Cursor.cursor_of_singleton (restore_fun restore_code item)
else
Cursor.cursor_empty ()
in
Cursor.cursor_map_concat item_fun input_cursor
| Xquery_common_ast.Descendant ->
sc_join_descendant code_ctxt input output nt false
| Xquery_common_ast.Descendant_or_self ->
sc_join_descendant code_ctxt input output nt true
| Xquery_common_ast.Ancestor ->
sc_join_ancestor code_ctxt input output nt false
| Xquery_common_ast.Ancestor_or_self ->
sc_join_ancestor code_ctxt input output nt true
| Xquery_common_ast.Following ->
sc_join_following code_ctxt input output nt
| Xquery_common_ast.Preceding ->
sc_join_preceding code_ctxt input output nt
| Xquery_common_ast.Child ->
sc_join_child code_ctxt input output nt
(* fall back to NL-style evaluation here ?? *)
| Xquery_common_ast.Parent ->
raise (Query (Prototype
("The parent axis is not supported by the staicase join")))
| Xquery_common_ast.Following_sibling ->
raise (Query (Prototype
("The following-sibling axis is not supported by the staicase join")))
| Xquery_common_ast.Preceding_sibling ->
raise (Query (Prototype
("The preceding-sibling axis is not supported by the staircase join")))
| Xquery_common_ast.Attribute ->
raise (Query (Prototype
("The attribute axis is not supported by the staircase join")))
(* ***************************************** *)
(* Recursive walk of the tree pattern with *)
(* on the fly code generation *)
(* ***************************************** *)
let rec build_default_twig_code
(code_ctxt:code_selection_context)
(input:Namespace_names.rqname)
(step_data: (Namespace_names.rqname * Xquery_common_ast.axis * anode_test) option)
(pattern:twig_pattern)
(index:int)
:(unit -> eval_fun -> algebra_context -> tuple_unit Cursor.cursor -> tuple_unit Cursor.cursor)
=
let input' =
if index = 0 then input
else
match pattern.(index).out with
| Some o -> o
| None -> raise out_field_error
in
(* step 1 : generate code for a single step -- unless we are in the root *)
let step_code =
match step_data with
| None -> (fun () eval alg_ctxt curs -> curs) (* root -> end of recursion *)
| Some (output, axis, nt) ->
build_single_step_sc_join code_ctxt input output axis nt
in
(* step 2 : generate predicate code *)
let step_pred_code =
let filter_fun = build_predicates code_ctxt input' pattern index in
(fun dep eval alg_ctxt cursor ->
Cursor.cursor_filter (filter_fun () eval alg_ctxt) (step_code () eval alg_ctxt cursor))
in
(* step 3 : generate code for subsequent steps *)
match pattern.(index).child_twig with
| None -> step_pred_code
| Some (typ', index') ->
(* fixme: factorize to ast_util *)
let (output',axis',nt') = Code_nestedloop.get_treejoin_attrs pattern (typ', index') in
let nested_step_code =
build_default_twig_code code_ctxt input' (Some (output',axis',nt')) pattern index'
in
fun () eval alg_ctxt cursor ->
(nested_step_code () eval alg_ctxt
(step_pred_code () eval alg_ctxt cursor))
(* ************************************************* *)
(* Build the code for a list of chained predicates *)
(* rooted at 'index' *)
(* ************************************************* *)
and build_predicates code_ctxt input pattern index =
let predicate_list = pattern.(index).pred_twigs in
let build_single_predicate (typ, pred_index) =
begin
let (output, axis, nt) = Code_nestedloop.get_treejoin_attrs pattern (typ, pred_index) in
let predicate_twig_code =
build_default_twig_code code_ctxt input (Some (output, axis, nt)) pattern pred_index
in
let leaf_node =
Xquery_algebra_ast_util.get_leaf_twig_node pattern pred_index
in
match leaf_node.out with
| Some o ->
let retrieve_code = build_retrieve_dom_tuple_code code_ctxt o in
fun () eval alg_ctxt tuple ->
begin
(* evaluate the predicate *)
let new_curs = predicate_twig_code () eval alg_ctxt
(Cursor.cursor_of_singleton tuple)
in
Code_nestedloop.effective_boolean_value
(Cursor.cursor_map_concat
(fun x -> cursor_of_sequence (retrieve_code ())) new_curs)
end
| None -> raise out_field_error
end
in
let pred_funs = List.map build_single_predicate predicate_list in
fun () eval alg_ctxt tuple ->
List.for_all (fun p -> p () eval alg_ctxt tuple) pred_funs
(* Exposed in interface *)
let build_staircase_join_code code_ctxt input_field pattern =
build_default_twig_code code_ctxt input_field None pattern 0
|