1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
/*
libstroke - an X11 stroke interface library
Copyright (c) 1996,1997,1998,1999 Mark F. Willey, ETLA Technical
See the files COPYRIGHT and LICENSE for distribution information.
This file pulled from libstroke-0.5.1 (http://www.etla.net/libstroke/)
and trimmed down for Galeon.
*/
#include "stroke.h"
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif
/* structure for holding point data */
typedef struct s_point *p_point;
static struct s_point {
int x;
int y;
p_point next;
} point;
/* point list head and tail */
static p_point point_list_head;
static p_point point_list_tail;
/* determine which bin a point falls in */
static int stroke_bin (p_point point_p, int bound_x_1, int bound_x_2,
int bound_y_1, int bound_y_2);
/* point list head and tail */
static p_point point_list_head=NULL;
static p_point point_list_tail=NULL;
/* metrics fo input stroke */
static int min_x = 10000;
static int min_y = 10000;
static int max_x = -1;
static int max_y = -1;
static int point_count = 0;
static void init_stroke_data (void)
{
while (point_list_head != NULL) {
point_list_tail = point_list_head;
point_list_head = point_list_head->next;
free (point_list_tail);
}
point_list_tail = NULL;
}
int stroke_trans (char *sequence)
{
/* number of bins recorded in the stroke */
int sequence_count = 0;
/* points-->sequence translation scratch variables */
int prev_bin = 0;
int current_bin = 0;
int bin_count = 0;
/* flag indicating the start of a stroke - always count it in the sequence */
int first_bin = TRUE;
/* bin boundary and size variables */
int delta_x, delta_y;
int bound_x_1, bound_x_2;
int bound_y_1, bound_y_2;
/* determine size of grid */
delta_x = max_x - min_x;
delta_y = max_y - min_y;
/* calculate bin boundary positions */
bound_x_1 = min_x + (delta_x / 3);
bound_x_2 = min_x + 2 * (delta_x / 3);
bound_y_1 = min_y + (delta_y / 3);
bound_y_2 = min_y + 2 * (delta_y / 3);
if (delta_x > STROKE_SCALE_RATIO * delta_y) {
bound_y_1 = (max_y + min_y - delta_x) / 2 + (delta_x / 3);
bound_y_2 = (max_y + min_y - delta_x) / 2 + 2 * (delta_x / 3);
} else if (delta_y > STROKE_SCALE_RATIO * delta_x) {
bound_x_1 = (max_x + min_x - delta_y) / 2 + (delta_y / 3);
bound_x_2 = (max_x + min_x - delta_y) / 2 + 2 * (delta_y / 3);
}
while (point_list_head != NULL) {
/* figure out which bin the point falls in */
current_bin = stroke_bin(point_list_head,bound_x_1, bound_x_2,
bound_y_1, bound_y_2);
/* if this is the first point, consider it the previous bin,
too. */
prev_bin = (prev_bin == 0) ? current_bin : prev_bin;
if (prev_bin == current_bin)
bin_count++;
else { /* we are moving to a new bin -- consider adding to the
sequence */
if ((bin_count > (point_count * STROKE_BIN_COUNT_PERCENT))
|| (first_bin == TRUE)) {
first_bin = FALSE;
sequence[sequence_count++] = '0' + prev_bin;
}
/* restart counting points in the new bin */
bin_count=0;
prev_bin = current_bin;
}
/* move to next point, freeing current point from list */
point_list_tail = point_list_head;
point_list_head = point_list_head->next;
free (point_list_tail);
}
point_list_tail = NULL;
/* add the last run of points to the sequence */
sequence[sequence_count++] = '0' + current_bin;
/* bail out on error cases */
if ((point_count < STROKE_MIN_POINTS)
|| (sequence_count > STROKE_MAX_SEQUENCE)) {
point_count = 0;
strcpy (sequence,"0");
return FALSE;
}
/* add null termination and leave */
point_count = 0;
sequence[sequence_count] = '\0';
return TRUE;
}
void stroke_init (void)
{
init_stroke_data ();
}
/* figure out which bin the point falls in */
static int stroke_bin (p_point point_p, int bound_x_1, int bound_x_2,
int bound_y_1, int bound_y_2)
{
int bin_num = 1;
if (point_p->x > bound_x_1) bin_num += 1;
if (point_p->x > bound_x_2) bin_num += 1;
if (point_p->y > bound_y_1) bin_num += 3;
if (point_p->y > bound_y_2) bin_num += 3;
return bin_num;
}
void stroke_record (int x, int y)
{
p_point new_point_p;
int delx, dely;
float ix, iy;
if (point_count < STROKE_MAX_POINTS) {
new_point_p = (p_point) malloc (sizeof(point));
if (point_list_tail == NULL) {
/* first point in list - initialize list and metrics */
point_list_head = point_list_tail = new_point_p;
min_x = 10000;
min_y = 10000;
max_x = -1;
max_y = -1;
point_count = 0;
} else {
/* interpolate between last and current point */
delx = x - point_list_tail->x;
dely = y - point_list_tail->y;
/* step by the greatest delta direction */
if (abs(delx) > abs(dely)) {
iy = point_list_tail->y;
/* go from the last point to the current, whatever direction it
may be */
for (ix = point_list_tail->x;
(delx > 0) ? (ix < x) : (ix > x);
ix += (delx > 0) ? 1 : -1) {
/* step the other axis by the correct increment */
iy += fabs(((float) dely
/ (float) delx)) * (float) ((dely < 0) ? -1.0 : 1.0);
/* add the interpolated point */
point_list_tail->next = new_point_p;
point_list_tail = new_point_p;
new_point_p->x = ix;
new_point_p->y = iy;
new_point_p->next = NULL;
/* update metrics */
if (((int) ix) < min_x) min_x = (int) ix;
if (((int) ix) > max_x) max_x = (int) ix;
if (((int) iy) < min_y) min_y = (int) iy;
if (((int) iy) > max_y) max_y = (int) iy;
point_count++;
new_point_p = (p_point) malloc (sizeof(point));
}
} else { /* same thing, but for dely larger than delx case... */
ix = point_list_tail->x;
/* go from the last point to the current, whatever direction
it may be */
for (iy = point_list_tail->y; (dely > 0) ? (iy < y) : (iy > y);
iy += (dely > 0) ? 1 : -1) {
/* step the other axis by the correct increment */
ix += fabs(((float) delx / (float) dely))
* (float) ((delx < 0) ? -1.0 : 1.0);
/* add the interpolated point */
point_list_tail->next = new_point_p;
point_list_tail = new_point_p;
new_point_p->y = iy;
new_point_p->x = ix;
new_point_p->next = NULL;
/* update metrics */
if (((int) ix) < min_x) min_x = (int) ix;
if (((int) ix) > max_x) max_x = (int) ix;
if (((int) iy) < min_y) min_y = (int) iy;
if (((int) iy) > max_y) max_y = (int) iy;
point_count++;
new_point_p = (p_point) malloc (sizeof(point));
}
}
/* add the sampled point */
point_list_tail->next = new_point_p;
point_list_tail = new_point_p;
}
/* record the sampled point values */
new_point_p->x = x;
new_point_p->y = y;
new_point_p->next = NULL;
}
}
|