1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
|
<html><head><title>GAlib: programming interface</title>
<!-- by matthew wall all rights reserved -->
<!-- Copyright (c) 1995-1996 Massachusetts Institute of Technology -->
<!-- Copyright (c) 1996-1999 Matthew Wall -->
</head>
<body bgcolor="efefef" text="000000">
<strong>Programming interface for <a href="GAlib.html">GAlib</a> classes</strong><br>
<i>version 2.4</i>
<p>
This document describes the programming interface for the library. The section for each class contains a description of the object's purpose followed by the creator signature and member functions. There are also sections for library constants, typedefs, and function signatures.
</p>
<p>
see also: <i><a href="Overview.html">library overview</a>, <a href="ClassHierarchy.html">class hierarchy</a>, <a href="Extensions.html">customization</a></i>
</p>
<br>
<big><strong>Table of contents</strong></big><br>
<hr>
<table border=0 cellspacing=0 cellpadding=6>
<tr valign=baseline>
<td width="50%">
<ul>
<p>
<strong>General library information</strong><br>
<li><a href="#typedefs">typedefs and enumerations</a>
<li><a href="#signatures">function prototypes</a>
<li><a href="#constants">globals and default values</a>
<li><a href="#random">random number functions</a>
<li><a href="#errors">error handling</a>
</p>
<p>
<strong>Genetic Algorithm</strong><br>
<li><a href="#ga_base">GA base class</a>
<li><a href="#ga_overlapping">GA with overlapping populations (steady-state)</a>
<li><a href="#ga_non_overlapping">GA with non-overlapping populations (simple)</a>
<li><a href="#ga_incremental">GA with 1 or 2 children per generation (incremental)</a>
<li><a href="#ga_deme">GA with parallel, migrating populations (deme)</a>
</p>
<p>
<li><a href="#defparms">parameters and command-line options</a>
<li><a href="#parameters">parameter list object</a>
<li><a href="#statistics">statistics object</a>
<li><a href="#completion">completion functions</a>
<li><a href="#replacement">replacement schemes</a>
</p>
<p>
<strong>Population, Scaling, and Selection</strong><br>
<li><a href="#pop">population</a>
<li><a href="#selection">selection schemes</a>
<li><a href="#scaling">fitness scaling schemes</a>
</p>
</ul>
</td>
<td width=6></td>
<td width="50%">
<ul>
<p>
<strong>Genomes</strong><br>
<li><a href="#genome_base">genome base class</a>
<li><a href="#genome_1dbinstr">1D binary string genome</a>
<li><a href="#genome_2dbinstr">2D binary string genome</a>
<li><a href="#genome_3dbinstr">3D binary string genome</a>
<li><a href="#genome_bin2dec">binary-to-decimal genome</a>
<li><a href="#genome_1darray">1D array genome</a>
<li><a href="#genome_1darrayallele">1D array genome with alleles</a>
<li><a href="#genome_2darray">2D array genome</a>
<li><a href="#genome_2darrayallele">2D array genome with alleles</a>
<li><a href="#genome_3darray">3D array genome</a>
<li><a href="#genome_3darrayallele">3D array genome with alleles</a>
<li><a href="#genome_string">string genome</a>
<li><a href="#genome_real">real number genome</a>
<li><a href="#genome_list">list genome</a>
<li><a href="#genome_tree">tree genome</a>
</p>
<p>
<li><a href="#phenotype_b2d">binary-to-decimal phenotype</a>
<li><a href="#alleleset">allele set</a>
<li><a href="#evaldata">evaluation data</a>
</p>
<p>
<strong>Data Structures</strong><br>
<li><a href="#binstr">binary string</a>
<li><a href="#array">array</a>
<li><a href="#tree">tree</a>
<li><a href="#list">list</a>
</p>
</ul>
</td></tr>
</table>
<br>
<br>
<br>
<br>
<a name="typedefs">
<big><strong>Global Typedefs and Enumerations</strong></big></a><br>
<hr>
<blockquote>
<pre>
typedef float <b>GAProbability, GAProb</b>
typedef enum <b>_GABoolean</b> {gaFalse, gaTrue} <b>GABoolean</b>, <b>GABool</b>
typedef enum <b>_GAStatus</b> {gaSuccess, gaFailure} <b>GAStatus</b>
typedef unsigned char <b>GABit</b>
</pre>
</blockquote>
<br>
<br>
<br>
<br>
<a name="signatures">
<big><strong>Function Prototypes</strong></big></a><br>
<hr>
<blockquote>
<pre>
GABoolean (*<b>GAGeneticAlgorithm::Terminator</b>)(GAGeneticAlgorithm & ga)
GAGenome& (*<b>GAIncrementalGA::ReplacementFunction</b>)(GAGenome &, GAPopulation &)
void (*<b>GAPopulation::Initializer</b>)(GAPopulation &)
void (*<b>GAPopulation::Evaluator</b>)(GAPopulation &)
void (*<b>GAGenome::Initializer</b>)(GAGenome &)
float (*<b>GAGenome::Evaluator</b>)(GAGenome &)
int (*<b>GAGenome::Mutator</b>)(GAGenome &, float)
float (*<b>GAGenome::Comparator</b>)(const GAGenome &, const GAGenome&)
int (*<b>GAGenome::SexualCrossover</b>)(const GAGenome&, const GAGenome&, GAGenome*, GAGenome*)
int (*<b>GAGenome::AsexualCrossover</b>)(const GAGenome&, GAGenome*)
int (*<b>GABinaryEncoder</b>)(float& value, GABit* bits,
unsigned int nbits, float min, float max)
int (*<b>GABinaryDecoder</b>)(float& value, const GABit* bits,
unsigned int nbits, float min, float max)
</pre>
</blockquote>
<br>
<br>
<br>
<a name="defparms">
<big><strong>Parameter Names and Command-Line Options</strong></big></a><br>
<hr>
<blockquote>
<pre>
#define name full name short name default value
gaNminimaxi minimaxi mm int gaDefMiniMaxi = 1
gaNnGenerations number_of_generations ngen int gaDefNumGen = 250
gaNpConvergence convergence_percentage pconv float gaDefPConv = 0.99
gaNnConvergence generations_to_convergence nconv int gaDefNConv = 20
gaNpCrossover crossover_probability pcross float gaDefPCross = 0.9
gaNpMutation mutation_probability pmut float gaDefPMut = 0.01
gaNpopulationSize population_size popsize int gaDefPopSize = 30
gaNnPopulations number_of_populations npop int gaDefNPop = 10
gaNpReplacement replacement_percentage prepl float gaDefPRepl = 0.25
gaNnReplacement replacement_number nrepl int gaDefNRepl = 5
gaNnBestGenomes number_of_best nbest int gaDefNumBestGenomes = 1
gaNscoreFrequency score_frequency sfreq int gaDefScoreFrequency1 = 1
gaNflushFrequency flush_frequency ffreq int gaDefFlushFrequency = 0
gaNscoreFilename score_filename sfile char* gaDefScoreFilename = "generations.dat"
gaNselectScores select_scores sscores int gaDefSelectScores = GAStatistics::Maximum
gaNelitism elitism el GABoolean gaDefElitism = gaTrue
gaNnOffspring number_of_offspring noffspr int gaDefNumOff = 2
gaNrecordDiversity record_diversity recdiv GABoolean gaDefDivFlag = gaFalse
gaNpMigration migration_percentage pmig float gaDefPMig = 0.1
gaNnMigration migration_number nmig int gaDefNMig = 5
</pre>
<p>
Parameters may be specified using the full name strings (for example in parameter files), short name strings (for example on the command line), or explicit member functions (such as those of the genetic algorithm objects). All of the #defined names are simply the full names declared as #defined strings; you can use either the string (e.g. number_of_generations) or the #defined name (e.g. gaNnGenerations), but if you use the #defined name then the compiler will be able to catch your spelling mistakes.
</p>
<p>
When you specify GAlib arguments on the command line, they must be in name-value pairs. You can use either the long or short name. For example, if my program is called <i>optimizer</i>, the command line for running the program with a population size of 150, mutation rate of 10%, and score filename of evolve.txt would be:
<pre>
optimizer popsize 150 pmut 0.1 sfile evolve.txt
</pre>
</p>
</blockquote>
<br>
<br>
<br>
<br>
<a name="constants">
<big><strong>Global Variables and Global Constants</strong></big></a><br>
<hr>
<blockquote>
<pre>
char* gaErrMsg; // globally defined pointer to current error message
</pre>
<pre>
int gaDefScoreFrequency1 = 1; // for non-overlapping populations
int gaDefScoreFrequency2 = 100; // for overlapping populations
float gaDefLinearScalingMultiplier = 1.2;
float gaDefSigmaTruncationMultiplier = 2.0;
float gaDefPowerScalingFactor = 1.0005;
float gaDefSharingCutoff = 1.0;
</pre>
</blockquote>
<br>
<br>
<br>
<br>
<a name="random">
<big><strong>Random Number Functions</strong></big></a><br>
<hr>
<blockquote>
GAlib includes the following functions for generating random numbers:
<pre>
void <b>GARandomSeed</b>(unsigned s = <i>0</i>)
int <b>GARandomInt</b>()
int <b>GARandomInt</b>(int low, int high)
double <b>GARandomDouble</b>()
double <b>GARandomDouble</b>(double low, double high)
float <b>GARandomFloat</b>()
float <b>GARandomFloat</b>(float low, float high)
int <b>GARandomBit</b>()
GABoolean <b>GAFlipCoin</b>(float p)
int <b>GAGaussianInt</b>(int stddev)
float <b>GAGaussianFloat</b>(float stddev)
double <b>GAGaussianDouble</b>(double stddev)
double <b>GAUnitGaussian</b>()
</pre>
<p>
If you call it with no argument, the GARandomSeed function uses the current time multiplied by the process ID (on systems that have PIDs) as the seed for a psuedo-random number generator. On systems with no process IDs it uses only the time. You can specify your own random seed if you like by passing a value to this function. Once a seed has been specified, subsequent calls to GARandomSeed with the same value have no effect. Subsequent calls to GARandomSeed with a different value will re-initialize the random number generator using the new value.
</p>
<p>
The functions that take low and high as argument return a random number from low to high, <i>inclusive</i>. The functions that take no arguments return a value in the interval [0,1]. GAFlipCoin returns a boolean value based on a biased coin toss. If you give it a value of 1 it will return a 1, if you give it a value of 0.75 it will return a 1 with a 75% chance.
</p>
<p>
The GARandomBit function is the most efficient way to do unbiased coin tosses. It uses the random bit generator described in <a href="http://nr.harvard.edu/nr/bookc.html">Numerical Recipes in C</a>.
</p>
<p>
The Gaussian functions return a random number from a Gaussian distribution with deviation that you specify. The GAUnitGaussian function returns a number from a unit Gaussian distribution with mean 0 and deviation of 1.
</p>
<p>
GAlib uses a single random number generator for the entire library. You may not change the random number generator on the fly - it can be changed only when GAlib is compiled. See the config.h and random.h header files for details. By default, GAlib uses the <i>ran2</i> generator described in <a href="http://nr.harvard.edu/nr/bookc.html">Numerical Recipes in C</a>.
</p>
</blockquote>
<br>
<br>
<br>
<br>
<a name="errors">
<big><strong>Error Handling</strong></big></a><br>
<hr>
<blockquote>
Exceptions are not used in GAlib version 2.x. However, some GAlib functions return a status value to indicate whether or not their operation was successful. If a function returns an error status, it posts its error message on the global GAlib error pointer, a global string called gaErrMsg.
<p>
By default, GAlib error messages are sent immediately to the error stream. You can disable the immediate printing of error messages by passing gaFalse to the ::GAReportErrors function. Passing a value of gaTrue enables the behavior.
</p>
<p>
If you would like to redirect the error messages to a different stream, use the ::GASetErrorStream function to assign a new stream. The default stream is the system standard error stream, cerr.
</p>
<p>
Here are the error control functions and variables:
</p>
<pre>
extern char gaErrMsg[];
void <b>GAReportErrors</b>(GABoolean flag);
void <b>GASetErrorStream</b>(ostream&);
</pre>
</blockquote>
<br>
<br>
<br>
<br>
<a name="ga_base">
<big><strong>GAGeneticAlgorithm</strong></big></a><br>
<hr>
<blockquote>
This is an abstract class that cannot be instantiated. Each genetic algorithm, when instantiated, will have default operators defined for it. See the documentation for the specific genetic algorithm type for details.
<p>
The base genetic algorithm class keeps track of evolution statistics such as number of mutations, number of crossovers, number of evaluations, best/mean/worst in each generation, and initial/current population statistics. It also defines the terminator, a member function that specifies the stopping criterion for the algorithm.
</p>
<p>
You can maximize or minimize by calling the appropriate member function. If you derive your own genetic algorithm, remember that users of your algorithm may need either type of optimization.
</p>
<p>
Statistics can be written to file each generation or periodically by specifying a flush frequency. Generational scores can be recorded each generation or less frequently by specifying a score frequency.
</p>
<p>
Parameters such as generations-to-completion, crossover probability and mutation probability can be set by member functions, command-line, or from file.
</p>
<p>
The <b>evolve</b> member function first calls <b>initialize</b> then calls the <b>step</b> member function until the <b>done</b> member function returns gaTrue. It calls the <b>flushScores</b> member as needed when the evolution is complete. If you evolve the genetic algorithm without using the <b>evolve</b> member function, be sure to call <b>initialize</b> before stepping through the evolution. You can use the <b>step</b> member function to evolve a single generation. You should call <b>flushScores</b> when the evolution is finished so that any buffered scores are flushed.
</p>
<p>
The names of the individual parameter member functions correspond to the #defined string names. You may set the parameters on a genetic algorithm one at a time (for example, using the <b>nGenerations</b> member function), using a parameter list (for example, using the <b>parameters</b> member function with a GAParameterList), by parsing the command line (for example, using the <b>parameters</b> member function with <i>argc</i> and <i>argv</i>), by name-value pairs (for example, using the <b>set</b> member function with a parameter name and value), or by reading a stream or file (for example, using the <b>parameters</b> member with a filename or stream).
</p>
<i>see also: <a href="#ga_parameters">GAParameterList</a></i><br>
<i>see also: <a href="#ga_statistics">GAStatistics</a></i><br>
<i>see also: <a href="#ga_completion">Terminators</a></i><br>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GAGeneticAlgorithm : public GAID
</pre>
</blockquote>
<big><strong>typedefs and constants</strong></big><br>
<blockquote>
<pre>
GABoolean (*<b>GAGeneticAlgorithm::Terminator</b>)(GAGeneticAlgorithm &)
enum { <b>MINIMIZE</b> = -1, <b>MAXIMIZE</b> = 1 };
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
static GAParameterList& <b>registerDefaultParameters</b>(GAParameterList&);
void * <b>userData</b>()
void * <b>userData</b>(void *)
void <b>initialize</b>(unsigned int seed=0)
void <b>evolve</b>(unsigned int seed=0)
void <b>step</b>()
GABoolean <b>done</b>()
GAGeneticAlgorithm::Terminator <b>terminator</b>()
GAGeneticAlgorithm::Terminator <b>terminator</b>(GAGeneticAlgorithm::Terminator)
const GAStatistics & <b>statistics</b>() const
float <b>convergence</b>() const
int <b>generation</b>() const
void <b>flushScores</b>()
int <b>minimaxi</b>() const
int <b>minimaxi</b>(int)
int <b>minimize</b>()
int <b>maximize</b>()
int <b>nGenerations</b>() const
int <b>nGenerations</b>(unsigned int)
int <b>nConvergence</b>() const
int <b>nConvergence</b>(unsigned int)
float <b>pConvergence</b>() const
float <b>pConvergence</b>(float)
float <b>pMutation</b>() const
float <b>pMutation</b>(float)
float <b>pCrossover</b>() const
float <b>pCrossover</b>(float)
GAGenome::SexualCrossover <b>crossover</b>(GAGenome::SexualCrossover func);
GAGenome::SexualCrossover <b>sexual</b>() const;
GAGenome::AsexualCrossover <b>crossover</b>(GAGenome::AsexualCrossover func);
GAGenome::AsexualCrossover <b>asexual</b>() const;
const GAPopulation & <b>population</b>() const
const GAPopulation & <b>population</b>(const GAPopulation&)
int <b>populationSize</b>() const
int <b>populationSize</b>(unsigned int n)
int <b>nBestGenomes</b>() const
int <b>nBestGenomes</b>(unsigned int n)
GAScalingScheme & <b>scaling</b>() const
GAScalingScheme & <b>scaling</b>(const GAScalingScheme&)
GASelectionScheme & <b>selector</b>() const
GASelectionScheme & <b>selector</b>(const GASelectionScheme& s)
void <b>objectiveFunction</b>(GAGenome::Evaluator)
void <b>objectiveData</b>(const GAEvalData&)
int <b>scoreFrequency</b>() const
int <b>scoreFrequency</b>(unsigned int frequency)
int <b>flushFrequency</b>() const
int <b>flushFrequency</b>(unsigned int frequency)
char* <b>scoreFilename</b>() const
char* <b>scoreFilename</b>(const char *filename)
int <b>selectScores</b>() const
int <b>selectScores</b>(GAStatistics::ScoreID which)
GABoolean <b>recordDiversity</b>() const
GABoolean <b>recordDiversity</b>(GABoolean flag)
const GAParameterList & <b>parameters</b>()
const GAParameterList & <b>parameters</b>(const GAParameterList &)
const GAParameterList & <b>parameters</b>(int& argc, char** argv, GABoolean flag = <i>gaFalse</i>)
const GAParameterList & <b>parameters</b>(const char* filename, GABoolean flag = <i>gaFalse</i>);
const GAParameterList & <b>parameters</b>(istream&, GABoolean flag = <i>gaFalse</i>);
int <b>set</b>(const char* s, int v)
int <b>set</b>(const char* s, unsigned int v)
int <b>set</b>(const char* s, char v)
int <b>set</b>(const char* s, const char* v)
int <b>set</b>(const char* s, const void* v)
int <b>set</b>(const char* s, double v);
int <b>write</b>(const char* filename)
int <b>write</b>(ostream&)
int <b>read</b>(const char* filename)
int <b>read</b>(ostream&)
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>convergence</b>
<dd>Returns the current convergence. The convergence is defined as the ratio of the Nth previous best-of-generation score to the current best-of-generation score.
<dt><b>crossover</b>
<dd>Specify the mating method to use for evolution. This can be changed during the course of an evolution. This genetic algorithm uses only sexual crossover.
<dt><b>done</b>
<dd>Returns gaTrue if the termination criteria have been met, returns gaFalse otherwise. This function simply calls the completion function that was specified using the <b>terminator</b> member function.
<dt><b>evolve</b>
<dd>Initialize the genetic algorithm then evolve it until the termination criteria have been satisfied. This function first calls <b>initialize</b> then calls the <b>step</b> member function until the <b>done</b> member function returns gaTrue. It calls the <b>flushScores</b> member as needed when the evolution is complete. You may pass a seed to evolve if you want to specify your own random seed.
<dt><b>flushFrequency</b>
<dd>Use this member function to specify how often the scores should be flushed to disk. A value of 0 means do not write to disk. A value of 100 means to flush the scores every 100 generations.
<dt><b>flushScores</b>
<dd>Force the genetic algorithm to flush its generational data to disk. If you have specified a flushFrequency of 0 or specified a scoreFilename of nil then calling this function has no effect.
<dt><b>generation</b>
<dd>Returns the current generation.
<dt><b>initialize</b>
<dd>Initialize the genetic algorithm. If you specify a seed, this function calls GARandomSeed with that value. If you do not specify a seed, GAlib will choose one for you as described in the <a href="#random">random functions</a> section. It then initializes the population and does the first population evaluation.
<dt><b>nBestGenomes</b>
<dd>Specify how many 'best' genomes to record. For example, if you specify 10, the genetic algorithm will keep the 10 best genomes that it ever encounters. Beware that if you specify a large number here the algorithm will slow down because it must compare the best of each generation with its current list of best individuals. The default is 1.
<dt><b>nConvergence</b>
<dd>Set/Get the number of generations used for the convergence test.
<dt><b>nGenerations</b>
<dd>Set/Get the number of generations.
<dt><b>objectiveData</b>
<dd>Set the objective data member on all individuals used by the genetic algorithm. This can be changed during the course of an evolution.
<dt><b>objectiveFunction</b>
<dd>Set the objective function on all individuals used by the genetic algorithm. This can be changed during the course of an evolution.
<dt><b>parameters</b>
<dd>Returns a reference to a parameter list containing the current values of the genetic algorithm parameters.
<dt><b>parameters</b>(GAParameterList&)
<dd>Set the parameters for the genetic algorithm. To use this member function you must create a parameter list (an array of name-value pairs) then pass it to the genetic algorithm.
<dt><b>parameters</b>(int& argc, char** argv, GABoolean flag = <i>gaFalse</i>)
<dd>Set the parameters for the genetic algorithm. Use this member function to let the genetic algorithm parse your command line for arguments that GAlib understands. This method decrements argc and moves the pointers in argv appropriately to remove from the list the arguments that it understands. If you pass gaTrue as the third argument then the method will complain about any command-line arguments that are not recognized by this genetic algorithm.
<dt><b>parameters</b>(char* filename, GABoolean flag = <i>gaFalse</i>)
<dt><b>parameters</b>(istream&, GABoolean flag = <i>gaFalse</i>)
<dd>Set the parameters for the genetic algorithm. This version of the parameters member function will parse the specified file or stream for parameters that the genetic algorithm understands. If you pass gaTrue as the second argument then the method will complain about any parameters that are not recognized by this genetic algorithm.
<dt><b>pConvergence</b>
<dd>Set/Get the convergence percentage. The convergence is defined as the ratio of the <i>N</i>th previous best-of-generation score to the current best-of-generation score. <i>N</i> is defined by the <b>nConvergence</b> member function.
<dt><b>pCrossover</b>
<dd>Set/Get the crossover probability.
<dt><b>pMutation</b>
<dd>Set/Get the mutation probability.
<dt><b>population</b>
<dd>Set/Get the population. Returns a reference to the current population.
<dt><b>populationSize</b>
<dd>Set/Get the population size. This can be changed during the course of an evolution.
<dt><b>recordDiversity</b>
<dd>Convenience function for specifying whether or not to calculate diversity. Since diversity calculations require comparison of each individual with every other, recording this statistic can be expensive. The default is gaFalse (diversity is not recorded).
<dt><b>registerDefaultParameters</b>
<dd>Each genetic algorithm defines this member function to declare the parameters that work with it. Pass a parameter list to this function and this function will configure the list with the default parameter list and values for the genetic algorithm class from which you called it. This is a statically defined function, so invoke it using the class name of the genetic algorithm whose parameters you want to use, for example, GASimpleGA::registerDefaultParameters(list). The default parameters for the base genetic algorithm class are:
<ul>
<li>flushFrequency
<li>minimaxi
<li>nBestGenomes
<li>nGenerations
<li>nConvergence
<li>pConvergence
<li>pCrossover
<li>pMutation
<li>populationSize
<li>recordDiversity
<li>scoreFilename
<li>scoreFrequency
<li>selectScores
</ul>
<dt><b>scaling</b>
<dd>Set/Get the scaling scheme. The specified scaling scheme must be derived from the <a href="#scaling">GAScalingScheme</a> class. This can be changed during the course of an evolution.
<dt><b>scoreFilename</b>
<dd>Specify the name of the file to which the scores should be recorded.
<dt><b>scoreFrequency</b>
<dd>Specify how often the generational scores should be recorded. The default depends on the type of genetic algorithm that you are using. You can record mean, max, min, stddev, and diversity for every n generations.
<dt><b>selector</b>
<dd>Set/Get the selection scheme for the genetic algorithm. The selector is used to pick individuals from a population before mating and mutation occur. This can be changed during the course of an evolution.
<dt><b>selectScores</b>
<dd>This function is used to specify which scores should be saved to disk. The argument is the logical OR of the following values: Mean, Maximum, Minimum, Deviation, Diversity (all defined in the scope of the GAStatistics object). To record all of the scores, pass GAStatistics::AllScores. When written to file, the format is as follows:
<pre>
generation TAB mean TAB max TAB min TAB deviation TAB diversity NEWLINE
</pre>
<dt><b>set</b>
<dd>Set individual parameters for the genetic algorithm. The first argument should be the full- or short-name of the parameter you wish to set. The second argument is the value to which you would like to set the parameter.
<dt><b>statistics</b>
<dd>Returns a reference to the statistics object in the genetic algorithm. The statistics object maintains information such as best, worst, mean, and standard deviation, and diversity of each generation as well as a separate population with the best individuals ever encountered by the genetic algorithm.
<dt><b>step</b>
<dd>Evolve the genetic algorithm for one generation.
<dt><b>terminator</b>
<dd>Set/Get the termination function. The genetic algorithm is complete when the completion function returns gaTrue. The function must have the proper <a href="#signatures">signature</a>.
<dt><b>userData</b>
<dd>Set/Get the userData member of the genetic algorithm. This member is a generic pointer to any information that needs to be stored with the genetic algorithm.
</dl>
</blockquote>
<br>
<br>
<br>
<br>
<a name="ga_non_overlapping">
<big><strong>GASimpleGA</strong></big> (non-overlapping populations)</a><br>
<hr>
<blockquote>
This genetic algorithm is the 'simple' genetic algorithm that Goldberg describes in his book. It uses non-overlapping populations. When you create a simple genetic algorithm, you must specify either an individual or a population of individuals. The new genetic algorithm will clone the individual(s) that you specify to make its own population. You can change most of the genetic algorithm behaviors after creation and during the course of the evolution.
<p>
The simple genetic algorithm creates an initial population by cloning the individual or population you pass when you create it. Each generation the algorithm creates an entirely new population of individuals by selecting from the previous population then mating to produce the new offspring for the new population. This process continues until the stopping criteria are met (determined by the terminator).
</p>
<p>
Elitism is optional. By default, elitism is on, meaning that the best individual from each generation is carried over to the next generation. To turn off elitism, pass gaFalse to the <b>elitist</b> member function.
</p>
<p>
The score frequency for this genetic algorithm defaults to 1 (it records the best-of-generation every generation). The default scaling is Linear, the default selection is RouletteWheel.
</p>
<i>see also: <a href="#ga_base">GAGeneticAlgorithm</a></i>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GASimpleGA : public GAGeneticAlgorithm
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GASimpleGA(const GAGenome&)
GASimpleGA(const GAPopulation&)
GASimpleGA(const GASimpleGA&)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
static GAParameterList& <b>registerDefaultParameters</b>(GAParameterList&);
GASimpleGA & <b>operator++</b>()
GABoolean <b>elitist</b>() const
GABoolean <b>elitist</b>(GABoolean flag)
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>elitist</b>
<dd>Set/Get the elitism flag. If you specify gaTrue, the genetic algorithm will copy the best individual from the previous population into the current population if no individual in the current population is any better.
<dt><b>operator++</b>
<dd>The increment operator evolves the genetic algorithm's population by one generation by calling the <b>step</b> member function.
<dt><b>registerDefaultParameters</b>
<dd>This function adds to the specified list parameters that are of interest to this genetic algorithm. The default parameters for the simple genetic algorithm are the parameters for the base genetic algorithm class plus the following:
<ul>
<li>elitism
</ul>
</dl>
</blockquote>
<br>
<br>
<br>
<br>
<a name="ga_overlapping">
<big><strong>GASteadyStateGA</strong></big> (overlapping populations)</a><br>
<hr>
<blockquote>
This genetic algorithm is similar to the algorithms described by DeJong. It uses overlapping populations with a user-specifiable amount of overlap. The algorithm creates a population of individuals by cloning the genome or population that you pass when you create it. Each generation the algorithm creates a temporary population of individuals, adds these to the previous population, then removes the worst individuals in order to return the population to its original size.
<p>
You can select the amount of overlap between generations by specifying the <b>pReplacement</b> parameter. This is the percentage of the population that should be replaced each generation. Newly generated offspring are added to the population, then the worst individuals are destroyed (so the new offspring may or may not make it into the population, depending on whether they are better than the worst in the population).
</p>
<p>
If you specify a replacement percentage, then that percentage of the population will be replaced each generation. Alternatively, you can specify a number of individuals (less than the number in the population) to replace each generation. You cannot specify both - in a parameter list containing both parameters, the latter is used.
</p>
<p>
The score frequency for this genetic algorithm defaults to 100 (it records the best-of-generation every 100th generation). The default scaling is Linear, the default selection is RouletteWheel.
</p>
<i>see also: <a href="#ga_base">GAGeneticAlgorithm</a></i>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GASteadyStateGA : public GAGeneticAlgorithm
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GASteadyStateGA(const GAGenome&)
GASteadyStateGA(const GAPopulation&)
GASteadyStateGA(const GASteadyStateGA&)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
static GAParameterList& <b>registerDefaultParameters</b>(GAParameterList&);
GASteadyStateGA & <b>operator++</b>()
float <b>pReplacement</b>() const
float <b>pReplacement</b>(float percentage)
int <b>nReplacement</b>() const
int <b>nReplacement</b>(unsigned int)
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>nReplacement</b>
<dd>Specify a number of individuals to replace each generation. When you specify a number of individuals to replace, the pReplacement value is set to 0.
<dt><b>operator++</b>
<dd>The increment operator evolves the genetic algorithm's population by one generation by calling the <b>step</b> member function.
<dt><b>pReplacement</b>
<dd>Specify a percentage of the population to replace each generation. When you specify a replacement percentage, the nReplacement value is set to 0.
<dt><b>registerDefaultParameters</b>
<dd>This function adds to the specified list parameters that are of interest to this genetic algorithm. The default parameters for the steady-state genetic algorithm are the parameters for the base genetic algorithm class plus the following:
<ul>
<li>pReplacement
<li>nReplacement
</ul>
</dl>
</blockquote>
<br>
<br>
<br>
<br>
<a name="ga_incremental">
<big><strong>GAIncrementalGA</strong></big> (overlapping populations with 1 or 2 children per generation)</a><br>
<hr>
<blockquote>
This genetic algorithm is similar to those based on the GENITOR model. It uses overlapping populations, but very little overlap (only one or two individuals get replaced each generation). The default replacement scheme is WORST. A replacement function is required only if you use CUSTOM or CROWDING as the replacement scheme. You can do DeJong-style crowding by specifying a distance function with the CROWDING option. (for best DeJong-style results, derive your own genetic algorithm)
<p>
You can specify the number of children that are generated in each 'generation' by using the <b>nOffspring</b> member function. Since this genetic algorithm is based on a two-parent crossover model, the number of offspring must be either 1 or 2. The default is 2.
</p>
<p>
Use the <b>replacement</b> method to specify which type of replacement the genetic algorithm should use. The replacement strategy determines how the new children will be inserted into the population. If you want the new child to replace one of its parents, use the Parent strategy. If you want the child to replace a random population member, use the Random strategy. If you want the child to replace the worst population member, use the Worst strategy.
</p>
<p>
If you specify CUSTOM or CROWDING you must also specify a replacement function with the proper <a href="#signatures">signature</a>. This function is used to pick which genome will be replaced. The first argument passed to the replacement function is the individual that is supposed to go into the population. The second argument is the population into which the individual is supposed to go. The replacement function should return a reference to the genome that the individual should replace. If no replacement should take place, the replacement function should return a reference to the individual.
</p>
<p>
The score frequency for this genetic algorithm defaults to 100 (it records the best-of-generation every 100th generation). The default scaling is Linear, the default selection is RouletteWheel.
</p>
<i>see also: <a href="#ga_base">GAGeneticAlgorithm</a></i>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GAIncrementalGA : public GAGeneticAlgorithm
</pre>
</blockquote>
<big><strong>typedefs and constants</strong></big><br>
<blockquote>
<pre>
GAGenome& (*<b>GAIncrementalGA::ReplacementFunction</b>)(GAGenome &, GAPopulation &)
enum ReplacementScheme {
<b>RANDOM</b> = GAPopulation::RANDOM,
<b>BEST</b> = GAPopulation::BEST,
<b>WORST</b> = GAPopulation::WORST,
<b>CUSTOM</b> = -30,
<b>CROWDING</b> = -30,
<b>PARENT</b> = -10
};
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GAIncrementalGA(const GAGenome&)
GAIncrementalGA(const GAPopulation&)
GAIncrementalGA(const GAIncrementalGA&)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
static GAParameterList& <b>registerDefaultParameters</b>(GAParameterList&);
GASteadyStateGA & <b>operator++</b>()
ReplacementScheme <b>replacement</b>()
ReplacementScheme <b>replacement</b>(ReplacementScheme, ReplacementFunction f = <i>NULL</i>)
int <b>nOffspring</b>() const
int <b>nOffspring</b>(unsigned int n)
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>nOffspring</b>
<dd>The incremental genetic algorithm can produce either one or two individuals each generation. Use this member function to specify how many individuals you would like.
<dt><b>operator++</b>
<dd>The increment operator evolves the genetic algorithm's population by one generation by calling the <b>step</b> member function.
<dt><b>registerDefaultParameters</b>
<dd>This function adds to the specified list parameters that are of interest to this genetic algorithm. The default parameters for the incremental genetic algorithm are the parameters for the base genetic algorithm class plus the following:
<ul>
<li>nOffspring
</ul>
<dt><b>replacement</b>
<dd>Specify a replacement method. The scheme can be one of
<ul>
<li>GAIncrementalGA::RANDOM
<li>GAIncrementalGA::BEST
<li>GAIncrementalGA::WORST
<li>GAIncrementalGA::CUSTOM
<li>GAIncrementalGA::CROWDING
<li>GAIncrementalGA::PARENT
</ul>
If you specify custom or crowding replacement then you must also specify a function. The replacement function takes two arguments: the individual to insert and the population into which it will be inserted. The replacement function should return a reference to the genome that should be replaced. If no replacement should take place, the replacement function should return a reference to the individual passed to it.
</dl>
</blockquote>
<br>
<br>
<br>
<br>
<a name="ga_deme">
<big><strong>GADemeGA</strong></big> (parallel populations with migration)</a><br>
<hr>
<blockquote>
This genetic algorithm has multiple, independent populations. It creates the populations by cloning the genome or population that you pass when you create it.
<p>
Each population evolves using a steady-state genetic algorithm, but each generation some individuals migrate from one population to another. The migration algorithm is deterministic stepping-stone; each population migrates a fixed number of its best individuals to its neighbor. The master population is updated each generation with best individual from each population.
</p>
<p>
If you want to experiment with other migration methods, derive a new class from this one and define a new migration operator. You can change the evolution behavior by defining a new <b>step</b> method in a derived class.
</p>
<i>see also: <a href="#ga_base">GAGeneticAlgorithm</a></i>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GADemeGA : public GAGeneticAlgorithm
</pre>
</blockquote>
<big><strong>typedefs and constants</strong></big><br>
<blockquote>
<pre>
enum { <b>ALL</b>= -1 };
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GADemeGA(const GAGenome&)
GADemeGA(const GAPopulation&)
GADemeGA(const GADemeGA&)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
static GAParameterList& <b>registerDefaultParameters</b>(GAParameterList&);
void <b>migrate</b>()
GADemeGA & <b>operator++</b>()
const GAPopulation& <b>population</b>(unsigned int i) const
const GAPopulation& <b>population</b>(int i, const GAPopulation&)
int <b>populationSize</b>(unsigned int i) const
int <b>populationSize</b>(int i, unsigned int n)
int <b>nReplacement</b>(unsigned int i) const
int <b>nReplacement</b>(int i, unsigned int n)
int <b>nMigration</b>() const
int <b>nMigration</b>(unsigned int i)
int <b>nPopulations</b>() const
int <b>nPopulations</b>(unsigned int i)
const GAStatistics& <b>statistics</b>() const
const GAStatistics& <b>statistics</b>(unsigned int i) const
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>nMigration</b>
<dd>Specify the number of individuals to migrate each generation. Each population will migrate this many of its best individuals to the next population (the stepping-stone migration model). The individuals replace the worst individuals in the receiving population.
<dt><b>nReplacement</b>
<dd>Specify a number of individuals to replace each generation. When you specify a number of individuals to replace, the pReplacement value is set to 0. The first argument specifies which population should be modified. Use GADemeGA::ALL to apply to all populations.
<dt><b>operator++</b>
<dd>The increment operator evolves the genetic algorithm's population by one generation by calling the <b>step</b> member function.
<dt><b>pReplacement</b>
<dd>Specify a percentage of the population to replace each generation. When you specify a replacement percentage, the nReplacement value is set to 0. The first argument specifies which population should be modified. Use GADemeGA::ALL to apply to all populations.
<dt><b>registerDefaultParameters</b>
<dd>This function adds parameters to the specified list that are of interest to this genetic algorithm. The default parameters for the deme genetic algorithm are the parameters for the base genetic algorithm class plus the following:
<ul>
<li>nMigration
<li>nPopulations
</ul>
</dl>
</blockquote>
<br>
<br>
<br>
<br>
<a name="completion">
<big><strong>Terminators</strong></big></a><br>
<hr>
<blockquote>
Completion functions are used to determine whether or not a genetic algorithm is finished. The <b>done</b> member function simply calls the completion function to determine whether or not the genetic algorithm should continue. The predefined completion functions use generation and convergence to determine whether or not the genetic algorithm is finished.
<p>
The completion function returns gaTrue when the genetic algorithm should finish, and gaFalse when the genetic algorithm should continue.
</p>
<p>
In this context, convergence refers to the the similarity of the objective scores, <i>not</i> similarity of underlying genetic structure. The built-in convergence measures use the best-of-generation scores to determine whether or not the genetic algorithm has plateaued.
</p>
<pre>
GABoolean <b>GAGeneticAlgorithm::TerminateUponGeneration</b>(GAGeneticAlgorithm &)
GABoolean <b>GAGeneticAlgorithm::TerminateUponConvergence</b>(GAGeneticAlgorithm &)
GABoolean <b>GAGeneticAlgorithm::TerminateUponPopConvergence</b>(GAGeneticAlgorithm &)
</pre>
<dl>
<p>
<dt><b>TerminateUponGeneration</b>
<dd>This function compares the current generation to the specified number of generations. If the current generation is less than the requested number of generations, it returns gaFalse. Otherwise, it returns gaTrue.
</p>
<p>
<dt><b>TerminateUponConvergence</b>
<dd>This function compares the current convergence to the specified convergence value. If the current convergence is less than the requested convergence, it returns gaFalse. Otherwise, it returns gaTrue.
</p>
<p>
Convergence is a number between 0 and 1. A convergence of 1 means that the nth previous best-of-generation is equal to the current best-of-generation. When you use convergence as a stopping criterion you <i>must</i> specify the convergence percentage and you <i>may</i> specify the number of previous generations against which to compare. The genetic algorithm will always run at least this many generations.
</p>
<p>
<dt><b>TerminateUponPopConvergence</b>
<dd>This function compares the population average to the score of the best individual in the population. If the population average is within <i>pConvergence</i> of the best individual's score, it returns gaTrue. Otherwise, it returns gaFalse.
</p>
</dl>
<p>
For details about how to write your own termination function, see the <a href="Extensions.html">customizations</a> page.
</p>
</blockquote>
<br>
<br>
<br>
<br>
<a name="replacement">
<big><strong>Replacement Schemes</strong></big></a><br>
<hr>
<blockquote>
The replacement scheme is used by the incremental genetic algorithm to determine how a new individual should be inserted into a population. Valid replacement schemes include:
<blockquote>
<pre>
GAIncrementalGA::RANDOM
GAIncrementalGA::BEST
GAIncrementalGA::WORST
GAIncrementalGA::CUSTOM
GAIncrementalGA::CROWDING
GAIncrementalGA::PARENT
</pre>
</blockquote>
<p>
In general, replace worst produces the best results. Replace parent is useful for basic speciation, and custom replacement can be used when you want to do your own type of speciation.
</p>
<p>
If you specify CUSTOM or CROWDING replacement then you must also specify a replacement function. The replacement function takes as arguments an individual and the population into which the individual should be placed. It returns a reference to the genome that the individual should replace. If the individual should not be inserted into the population, the function should return a reference to the individual.
</p>
<p>
Any replacement function must have the following function prototype:
<pre>
typedef GAGenome& (*<b>GAIncrementalGA::ReplacementFunction</b>)(GAGenome &, GAPopulation &);
</pre>
The first argument is the genome that will be inserted into the population, the second argument is the population into which the genome should be inserted. The function should return a reference to the genome that will be replaced. If no replacement occurs, the function should return a reference to the original genome.
</p>
<p>
For details about how to write your own replacement function, see the <a href="Extensions.html">customizations</a> page.
</p>
</blockquote>
<br>
<br>
<br>
<br>
<a name="evaldata">
<big><strong>GAEvalData</strong></big></a><br>
<hr>
<blockquote>
The evaluation data object is a generic base class for genome- and/or population-specific data. Whereas the userData member of the genome is shared by all genomes in a population, the evalData member is unique to each genome. The base class defines the copy/clone interface for the evaluation data object. Your derived classes should use this mechanism. Any derived class <i>must</i> define a <b>clone</b> and <b>copy</b> member function. These will be called by the base class when the evaluation data is cloned/copied by the genomes/populations.
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GAEvalData : public GAID
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GAEvalData()
GAEvalData(const GAEvalData&)
</pre>
</blockquote>
<big><strong>member functions</strong></big><br>
<blockquote>
<pre>
GAEvalData* <b>clone</b>() const
void <b>copy</b>(const GAEvalData&)
</pre>
</blockquote>
<br>
<br>
<br>
<br>
<a name="genome_base">
<big><strong>GAGenome</strong></big></a><br>
<hr>
<blockquote>
The genome is a virtual base class and cannot be instantiated. It defines a number of constants and function prototypes specific to the genome and its derived classes.
<p>
The dimension is used to specify which dimension is being referred to in multi-dimensional genomes. The <b>clone</b> method specifies whether to clone the entire genome (a new genome with contents identical to the original will be created) or just the attributes of the genome (a new genome with identical characteristics will be created). In both cases the caller is responsible for deleting the memory allocated by the <b>clone</b> member function. The resize constants are used when specifying a resizable genome's resize behavior.
</p>
<p>
The genetic operators for genomes are functions that take generic genomes as their arguments. This makes it possible to define new behaviors for existing genome classes without deriving a new class. The genetic operators are defined with the following prototypes:
</p>
<p>
Instructions for deriving your own genome class are in the <a href="Extensions.html">customization</a> page.
</p>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GAGenome : public GAID
</pre>
</blockquote>
<big><strong>typedefs and constants</strong></big><br>
<blockquote>
<pre>
enum GAGenome::Dimension { <b>LENGTH</b>, <b>WIDTH</b>, <b>HEIGHT</b>, <b>DEPTH</b> }
enum GAGenome::CloneMethod { <b>CONTENTS</b>, <b>ATTRIBUTES</b> }
enum { <b>FIXED_SIZE</b> = -1, <b>ANY_SIZE</b> = -10 }
</pre>
<pre>
float (*<b>GAGenome::Evaluator</b>)(GAGenome &)
void (*<b>GAGenome::Initializer</b>)(GAGenome &)
int (*<b>GAGenome::Mutator</b>)(GAGenome &, float)
float (*<b>GAGenome::Comparator</b>)(const GAGenome &, const GAGenome&)
int (*<b>GAGenome::SexualCrossover</b>)(const GAGenome&, const GAGenome&, GAGenome*, GAGenome*);
int (*<b>GAGenome::AsexualCrossover</b>)(const GAGenome&, GAGenome*);
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
virtual void <b>copy</b>(const GAGenome & c)
virtual GAGenome * <b>clone</b>(CloneMethod flag = <i>CONTENTS</i>)
float <b>score</b>(GABoolean flag = <i>gaFalse</i>)
float <b>score</b>(float s)
int <b>nevals</b>()
float <b>evaluate</b>(GABoolean flag = <i>gaFalse</i>)
GAGenome::Evaluator <b>evaluator</b>() const
GAGenome::Evaluator <b>evaluator</b>(GAGenome::Evaluator func)
void <b>initialize</b>()
GAGenomeInitializer <b>initializer</b>() const
GAGenomeInitializer <b>initializer</b>(GAGenome::Initializer func)
int <b>mutate</b>(float pmutation)
GAGenome::Mutator <b>mutator</b>() const
GAGenome::Mutator <b>mutator</b>(GAGenome::Mutator func)
float <b>compare</b>(const GAGenome& g) const
GAGenome::Comparator <b>comparator</b>() const
GAGenome::Comparator <b>comparator</b>(GAGenome::Comparator c)
GAGenome::SexualCrossover <b>crossover</b>(GAGenome::SexualCrossover func)
GAGenome::SexualCrossover <b>sexual</b>()
GAGenome::AsexualCrossover <b>crossover</b>(GAGenome::AsexualCrossover func)
GAGenome::AsexualCrossover <b>asexual</b>()
GAGeneticAlgorithm * <b>geneticAlgorithm</b>() const
GAGeneticAlgorithm * <b>geneticAlgorithm</b>(GAGeneticAlgorithm &)
void * <b>userData</b>() const
void * <b>userData</b>(void * data)
GAEvalData * <b>evalData</b>() const
GAEvalData * <b>evalData</b>(void * data)
virtual int <b>read</b>(istream &)
virtual int <b>write</b>(ostream &) const
virtual int <b>equal</b>(const GAGenome &) const
virtual int <b>notequal</b>(const GAGenome &) const
</pre>
These operators call the corresponding virtual members so that they will work on <i>any</i> properly derived genome class.
<pre>
friend int <b>operator==</b>(const GAGenome&, const GAGenome&)
friend int <b>operator!=</b>(const GAGenome&, const GAGenome&)
friend ostream & <b>operator<<</b>(ostream&, const GAGenome&)
friend istream & <b>operator>></b>(istream&, GAGenome&)
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>clone</b>
<dd>This method allocates space for a new genome whereas the copy method uses the space of the genome to which it belongs.
<dt><b>compare</b>
<dd>Compare two genomes. The comparison can be genotype- or phenotype-based. The comparison returns a value greater than or equal to 0. 0 means the two genomes are identical (no diversity). The exact meaning of the comparison is up to you.
<dt><b>comparator</b>
<dd>Set/Get the comparison method. The comparator must have the correct <a href="#signatures">signature</a>.
<dt><b>copy</b>
<dd>The copy member function is called by the base class' operator= and clone members. You can use it to copy the contents of a genome into an existing genome.
<dt><b>crossover</b>
<dd>Each genome class can define its preferred mating method. Use this method to assign the preferred crossover for a genome instance.
<dt><b>equal</b>
<dt><b>notequal</b>
<dd>'equal' and 'notequal' are genome-specific. See the documentation for each genome class for specific details about what 'equal' means. For example, genomes that have identical contents but different allele sets may or may not be considered equal. By default, <b>notequal</b> just calls the <b>equal</b> function, but you can override this in derived classes if you need to optimize the comparison.
<dt><b>evalData</b>
<dd>Set/Get the object used to store genome-specific evaluation data. Each genome owns its own evaluation data object; cloning a genome clones the evaluation data as well.
<dt><b>evaluate</b>
<dd>Invoke the genome's evaluation function. If you call this member with gaTrue, the evaluation function is called no matter what (assuming one has been assigned to the genome). By default, the argument to this function is gaFalse, so the genome's evaluation function is called only if the state of the genome has not changed since the last time the evaluator was invoked.
<dt><b>evaluator</b>
<dd>Set/Get the function used to evaluate the genome.
<dt><b>geneticAlgorithm</b>
<dd>The member function returns a pointer to the genetic algorithm that 'owns' the genome. If this function returns nil then the genome has no genetic algorithm owner.
<dt><b>initialize</b>
<dd>Calls the initialization function for the genome.
<dt><b>initializer</b>
<dd>Set/Get the initialization method. The initializer must have the correct <a href="#signatures">signature</a>.
<dt><b>mutate</b>
<dd>Calls the mutation method for the genome. The value is typically the mutation likliehood, but the exact interpretation of this value is up to the designer of the mutation method.
<dt><b>mutator</b>
<dd>Set/Get the mutation method. The mutator must have the correct <a href="#signatures">signature</a>.
<dt><b>nevals</b>
<dd>Returns the number of objective function evaluations since the genome was initialized.
<dt><b>operator==</b>
<dt><b>operator!=</b>
<dt><b>operator<<</b>
<dt><b>operator>></b>
<dd>These methods call the associated virtual member functions. They can be used on any generic genome. If the derived class was properly defined, the appropriate derived functions will be called and the functions will operate on the derived classes rather than the base class.
<dt><b>read</b>
<dd>Fill the genome with the data read from the specified stream.
<dt><b>sexual</b>
<dt><b>asexual</b>
<dd>Returns a pointer to the preferred mating method for this genome. If this function returns nil, no mating method has been defined for the genome. The <a href="#ga_base">genetic algorithm</a> object has ultimate control over the mating method that is actually used in the evolution.
<dt><b>score</b>
<dd>Returns the objective score of the genome using the objective function assigned to the genome. If no objective function has been assigned and no score has been set, a score of 0 will be returned. If the <b>score</b> function is called with an argument, the genome's objective score is set to that value (useful for population-based objective functions in which the population object does the evaluations).
<dt><b>userData</b>
<dd>Each genome contains a generic pointer to user-specifiable data. Use this member function to set/get that pointer. Notice that cloning a genome will cause the cloned genome to refer to the <i>same</i> user data pointer as the original; the user data is not cloned as well. So all genomes in a population refer to the same user data.
<dt><b>write</b>
<dd>Send the contents of the genome to the specified stream.
</dl>
</blockquote>
<br>
<br>
<br>
<br>
<a name="genome_list">
<big><strong>GAListGenome<T></strong></big></a><br>
<hr>
<blockquote>
The list genome is a template class. It is derived from the GAGenome class as well as the GAList<> class. It can be used for order-based representations or variable length sequences as well as traditional applications of lists.
<p>
You <i>must</i> define an initialization operator for this class. The default initializer is NoInitializer - if you do not assign an initialization operator then you'll get errors about no initializer defined when you try to initialize the genome.
</p>
<i>see also: <a href="#list">GAList</a></i><br>
<i>see also: <a href="#genome_base">GAGenome</a></i><br>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GAListGenome<T> : public GAList<T>, public GAGenome
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GAListGenome(GAGenome::Evaluator objective = <i>NULL</i>, void * userData = <i>NULL</i>)
GAListGenome(const GAListGenome<T> &)
</pre>
</blockquote>
<big><strong>genetic operators for this class</strong></big><br>
<blockquote>
<pre>
GAListGenome<>::DestructiveMutator
GAListGenome<>::SwapMutator
GAListGenome<>::OnePointCrossover
GAListGenome<>::PartialMatchCrossover
GAListGenome<>::OrderCrossover
GAListGenome<>::CycleCrossover
</pre>
</blockquote>
<big><strong>default genetic operators</strong></big><br>
<blockquote>
<pre>
initialization: GAGenome::NoInitializer
comparison: GAGenome::NoComparator
mutation: GAListGenome<>::SwapMutator
crossover: GAListGenome<>::OnePointCrossover
</pre>
</blockquote>
<br>
<br>
<br>
<br>
<a name="genome_tree">
<big><strong>GATreeGenome<T></strong></big></a><br>
<hr>
<blockquote>
The tree genome is a template class. It is derived from the GAGenome class as well as the GATree<> class. The tree genome can be used for direct manipulation of tree objects. It can be used to represent binary trees as well as non-binary trees.
<p>
You <i>must</i> define an initialization operator for this class. The default initializer is NoInitializer - if you do not assign an initialization operator then you'll get errors about no initializer defined when you try to initialize the genome.
</p>
<i>see also: <a href="#tree">GATree</a></i><br>
<i>see also: <a href="#genome_base">GAGenome</a></i><br>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GATreeGenome<T> : public GATree<T>, public GAGenome
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GATreeGenome(GAGenome::Evaluator objective = <i>NULL</i>, void * userData = <i>NULL</i>)
GATreeGenome(const GATreeGenome<T> &)
</pre>
</blockquote>
<big><strong>genetic operators for this class</strong></big><br>
<blockquote>
<pre>
GATreeGenome<>::DestructiveMutator
GATreeGenome<>::SwapSubtreeMutator
GATreeGenome<>::SwapNodeMutator
GATreeGenome<>::OnePointCrossover
</pre>
</blockquote>
<big><strong>default genetic operators</strong></big><br>
<blockquote>
<pre>
initialization: GAGenome::NoInitializer
comparison: GAGenome::NoComparator
mutation: GATreeGenome<>::SwapSubtreeMutator
crossover: GATreeGenome<>::OnePointCrossover
</pre>
</blockquote>
<br>
<br>
<br>
<br>
<a name="genome_string">
<strong>GAStringGenome</strong></a><br>
<hr>
<blockquote>
The string genome can be used for order-based applications, variable length string applications, or non-binary allele set alphabets. The allele set defines the possible values that each element in the string may assume.
<p>
The string genome is a specialization of the <a href="#genome_1darrayallele">array genome with alleles</a>. The specialization is of type <code>char</code>. You must create an allele set or array of allele sets before you can instantiate this genome.
</p>
<p>
If you create a string genome using a single allele set, each element in the genome will use that allele set to determine its value. If you create a string genome using an allele set array, the string will have a length equal to the number of elements in the array and each element of the string will be governed by the allele set corresponding to its location in the string.
</p>
<p>
To use the string genome in your code, you must include the string genome header file in each of your files that uses the string genome. You must also include the string genome source file (it contains template specialization code) in <i>one</i> (and only one) of your source files. Including the string genome source file will force the compiler to use the string specializations. If you do not include the string genome source file you will get the generic array routines instead (and some of the allele methods will not work as expected).
</p>
<i>see also: <a href="#genome_1darrayallele">GA1DArrayAlleleGenome</a></i><br>
<i>see also: <a href="#alleleset">GAAlleleSet</a></i><br>
<i>see also: <a href="#allelesetarray">GAAlleleSetArray</a></i>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
typedef GAAlleleSet<char> GAStringAlleleSet
typedef GAAlleleSetCore<char> GAStringAlleleSetCore
typedef GAAlleleSetArray<char> GAStringAlleleSetArray
typedef GA1DArrayAlleleGenome<char> GAStringGenome
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GAStringGenome(unsigned int length,
const GAStringAlleleSet &,
GAGenome::Evaluator objective = <i>NULL</i>,
void * userData = <i>NULL</i>)
GAStringGenome(const GAStringAlleleSetArray &,
GAGenome::Evaluator objective = <i>NULL</i>,
void * userData = <i>NULL</i>)
GAStringGenome(const GAStringGenome&)
</pre>
</blockquote>
<big><strong>genetic operators for this class</strong></big><br>
<blockquote>
<pre>
GAStringGenome::UniformInitializer
GAStringGenome::OrderedInitializer
GAStringGenome::FlipMutator
GAStringGenome::SwapMutator
GAStringGenome::UniformCrossover
GAStringGenome::EvenOddCrossover
GAStringGenome::OnePointCrossover
GAStringGenome::TwoPointCrossover
GAStringGenome::PartialMatchCrossover
GAStringGenome::OrderCrossover
GAStringGenome::CycleCrossover
</pre>
</blockquote>
<big><strong>default genetic operators</strong></big><br>
<blockquote>
<pre>
initialization: GAStringGenome::UniformInitializer
comparison: GAStringGenome::ElementComparator
mutation: GAStringGenome::FlipMutator
crossover: GAStringGenome::UniformCrossover
</pre>
</blockquote>
<br>
<br>
<br>
<br>
<a name="genome_real">
<big><strong>GARealGenome</strong></big></a><br>
<hr>
<blockquote>
The real number genome was designed to be used for applications whose representation requires an array of (possibly bounded) real number parameters. The elements of the array can assume bounded values, discretized bounded values, or enumerated values, depending on the type of allele set that is used to create the genome. You can mix the bounding within the genome by specifying an appropriate array of allele sets. The allele set defines the possible values that each element in the genome may assume.
<p>
The real number genome is a specialization of the <a href="#genome_1darrayallele">array genome with alleles</a>. The specialization is of type <code>float</code>. You must create an allele set or array of allele sets before you can instantiate this genome.
</p>
<p>
If you create a real number genome using a single allele set, each element in the genome will use that allele set to determine its value. If you create a real number genome using an allele set array, the genome will have a length equal to the number of elements in the array and each element of the real number will be governed by the allele set corresponding to its location in the genome.
</p>
<p>
To use the real genome in your code, you must include the real genome header file in each of your files that uses the real genome. You must also include the real genome source file (it contains template specialization code) in <i>one</i> (and only one) of your source files. Including the real genome source file will force the compiler to use the real specializations. If you do not include the real genome source file you will get the generic array routines instead (and some of the allele methods will not work as expected).
</p>
<i>see also: <a href="#genome_1darrayallele">GA1DArrayAlleleGenome</a></i><br>
<i>see also: <a href="#alleleset">GAAlleleSet</a></i>
<i>see also: <a href="#allelesetarray">GAAlleleSetArray</a></i>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
typedef GAAlleleSet<float> GARealAlleleSet
typedef GAAlleleSetCore<float> GARealAlleleSetCore
typedef GAAlleleSetArray<float> GARealAlleleSetArray
typedef GA1DArrayAlleleGenome<float> GARealGenome
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GARealGenome(unsigned int length,
const GARealAlleleSet &,
GAGenome::Evaluator objective = <i>NULL</i>,
void * userData = <i>NULL</i>)
GARealGenome(const GARealAlleleSetArray &,
GAGenome::Evaluator objective = <i>NULL</i>,
void * userData = <i>NULL</i>)
GARealGenome(const GARealGenome&)
</pre>
</blockquote>
<big><strong>genetic operators for this class</strong></big><br>
<blockquote>
<pre>
GARealGenome::UniformInitializer
GARealGenome::OrderedInitializer
GARealGenome::FlipMutator
GARealGenome::SwapMutator
GARealGaussianMutator
GARealGenome::UniformCrossover
GARealGenome::EvenOddCrossover
GARealGenome::OnePointCrossover
GARealGenome::TwoPointCrossover
GARealGenome::PartialMatchCrossover
GARealGenome::OrderCrossover
GARealGenome::CycleCrossover
GARealBlendCrossover
GARealArithmeticCrossover
</pre>
</blockquote>
<big><strong>default genetic operators</strong></big><br>
<blockquote>
<pre>
initialization: GARealGenome::UniformInitializer
comparison: GARealGenome::ElementComparator
mutation: GARealGaussianMutator
crossover: GARealGenome::UniformCrossover
</pre>
</blockquote>
<br>
<br>
<br>
<br>
<a name="genome_bin2dec">
<big><strong>GABin2DecGenome</strong></big></a>
<hr>
<blockquote>
This genome is an implementation of the traditional method for converting binary strings to decimal values. It contains a mechanism for customized encoding of the bit string; binary-to-decimal and one form of Gray coding are built in to the library. The default is binary-to-decimal mapping (counting in base 2). To use this genome, you must create a mapping of bits to decimal values by specifying how many bits will be used to represent what bounded numbers. The binary-to-decimal genome is derived from the 1DBinaryStringGenome class.
<p>
You must create a phenotype before you can instantiate this genome. The phenotype defines how bits should map into decimal values and vice versa. A single binary-to-decimal phenotype contains the number of bits used to represent the decimal value and the minimum and maximum decimal values to which the set of bits will map.
</p>
<i>see also: <a href="#genome_1dbinstr">GA1DBinaryStringGenome</a></i><br>
<i>see also: <a href="#phenotype_b2d">GABin2DecPhenotype</a></i><br>
<i>see also: <a href="#crossover">GACrossover</a></i>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GABin2DecGenome : public GA1DBinaryStringGenome
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GABin2DecGenome(const GABin2DecPhenotype &,
GAGenome::Evaluator objective = <i>NULL</i>,
void * userData = <i>NULL</i>)
GABin2DecGenome(const GABin2DecGenome&)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
const GABin2DecPhenotype& <b>phenotypes</b>(const GABin2DecPhenotype &)
const GABin2DecPhenotype& <b>phenotypes</b>() const
int <b>nPhenotypes</b>() const
float <b>phenotype</b>(unsigned int n) const
float <b>phenotype</b>(unsigned int n, float value)
void <b>encoder</b>(GABinaryEncoder)
void <b>decoder</b>(GABinaryDecoder)
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>encoder</b>
<dt><b>decoder</b>
<dd>Use these member functions to set the encoder/decoder for the genome. These functions determine what method will be used for converting the binary bits to decimal numbers. The functions that you specify here must have the proper <a href="#signatures">signature</a>.
<dt><b>nPhenotype</b>
<dd>Returns the number of phenotypes (i.e. the number of decimal values represented) in the genome.
<dt><b>phenotypes</b>
<dd>Set/Get the mapping from binary to decimal numbers.
<dt><b>phenotype</b>
<dd>Set/Get the specified phenotype.
</dl>
</blockquote>
<big><strong>default genetic operators</strong></big><br>
<blockquote>
<pre>
initialization: GA1DBinaryStringGenome::UniformInitializer
comparison: GA1DBinaryStringGenome::BitComparator
mutation: GA1DBinaryStringGenome::FlipMutator
crossover: GA1DBinaryStringGenome::OnePointCrossover
de/encoding: GABinaryEncode/GABinaryDecode
</pre>
</blockquote>
<big><strong>additional information</strong></big><br>
<blockquote>
Conversion functions are defined for transforming strings of bits to decimal values and vice versa. The function prototypes for the encoding (decimal-to-binary) and decoding (binary-to-decimal) are defined as follows:
<pre>
typedef int (*GABinaryEncoder)(float& value, GABit* bits,
unsigned int nbits, float min, float max);
typedef int (*GABinaryDecoder)(float& value, const GABit* bits,
unsigned int nbits, float min, float max);
</pre>
<p>
The library includes the following binary-to-decimal/decimal-to-binary converters:
</p>
<dl>
<dt>GABinaryEncode/GABinaryDecode
<dd>Convert using a binary coding scheme.
<dt>GAGrayEncode/GAGrayDecode
<dd>Convert using a Gray coding scheme.
</dl>
</blockquote>
<br>
<br>
<br>
<br>
<a name="genome_1dbinstr">
<big><strong>GA1DBinaryStringGenome</strong></big></a>
<hr>
<blockquote>
The binary string genome is derived from the GABinaryString and GAGenome classes. It is a string of 1s and 0s whose length may be fixed or variable.
<p>
The genes in this genomes are bits. The alleles for each bit are 0 and 1.
</p>
<i>see also: <a href="#binstr">GABinaryString</a></i><br>
<i>see also: <a href="#genome_base">GAGenome</a></i><br>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GA1DBinaryStringGenome : public GABinaryString, public GAGenome
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GA1DBinaryStringGenome(unsigned int x,
GAGenome::Evaluator objective = <i>NULL</i>,
void * userData = <i>NULL</i>)
GA1DBinaryStringGenome(const GA1DBinaryStringGenome&)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
short <b>gene</b>(unsigned int x = <i>0</i>) const
short <b>gene</b>(unsigned int, short value)
int <b>length</b>() const
int <b>length</b>(int l)
int <b>resize</b>(int x)
int <b>resizeBehaviour</b>() const
int <b>resizeBehaviour</b>(unsigned int minx, unsigned int maxx)
void <b>copy</b>(const GA1DBinaryStringGenome &,
unsigned int xdest, unsigned int xsrc, unsigned int length)
void <b>set</b>(unsigned int x, unsigned int length)
void <b>unset</b>(unsigned int x, unsigned int length)
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>copy</b>
<dd>Copy the specified bits from the designated genome.
<dt><b>gene</b>
<dd>Set/Get the specified bit.
<dt><b>length</b>
<dd>Set/Get the length of the bit string.
<dt><b>resize</b>
<dd>Set the length of the bit string.
<dt><b>resizeBehaviour</b>
<dd>Set/Get the resize behavior. The min value specifies the minimum allowable length, the max value specifies the maximum allowable length. If min and max are equal, the genome is not resizable.
<p>
Use the <b>resizeBehaviour</b> and <b>resize</b> member functions to control the size of the genome. The default behavior is fixed size. Using the <b>resizeBehaviour</b> method you can specify minimum and maximum values for the size of the genome. If you specify minimum and maximum as the same values then fixed size is assumed. If you use the <b>resize</b> method to specify a size that is outside the bounds set earlier using <b>resizeBehaviour</b>, the bounds will be 'stretched' to accommodate the value you specify with <b>resize</b>. Conversely, if the values you specify with <b>resizeBehaviour</b> conflict with the genome's current size, the genome will be resized to accommodate the new values.
</p>
<p>
When <b>resizeBehaviour</b> is called with no arguments, it returns the maximum size if the genome is resizable, or GAGenome::FIXED_SIZE if the size is fixed.
</p>
<dt><b>set</b>
<dt><b>unset</b>
<dd>Set/Unset the bits in the specified range. If you specify a range that is not represented by the genome, the range that you specified will be clipped to fit the genome.
</dl>
</blockquote>
<big><strong>genetic operators for this class</strong></big><br>
<blockquote>
<pre>
GA1DBinaryStringGenome::UniformInitializer
GA1DBinaryStringGenome::SetInitializer
GA1DBinaryStringGenome::UnsetInitializer
GA1DBinaryStringGenome::FlipMutator
GA1DBinaryStringGenome::BitComparator
GA1DBinaryStringGenome::UniformCrossover
GA1DBinaryStringGenome::EvenOddCrossover
GA1DBinaryStringGenome::OnePointCrossover
GA1DBinaryStringGenome::TwoPointCrossover
</pre>
</blockquote>
<big><strong>default genetic operators</strong></big><br>
<blockquote>
<pre>
initialization: GA1DBinaryStringGenome::UniformInitializer
comparison: GA1DBinaryStringGenome::BitComparator
mutation: GA1DBinaryStringGenome::FlipMutator
crossover: GA1DBinaryStringGenome::OnePointCrossover
</pre>
</blockquote>
<br>
<br>
<br>
<br>
<a name="genome_2dbinstr">
<big><strong>GA2DBinaryStringGenome</strong></big></a><br>
<hr>
<blockquote>
The binary string genome is derived from the GABinaryString and GAGenome classes. It is a matrix of 1s and 0s whose width and height may be fixed or variable.
<p>
The genes in this genomes are bits. The alleles for each bit are 0 and 1.
</p>
<i>see also: <a href="#binstr">GABinaryString</a></i><br>
<i>see also: <a href="#genome_base">GAGenome</a></i><br>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GA2DBinaryStringGenome : public GABinaryString, public GAGenome
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GA2DBinaryStringGenome(unsigned int x, unsigned int y,
GAGenome::Evaluator objective = <i>NULL</i>,
void * userData = <i>NULL</i>)
GA2DBinaryStringGenome(const GA2DBinaryStringGenome &)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
short <b>gene</b>(unsigned int x, unsigned int y) const
short <b>gene</b>(unsigned int x, unsigned int y, const short value)
int <b>width</b>() const
int <b>width</b>(int w)
int <b>height</b>() const
int <b>height</b>(int h)
int <b>resize</b>(int x, int y)
int <b>resizeBehaviour</b>(GADimension which) const
int <b>resizeBehaviour</b>(GADimension which,
unsigned int min, unsigned int max)
int <b>resizeBehaviour</b>(unsigned int minx, unsigned int maxx,
unsigned int miny, unsigned int maxy)
void <b>copy</b>(const GA2DBinaryStringGenome &,
unsigned int xdest, unsigned int ydest,
unsigned int xsrc, unsigned int ysrc,
unsigned int width, unsigned int height)
void <b>set</b>(unsigned int, unsigned int, unsigned int, unsigned int)
void <b>unset</b>(unsigned int, unsigned int, unsigned int, unsigned int)
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>copy</b>
<dd>Copy the specified bits from the designated genome. If you specify a range that is not represented by the genome, the range that you specified will be clipped to fit the genome.
<dt><b>gene</b>
<dd>Set/Get the specified bit.
<dt><b>height</b>
<dd>Set/Get the height of the bit string.
<dt><b>resize</b>
<dd>Set the size of the genome to the specified dimensions.
<dt><b>resizeBehaviour</b>
<dd>Set/Get the resize behavior. The min value specifies the minimum allowable length, the max value specifies the maximum allowable length. If min and max are equal, the genome is not resizable.
<p>
Use the <b>resizeBehaviour</b> and <b>resize</b> member functions to control the size of the genome. The default behavior is fixed size. Using the <b>resizeBehaviour</b> method you can specify minimum and maximum values for the size of the genome. If you specify minimum and maximum as the same values then fixed size is assumed. If you use the <b>resize</b> method to specify a size that is outside the bounds set earlier using <b>resizeBehaviour</b>, the bounds will be 'stretched' to accommodate the value you specify with <b>resize</b>. Conversely, if the values you specify with <b>resizeBehaviour</b> conflict with the genome's current size, the genome will be resized to accommodate the new values.
</p>
<p>
When <b>resizeBehaviour</b> is called with no arguments, it returns the maximum size if the genome is resizable, or GAGenome::FIXED_SIZE if the size is fixed.
</p>
<dt><b>set</b>
<dt><b>unset</b>
<dd>Set/Unset the bits in the specified range. If you specify a range that is not represented by the genome, the range that you specified will be clipped to fit the genome.
<dt><b>width</b>
<dd>Set/Get the width of the bit string.
</dl>
</blockquote>
<big><strong>genetic operators for this class</strong></big><br>
<blockquote>
<pre>
GA2DBinaryStringGenome::UniformInitializer
GA2DBinaryStringGenome::SetInitializer
GA2DBinaryStringGenome::UnsetInitializer
GA2DBinaryStringGenome::FlipMutator
GA2DBinaryStringGenome::BitComparator
GA2DBinaryStringGenome::UniformCrossover
GA2DBinaryStringGenome::EvenOddCrossover
GA2DBinaryStringGenome::OnePointCrossover
</pre>
</blockquote>
<big><strong>default genetic operators</strong></big><br>
<blockquote>
<pre>
initialization: GA2DBinaryStringGenome::UniformInitializer
comparison: GA2DBinaryStringGenome::BitComparator
mutation: GA2DBinaryStringGenome::FlipMutator
crossover: GA2DBinaryStringGenome::OnePointCrossover
</pre>
</blockquote>
<br>
<br>
<br>
<br>
<a name="genome_3dbinstr">
<big><strong>GA3DBinaryStringGenome</strong></big></a><br>
<hr>
<blockquote>
The binary string genome is derived from the GABinaryString and GAGenome classes. It is a three-dimensional block of 1s and 0s whose width, height, and depth can be fixed or variable.
<p>
The genes in this genomes are bits. The alleles for each bit are 0 and 1.
</p>
<i>see also: <a href="#binstr">GABinaryString</a></i><br>
<i>see also: <a href="#genome_base">GAGenome</a></i><br>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GA3DBinaryStringGenome : public GABinaryString, public GAGenome
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GA3DBinaryStringGenome(unsigned int x, unsigned int y, unsigned int z,
GAGenome::Evaluator objective = <i>NULL</i>,
void * userData = <i>NULL</i>)
GA3DBinaryStringGenome(const GA3DBinaryStringGenome&)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
short <b>gene</b>(unsigned int x, unsigned int y, unsigned int z) const
short <b>gene</b>(unsigned int x, unsigned int y, unsigned int z, short value)
int <b>width</b>() const
int <b>width</b>(int w)
int <b>height</b>() const
int <b>height</b>(int h)
int <b>depth</b>() const
int <b>depth</b>(int d)
int <b>resize</b>(int x, int y, int z)
int <b>resizeBehaviour</b>(GADimension which) const
int <b>resizeBehaviour</b>(GADimension which,
unsigned int min, unsigned int max)
int <b>resizeBehaviour</b>(unsigned int minx, unsigned int maxx,
unsigned int miny, unsigned int maxy,
unsigned int minz, unsigned int maxz)
void <b>copy</b>(const GA3DBinaryStringGenome &,
unsigned int xdest, unsigned int ydest, unsigned int zdest,
unsigned int xsrc, unsigned int ysrc, unsigned int zsrc,
unsigned int width, unsigned int height, unsigned int depth);
void <b>set</b>(unsigned int, unsigned int,
unsigned int, unsigned int,
unsigned int, unsigned int);
void <b>unset</b>(unsigned int, unsigned int,
unsigned int, unsigned int,
unsigned int, unsigned int);
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>copy</b>
<dd>Copy the specified bits from the designated genome. If you specify a range that is not represented by the genome, the range that you specified will be clipped to fit the genome.
<dt><b>depth</b>
<dd>Set/Get the depth of the bit string.
<dt><b>gene</b>
<dd>Set/Get the specified bit.
<dt><b>height</b>
<dd>Set/Get the height of the bit string.
<dt><b>resize</b>
<dd>Set the size of the genome to the specified dimensions.
<dt><b>resizeBehaviour</b>
<dd>Set/Get the resize behavior. The min value specifies the minimum allowable length, the max value specifies the maximum allowable length. If min and max are equal, the genome is not resizable.
<p>
Use the <b>resizeBehaviour</b> and <b>resize</b> member functions to control the size of the genome. The default behavior is fixed size. Using the <b>resizeBehaviour</b> method you can specify minimum and maximum values for the size of the genome. If you specify minimum and maximum as the same values then fixed size is assumed. If you use the <b>resize</b> method to specify a size that is outside the bounds set earlier using <b>resizeBehaviour</b>, the bounds will be 'stretched' to accommodate the value you specify with <b>resize</b>. Conversely, if the values you specify with <b>resizeBehaviour</b> conflict with the genome's current size, the genome will be resized to accommodate the new values.
</p>
<p>
When <b>resizeBehaviour</b> is called with no arguments, it returns the maximum size if the genome is resizable, or GAGenome::FIXED_SIZE if the size is fixed.
</p>
<dt><b>set</b>
<dt><b>unset</b>
<dd>Set/Unset the bits in the specified range. If you specify a range that is not represented by the genome, the range that you specified will be clipped to fit the genome.
<dt><b>width</b>
<dd>Set/Get the width of the bit string.
</dl>
</blockquote>
<big><strong>genetic operators for this class</strong></big><br>
<blockquote>
<pre>
GA3DBinaryStringGenome::UniformInitializer
GA3DBinaryStringGenome::SetInitializer
GA3DBinaryStringGenome::UnsetInitializer
GA3DBinaryStringGenome::FlipMutator
GA3DBinaryStringGenome::BitComparator
GA3DBinaryStringGenome::UniformCrossover
GA3DBinaryStringGenome::EvenOddCrossover
GA3DBinaryStringGenome::OnePointCrossover
</pre>
</blockquote>
<big><strong>default genetic operators</strong></big><br>
<blockquote>
<pre>
initialization: GA3DBinaryStringGenome::UniformInitializer
comparison: GA3DBinaryStringGenome::BitComparator
mutation: GA3DBinaryStringGenome::FlipMutator
crossover: GA3DBinaryStringGenome::OnePointCrossover
</pre>
</blockquote>
<br>
<br>
<br>
<br>
<a name="genome_1darray">
<big><strong>GA1DArrayGenome<T></strong></big></a><br>
<hr>
<blockquote>
The 1D array genome is a generic, resizable array of objects. It is a template class derived from the GAGenome class as well as the GAArray<> class.
<p>
Each element in the array is a gene. The values of the genes are determines by the type of the genome. For example, an array of ints may have integer values whereas an array of doubles may have floating point values.
</p>
<i>see also: <a href="#array">GAArray</a></i><br>
<i>see also: <a href="#genome_base">GAGenome</a></i><br>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GA1DArrayGenome<T> : public GAArray<T>, public GAGenome
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GA1DArrayGenome(unsigned int length,
GAGenome::Evaluator objective = <i>NULL</i>,
void * userData = <i>NULL</i>)
GA1DArrayGenome(const GA1DArrayGenome<T> &)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
const T & <b>gene</b>(unsigned int x=0) const
T & <b>gene</b>(unsigned int x=0)
T & <b>gene</b>(unsigned int x, const T& value)
const T & <b>operator[]</b>(unsigned int x) const
T & <b>operator[]</b>(unsigned int x)
int <b>length</b>() const
int <b>length</b>(int l)
int <b>resize</b>(int x)
int <b>resizeBehaviour</b>() const
int <b>resizeBehaviour</b>(unsigned int minx, unsigned int maxx)
void <b>copy</b>(const GA1DArrayGenome<T>& original,
unsigned int dest, unsigned int src, unsigned int length)
void <b>swap</b>(unsigned int x1, unsigned int x2)
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>copy</b>
<dd>Copy the specified bits from the designated genome.
<dt><b>gene</b>
<dd>Set/Get the specified element.
<dt><b>length</b>
<dd>Set/Get the length.
<dt><b>resize</b>
<dd>Set the length.
<dt><b>resizeBehaviour</b>
<dd>Set/Get the resize behavior. The min value specifies the minimum allowable length, the max value specifies the maximum allowable length. If min and max are equal, the genome is not resizable.
<p>
Use the <b>resizeBehaviour</b> and <b>resize</b> member functions to control the size of the genome. The default behavior is fixed size. Using the <b>resizeBehaviour</b> method you can specify minimum and maximum values for the size of the genome. If you specify minimum and maximum as the same values then fixed size is assumed. If you use the <b>resize</b> method to specify a size that is outside the bounds set earlier using <b>resizeBehaviour</b>, the bounds will be 'stretched' to accommodate the value you specify with <b>resize</b>. Conversely, if the values you specify with <b>resizeBehaviour</b> conflict with the genome's current size, the genome will be resized to accommodate the new values.
</p>
<p>
When <b>resizeBehaviour</b> is called with no arguments, it returns the maximum size if the genome is resizable, or GAGenome::FIXED_SIZE if the size is fixed.
</p>
<dt><b>swap</b>
<dd>Swap the specified elements.
</dl>
</blockquote>
<big><strong>genetic operators for this class</strong></big><br>
<blockquote>
<pre>
GA1DArrayGenome<>::SwapMutator
GA1DArrayGenome<>::ElementComparator
GA1DArrayGenome<>::UniformCrossover
GA1DArrayGenome<>::EvenOddCrossover
GA1DArrayGenome<>::OnePointCrossover
GA1DArrayGenome<>::TwoPointCrossover
GA1DArrayGenome<>::PartialMatchCrossover
GA1DArrayGenome<>::OrderCrossover
GA1DArrayGenome<>::CycleCrossover
</pre>
</blockquote>
<big><strong>default genetic operators</strong></big><br>
<blockquote>
<pre>
initialization: GAGenome::NoInitializer
comparison: GA1DArrayGenome<>::ElementComparator
mutation: GA1DArrayGenome<>::SwapMutator
crossover: GA1DArrayGenome<>::OnePointCrossover
</pre>
</blockquote>
<br>
<br>
<br>
<br>
<a name="genome_1darrayallele">
<big><strong>GA1DArrayAlleleGenome<T></strong></big></a><br>
<hr>
<blockquote>
The one-dimensional array allele genome is derived from the one-dimensional array genome class. It shares the same behaviors, but adds the features of allele sets. The value assumed by each element in an array allele genome depends upon the allele set specified for that element. In the simplest case, you can create a single allele set which defines the possible values for any element in the array. More complicated examples can have a different allele set for each element in the array.
<p>
If you create the genome with a single allele set, the genome will have a length that you specify and the allele set will be used for the mapping of each element. If you create the genome using an array of allele sets, the genome will have a length equal to the number of allele sets in the array and each element of the array will be mapped using the corresponding allele set.
</p>
<p>
When you define an allele set for an array genome, the genome makes its own copy. Subsequent clones of this genome will refer to the original genome's allele set (allele sets do reference counting).
</p>
<i>see also: <a href="#array">GAArray</a></i><br>
<i>see also: <a href="#genome_1darray">GA1DArrayGenome</a></i><br>
<i>see also: <a href="#alleleset">GAAlleleSet</a></i><br>
<i>see also: <a href="#allelesetarray">GAAlleleSetArray</a></i>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GA1DArrayAlleleGenome<T> : public GAArrayGenome<T>
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GA1DArrayAlleleGenome(unsigned int length,
const GAAlleleSet<T>& alleleset,
GAGenome::Evaluator objective = <i>NULL</i>,
void * userData = <i>NULL</i>)
GA1DArrayAlleleGenome(const GAAlleleSetArray<T>& allelesets,
GAGenome::Evaluator objective = <i>NULL</i>,
void * userData = <i>NULL</i>)
GA1DArrayAlleleGenome(const GA1DArrayAlleleGenome<T>&)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
const GAAlleleSet<T>& <b>alleleset</b>(unsigned int i = <i>0</i>) const
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>alleleset</b>
<dd>Returns a reference to the allele set for the specified gene. If the genome was created using a single allele set, the allele set will be the same for every gene. If the genome was created using an allele set array, each gene may have a different allele set.
</dl>
</blockquote>
<big><strong>genetic operators for this class</strong></big><br>
<blockquote>
<pre>
GA1DArrayAlleleGenome<>::UniformInitializer
GA1DArrayAlleleGenome<>::OrderedInitializer
GA1DArrayAlleleGenome<>::FlipMutator
</pre>
</blockquote>
<big><strong>default genetic operators</strong></big><br>
<blockquote>
<pre>
initialization: GA1DArrayAlleleGenome<>::UniformInitializer
comparison: GA1DArrayGenome<>::ElementComparator
mutation: GA1DArrayAlleleGenome<>::FlipMutator
crossover: GA1DArrayGenome<>::OnePointCrossover
</pre>
</blockquote>
<br>
<br>
<br>
<br>
<a name="genome_2darray">
<big><strong>GA2DArrayGenome<T></strong></big></a><br>
<hr>
<blockquote>
The two-dimensional array genome is a generic, resizable array of objects. It is a template class derived from the GAGenome class as well as the GAArray<> class.
<p>
Each element in the array is a gene. The values of the genes are determines by the type of the genome. For example, an array of ints may have integer values whereas an array of doubles may have floating point values.
</p>
<i>see also: <a href="#array">GAArray</a></i><br>
<i>see also: <a href="#genome_base">GAGenome</a></i><br>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GA2DArrayGenome<T> : public GAArray<T>, public GAGenome
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GA2DArrayGenome(unsigned int width, unsigned int height,
GAGenome::Evaluator objective = <i>NULL</i>,
void * userData = <i>NULL</i>)
GA2DArrayGenome(const GA2DArrayGenome<T> &)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
const T & <b>gene</b>(unsigned int x, unsigned int y) const
T & <b>gene</b>(unsigned int x, unsigned int y)
T & <b>gene</b>(unsigned int x, unsigned int y, const T& value)
int <b>width</b>() const
int <b>width</b>(int w)
int <b>height</b>() const
int <b>height</b>(int h)
int <b>resize</b>(int x, int y)
int <b>resizeBehaviour</b>(GADimension which) const
int <b>resizeBehaviour</b>(GADimension which,
unsigned int min, unsigned int max)
int <b>resizeBehaviour</b>(unsigned int minx, unsigned int maxx,
unsigned int miny, unsigned int maxy)
void <b>copy</b>(const GA2DArrayGenome<T>& original,
unsigned int xdest, unsigned int ydest,
unsigned int xsrc, unsigned int ysrc,
unsigned int width, unsigned int height)
void <b>swap</b>(unsigned int x1, unsigned int y1,
unsigned int x2, unsigned int y2)
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>copy</b>
<dd>Copy the specified bits from the designated genome.
<dt><b>gene</b>
<dd>Set/Get the specified element.
<dt><b>height</b>
<dd>Set/Get the height.
<dt><b>resize</b>
<dd>Change the size to the specified dimensions.
<dt><b>resizeBehaviour</b>
<dd>Set/Get the resize behavior. The min value specifies the minimum allowable length, the max value specifies the maximum allowable length. If min and max are equal, the genome is not resizable.
<p>
Use the <b>resizeBehaviour</b> and <b>resize</b> member functions to control the size of the genome. The default behavior is fixed size. Using the <b>resizeBehaviour</b> method you can specify minimum and maximum values for the size of the genome. If you specify minimum and maximum as the same values then fixed size is assumed. If you use the <b>resize</b> method to specify a size that is outside the bounds set earlier using <b>resizeBehaviour</b>, the bounds will be 'stretched' to accommodate the value you specify with <b>resize</b>. Conversely, if the values you specify with <b>resizeBehaviour</b> conflict with the genome's current size, the genome will be resized to accommodate the new values.
</p>
<p>
When <b>resizeBehaviour</b> is called with no arguments, it returns the maximum size if the genome is resizable, or GAGenome::FIXED_SIZE if the size is fixed.
</p>
<p>
The <b>resizeBehaviour</b> function works similarly to that of the 1D array genome. In this case, however, you must also specify for which dimension you are setting the resize behavior. When <b>resizeBehaviour</b> is called with no arguments, it returns the maximum size if the genome is resizable, or gaNoResize if the size is fixed.
</p>
<dt><b>swap</b>
<dd>Swap the specified elements.
<dt><b>width</b>
<dd>Set/Get the width.
</dl>
</blockquote>
<big><strong>genetic operators for this class</strong></big><br>
<blockquote>
<pre>
GA2DArrayGenome<>::SwapMutator
GA2DArrayGenome<>::ElementComparator
GA2DArrayGenome<>::UniformCrossover
GA2DArrayGenome<>::EvenOddCrossover
GA2DArrayGenome<>::OnePointCrossover
</pre>
</blockquote>
<big><strong>default genetic operators</strong></big><br>
<blockquote>
<pre>
initialization: GAGenome::NoInitializer
comparison: GA2DArrayGenome<>::ElementComparator
mutation: GA2DArrayGenome<>::SwapMutator
crossover: GA2DArrayGenome<>::OnePointCrossover
</pre>
</blockquote>
<br>
<br>
<br>
<br>
<a name="genome_2darrayallele">
<big><strong>GA2DArrayAlleleGenome<T></strong></big></a><br>
<hr>
<blockquote>
The two-dimensional array allele genome is derived from the two-dimensional array genome class. It shares the same behaviors, but adds the features of allele sets. The value assumed by each element in an array allele genome depends upon the allele set specified for that element. In the simplest case, you can create a single allele set which defines the possible values for any element in the array. More complicated examples can have a different allele set for each element in the array.
<p>
The genome will have width and height that you specify and the allele set will be used for the mapping of each element. When you define an allele set for an array genome, the genome makes its own copy. Subsequent clones of this genome will refer to the original genome's allele set (allele sets do reference counting).
</p>
<p>
If you create a genome using an allele set array, the array of alleles will be mapped to the two dimensions in the order width-then-height.
</p>
<i>see also: <a href="#array">GAArray</a></i><br>
<i>see also: <a href="#genome_2darray">GA2DArrayGenome</a></i><br>
<i>see also: <a href="#alleleset">GAAlleleSet</a></i><br>
<i>see also: <a href="#allelesetarray">GAAlleleSetArray</a></i>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GA1DArrayAlleleGenome<T> : public GAArrayGenome<T>
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GA2DArrayAlleleGenome(unsigned int width, unsigned int height,
GAAlleleSet<T>& alleles,
GAGenome::Evaluator objective = <i>NULL</i>,
void * userData = <i>NULL</i>)
GA2DArrayAlleleGenome(unsigned int width, unsigned int height,
GAAlleleSetArray<T>& allelesets,
GAGenome::Evaluator objective = <i>NULL</i>,
void * userData = <i>NULL</i>)
GA2DArrayAlleleGenome(const GA2DArrayAlleleGenome<T> &)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
const GAAlleleSet<T>& <b>alleleset</b>(unsigned int i = <i>0</i>, unsigned int j = <i>0</i>) const
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>alleleset</b>
<dd>Returns a reference to the allele set for the specified gene. If the genome was created using a single allele set, the allele set will be the same for every gene. If the genome was created using an allele set array, each gene may have a different allele set.
</dl>
</blockquote>
<big><strong>genetic operators for this class</strong></big><br>
<blockquote>
<pre>
GA2DArrayAlleleGenome<>::UniformInitializer
GA2DArrayAlleleGenome<>::FlipMutator
</pre>
</blockquote>
<big><strong>default genetic operators</strong></big><br>
<blockquote>
<pre>
initialization: GA2DArrayAlleleGenome<>::UniformInitializer
comparison: GA2DArrayGenome<>::ElementComparator
mutation: GA2DArrayAlleleGenome<>::FlipMutator
crossover: GA2DArrayGenome<>::OnePointCrossover
</pre>
</blockquote>
<br>
<br>
<br>
<br>
<a name="genome_3darray">
<big><strong>GA3DArrayGenome<T></strong></big></a><br>
<hr>
<blockquote>
The three-dimensional array genome is a generic, resizable array of objects. It is a template class derived from the GAGenome class as well as the GAArray<> class.
<p>
Each element in the array is a gene. The values of the genes are determines by the type of the genome. For example, an array of ints may have integer values whereas an array of doubles may have floating point values.
</p>
<i>see also: <a href="#array">GAArray</a></i><br>
<i>see also: <a href="#genome_base">GAGenome</a></i><br>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GA3DArrayGenome<T> : public GAArray<T>, public GAGenome
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GA3DArrayGenome(unsigned int width, unsigned int height, unsigned int depth,
GAGenome::Evaluator objective = <i>NULL</i>,
void * userData = <i>NULL</i>)
GA3DArrayGenome(const GA3DArrayGenome<T>&)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
const T & <b>gene</b>(unsigned int x, unsigned int y, unsigned int z) const
T & <b>gene</b>(unsigned int x, unsigned int y, unsigned int z)
T & <b>gene</b>(unsigned int x, unsigned int y, unsigned int z, const T& value)
int <b>width</b>() const
int <b>width</b>(int w)
int <b>height</b>() const
int <b>height</b>(int h)
int <b>depth</b>() const
int <b>depth</b>(int d)
int <b>resize</b>(int x, int y, int z)
int <b>resizeBehaviour</b>(GADimension which) const
int <b>resizeBehaviour</b>(GADimension which,
unsigned int min, unsigned int max)
int <b>resizeBehaviour</b>(unsigned int minx, unsigned int maxx,
unsigned int miny, unsigned int maxy,
unsigned int minz, unsigned int maxz)
void <b>copy</b>(const GA3DArrayGenome<T>& original,
unsigned int xdest, unsigned int ydest, unsigned int zdest,
unsigned int xsrc, unsigned int ysrc, unsigned int zsrc,
unsigned int width, unsigned int height, unsigned int depth)
void <b>swap</b>(unsigned int x1, unsigned int y1, unsigned int z1,
unsigned int x2, unsigned int y2, unsigned int z2)
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>copy</b>
<dd>Copy the specified bits from the designated genome.
<dt><b>depth</b>
<dd>Set/Get the depth.
<dt><b>gene</b>
<dd>Set/Get the specified element.
<dt><b>height</b>
<dd>Set/Get the height.
<dt><b>resize</b>
<dd>Change the size to the specified dimensions.
<dt><b>resizeBehaviour</b>
<dd>Set/Get the resize behavior. The min value specifies the minimum allowable length, the max value specifies the maximum allowable length. If min and max are equal, the genome is not resizable.
<p>
Use the <b>resizeBehaviour</b> and <b>resize</b> member functions to control the size of the genome. The default behavior is fixed size. Using the <b>resizeBehaviour</b> method you can specify minimum and maximum values for the size of the genome. If you specify minimum and maximum as the same values then fixed size is assumed. If you use the <b>resize</b> method to specify a size that is outside the bounds set earlier using <b>resizeBehaviour</b>, the bounds will be 'stretched' to accommodate the value you specify with <b>resize</b>. Conversely, if the values you specify with <b>resizeBehaviour</b> conflict with the genome's current size, the genome will be resized to accommodate the new values.
</p>
<p>
When <b>resizeBehaviour</b> is called with no arguments, it returns the maximum size if the genome is resizable, or GAGenome::FIXED_SIZE if the size is fixed.
</p>
<p>
The <b>resizeBehaviour</b> function works similarly to that of the 1D array genome. In this case, however, you must also specify for which dimension you are setting the resize behavior. When <b>resizeBehaviour</b> is called with no arguments, it returns the maximum size if the genome is resizable, or gaNoResize if the size is fixed.
</p>
<dt><b>swap</b>
<dd>Swap the specified elements.
<dt><b>width</b>
<dd>Set/Get the width.
</dl>
</blockquote>
<big><strong>genetic operators for this class</strong></big><br>
<blockquote>
<pre>
GA3DArrayGenome<>::SwapMutator
GA3DArrayGenome<>::ElementComparator
GA3DArrayGenome<>::UniformCrossover
GA3DArrayGenome<>::EvenOddCrossover
GA3DArrayGenome<>::OnePointCrossover
</pre>
</blockquote>
<big><strong>default genetic operators</strong></big><br>
<blockquote>
<pre>
initialization: GAGenome::NoInitializer
comparison: GA3DArrayGenome<>::ElementComparator
mutation: GA3DArrayGenome<>::SwapMutator
crossover: GA3DArrayGenome<>::OnePointCrossover
</pre>
</blockquote>
<br>
<br>
<br>
<br>
<a name="genome_3darrayallele">
<big><strong>GA3DArrayAlleleGenome<T></strong></big></a><br>
<hr>
<blockquote>
The three-dimensional array allele genome is derived from the three-dimensional array genome class. It shares the same behaviors, but adds the features of allele sets. The value assumed by each element in an array allele genome depends upon the allele set specified for that element. In the simplest case, you can create a single allele set which defines the possible values for any element in the array. More complicated examples can have a different allele set for each element in the array.
<p>
The genome will have width, height, and depth that you specify and the allele set will be used for the mapping of each element. When you define an allele set for an array genome, the genome makes its own copy. Subsequent clones of this genome will refer to the original genome's allele set (allele sets do reference counting).
</p>
<p>
If you create a genome using an allele set array, the array of alleles will be mapped to the three dimensions in the order width-then-height-then-depth.
</p>
<i>see also: <a href="#array">GAArray</a></i><br>
<i>see also: <a href="#genome_3darray">GA3DArrayGenome</a></i><br>
<i>see also: <a href="#alleleset">GAAlleleSet</a></i><br>
<i>see also: <a href="#allelesetarray">GAAlleleSetArray</a></i>
</blockquote>
<big><strong>class hierarchy</strong></big><br>
<blockquote>
<pre>
class GA1DArrayAlleleGenome<T> : public GAArrayGenome<T>
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GA3DArrayAlleleGenome(unsigned int width, unsigned int height, unsigned int depth,
GAAlleleSet<T>& alleles,
GAGenome::Evaluator objective = <i>NULL</i>,
void * userData = <i>NULL</i>)
GA3DArrayAlleleGenome(unsigned int width, unsigned int height, unsigned int depth,
GAAlleleSet<T>& alleles,
GAGenome::Evaluator objective = <i>NULL</i>,
void * userData = <i>NULL</i>)
GA3DArrayAlleleGenome(const GA3DArrayAlleleGenome<T> &)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
const GAAlleleSet<T>& <b>alleleset</b>(unsigned int i = <i>0</i>,
unsigned int j = <i>0</i>,
unsigned int k = <i>0</i>) const
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>alleleset</b>
<dd>Returns a reference to the allele set for the specified gene. If the genome was created using a single allele set, the allele set will be the same for every gene. If the genome was created using an allele set array, each gene may have a different allele set.
</dl>
</blockquote>
<big><strong>genetic operators for this class</strong></big><br>
<blockquote>
<pre>
GA3DArrayAlleleGenome<>::UniformInitializer
GA3DArrayAlleleGenome<>::FlipMutator
</pre>
</blockquote>
<big><strong>default genetic operators</strong></big><br>
<blockquote>
<pre>
initialization: GA3DArrayAlleleGenome<>::UniformInitializer
comparison: GA3DArrayGenome<>::ElementComparator
mutation: GA3DArrayAlleleGenome<>::FlipMutator
crossover: GA3DArrayGenome<>::OnePointCrossover
</pre>
</blockquote>
<br>
<br>
<br>
<br>
<a name="phenotype_b2d">
<big><strong>GABin2DecPhenotype</strong></big></a><br>
<hr>
<blockquote>
The binary-to-decimal phenotype defines the mapping from binary string to decimal values. A mapping for a single binary-to-decimal conversion consists of a range of decimal values and a number of bits. For example, a map of 8 bits and range of [0,255] would use 8 bits to represent the numbers from 0 to 255, inclusive.
<p>
This object does reference counting in order to minimize the memory overhead imposed by instantiating binary-to-decimal mappings.
</p>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GABin2DecPhenotype()
GABin2DecPhenotype(const GABin2DecPhenotype&)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
void <b>add</b>(unsigned int nbits, float min, float max)
void <b>remove</b>(unsigned int which)
int <b>size</b>() const
int <b>nPhenotypes</b>() const
float <b>min</b>(unsigned int which) const
float <b>max</b>(unsigned int which) const
int <b>length</b>(unsigned int which) const
int <b>offset</b>(unsigned int which) const
void <b>link</b>(GABin2DecPhenotype&)
void <b>unlink</b>()
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>add</b>
<dd>Create a mapping that tells the phenotype that nbits should be used to represent a floating point number from min to max, inclusive.
<dt><b>link</b>
<dt><b>unlink</b>
<dd>The phenotype object does reference counting to reduce the number of instantiated objects. Use the <b>link</b> member to make a phenotype object refer to another. Use the <b>unlink</b> member to remove the connection. When you unlink, the phenotype makes its own copy of the mapping information.
<dt><b>length</b>
<dd>Returns the number of bits required for the specified mapping.
<dt><b>max</b>
<dd>Returns the maximum decimal value for the specified mapping.
<dt><b>min</b>
<dd>Returns the minimum decimal value for the specified mapping.
<dt><b>offset</b>
<dd>Returns the offset (in bits) for the specified mapping.
<dt><b>remove</b>
<dd>Removes a single binary-to-decimal from the phenotype.
<dt><b>size</b>
<dd>Returns the number of bits that the set of mappings requires for converting a decimal value to binary and back again.
</dl>
</blockquote>
<br>
<br>
<br>
<br>
<a name="alleleset">
<big><strong>GAAlleleSet<T></strong></big></a><br>
<hr>
<blockquote>
The allele set class is a container for the different values that a gene may assume. It can contain objects of any type as long as the object has the =, ==, and != operators defined.
<p>
Allele sets may be enumerated, bounded, or bounded with discretization. For example, an integer allele set may be defined as {1,3,5,2,99,-53} (an enumerated set). A bounded float set may be defined such as [2,743) (the set of numbers from 2, inclusive, to 743, exclusive). A bounded, discretized set may defined such as [4.5,7.05](0.05) (the set of numbers from 4.5 to 7.5, inclusive, with increment of 0.05).
</p>
<p>
If you call the <b>allele</b> member function with no argument, the allele set picks randomly from the alleles it contains and returns one of them.
</p>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GAAlleleSet()
GAAlleleSet(unsigned int n, const T a[])
GAAlleleSet(const T& lower, const T& upper,
GAAllele::BoundType lowerbound=GAAllele::INCLUSIVE,
GAAllele::BoundType upperbound=GAAllele::INCLUSIVE)
GAAlleleSet(const T& lower, const T& upper, const T& increment,
GAAllele::BoundType lowerbound=GAAllele::INCLUSIVE,
GAAllele::BoundType upperbound=GAAllele::INCLUSIVE)
GAAlleleSet(const GAAlleleSet<T>& set)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
GAAlleleSet<T> * <b>clone</b>() const
T <b>add</b>(const T& allele)
T <b>remove</b>(T& allele)
T <b>allele</b>() const
T <b>allele</b>(unsigned int i)
int <b>size</b>() const
T <b>lower</b>() const
T <b>upper</b>() const
T <b>inc</b>() const
GAAllele::BoundType <b>lowerBoundType</b>() const
GAAllele::BoundType <b>upperBoundType</b>() const
GAAllele::Type <b>type</b>() const
void <b>link</b>(GAAlleleSet<T>&)
void <b>unlink</b>()
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>add</b>
<dt><b>remove</b>
<dd>Add/Remove the indicated allele from the set. This method works only for enumerated allele sets. Both functions return zero if the operation was successful, non-zero status otherwise.
<dt><b>lower</b>
<dt><b>upper</b>
<dd>Returns the lower/upper bounds on the allele set. If the allele set is enumerated, lower returns the first element of the set and upper returns the last element of the set.
<dt><b>inc</b>
<dd>Returns the increment of the allele set. If the set is not discretized, the first element or lower bounds of the set is returned.
<dt><b>lowerBoundType</b>
<dt><b>upperBoundType</b>
<dd>Returns GAAllele::INCLUSIVE or GAAllele::EXCLUSIVE to indicate the type of bound on the limits of the allele set. If no bounds have been defined, these method return GAAllele::NONE.
<dt><b>link</b>
<dt><b>unlink</b>
<dd>The alleleset object does reference counting to reduce the number of instantiated objects. Use the <b>link</b> member to make an alleleset object refer to the data in another. Use the <b>unlink</b> member to remove the connection. When you unlink, the alleleset makes its own copy of the set data.
<dt><b>size</b>
<dd>Returns the number of elements in the allele set. This member is meaningful only for the enumerated allele set.
<dt><b>type</b>
<dd>Returns GAAllele::ENUMERATED, GAAllele::BOUNDED, or GAAllele::DISCRETIZED to indicate the type of allele set that has been defined. The type of the allele set is specified by the creator used to instantiate the allele set.
</dl>
</blockquote>
<br>
<br>
<br>
<br>
<a name="allelesetarray">
<big><strong>GAAlleleSetArray<T></strong></big></a><br>
<hr>
<blockquote>
The GAAlleleSetArray is a container object with an array of allele sets.
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GAAlleleSetArray()
GAAlleleSetArray(const GAAlleleSet<T>&)
GAAlleleSetArray(const GAAlleleSetArray<T>&)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
int <b>size</b>() const
const GAAlleleSet<T>& <b>set</b>(unsigned int i) const
int <b>add</b>(const GAAlleleSet<T>& s)
int <b>add</b>(unsigned int n, const T a[])
int <b>add</b>(const T& lower, const T& upper,
GAAllele::BoundType lb=GAAllele::INCLUSIVE,
GAAllele::BoundType ub=GAAllele::INCLUSIVE)
int <b>add</b>(const T& lower, const T& upper, const T& increment,
GAAllele::BoundType lb=GAAllele::INCLUSIVE,
GAAllele::BoundType ub=GAAllele::INCLUSIVE)
int <b>remove</b>(unsigned int)
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>add</b>
<dd>Use the add members to append an allele set to the end of the array. Each of the overloaded add members invokes a corresponding allele set creator, so you can use the appropriate add member for your particular allele set application.
<dt><b>remove</b>
<dd>Remove the indicated allele set from the array. Returns zero if successful, non-zero otherwise.
<dt><b>size</b>
<dd>Returns the number of allele sets in the array.
</dl>
</blockquote>
<br>
<br>
<br>
<br>
<a name="statistics">
<big><strong>GAStatistics</strong></big></a><br>
<hr>
<blockquote>
The statistics object contains information about the current state of the genetic algorithm objects. Every genetic algorithm contains a statistics object.
<p>
The statistics object defines the following enumerated constants for use by the <b>selectScores</b> member. They can be bitwise-ORed to specify desired combinations of components. Use the class name to refer to the values, for example GAStatistics::Mean | GAStatistics::Deviation
</p>
</blockquote>
<big><strong>typedefs and constants</strong></big><br>
<blockquote>
<pre>
enum { <b>NoScores</b>,
<b>Mean</b>, <b>Maximum</b>, <b>Minimum</b>, <b>Deviation</b>,
<b>Diversity</b>,
<b>AllScores</b> }
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GAStatistics()
GAStatistics(const GAStatistics&)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
void <b>copy</b>(const GAStatistics &);
float <b>online</b>() const
float <b>offlineMax</b>() const
float <b>offlineMin</b>() const
float <b>initial</b>(ScoreID w=Maximum) const
float <b>current</b>(ScoreID w=Maximum) const
float <b>maxEver</b>() const
float <b>minEver</b>() const
int <b>generation</b>() const
float <b>convergence</b>() const
int <b>selections</b>() const
int <b>crossovers</b>() const
int <b>mutations</b>() const
int <b>replacements</b>() const
int <b>nConvergence</b>(unsigned int)
int <b>nConvergence</b>() const
int <b>nBestGenomes</b>(const GAGenome&, unsigned int)
int <b>nBestGenomes</b>() const
int <b>scoreFrequency</b>(unsigned int x)
int <b>scoreFrequency</b>() const
int <b>flushFrequency</b>(unsigned int x)
int <b>flushFrequency</b>() const
char* <b>scoreFilename</b>(const char *filename)
char* <b>scoreFilename</b>() const
int <b>selectScores</b>(int whichScores)
int <b>selectScores</b>() const
GABoolean <b>recordDiversity</b>(GABoolean flag)
GABoolean <b>recordDiversity</b>() const
void <b>flushScores</b>()
void <b>update</b>(const GAPopulation& pop)
void <b>reset</b>(const GAPopulation& pop)
const GAPopulation& <b>bestPopulation</b>() const
const GAGenome& <b>bestIndividual</b>(unsigned int n=0) const
int <b>scores</b>(const char* filename, ScoreID which=NoScores)
int <b>scores</b>(ostream& os, ScoreID which=NoScores)
int <b>write</b>(const char* filename) const
int <b>write</b>(ostream& os) const;
friend ostream& <b>operator<<</b>(ostream&, const GAStatistics&)
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>bestIndividual</b>
<dd>This function returns a reference to the best individual encountered by the genetic algorithm.
<dt><b>bestPopulation</b>
<dd>This function returns a reference to a population containing the best individuals encountered by the genetic algorithm. The size of this population is specified using the nBestGenomes member function.
<dt><b>convergence</b>
<dd>Returns the current convergence. Here convergence means the ratio of the <i>n</i>th previous best-of-generation to the current best-of-generation.
<dt><b>crossovers</b>
<dd>Returns the number of crossovers that have occurred since initialization.
<dt><b>current</b>
<dd>Returns the specified score from the current population.
<dt><b>flushFrequency</b>
<dd>Set/Get the frequency at which the generational scores should be flushed to disk. A score frequency of 100 means that at every 100th recorded score the scores buffer will be appended to the scores file.
<dt><b>flushScores</b>
<dd>Force a flush of the scores buffer to the score file.
<dt><b>generation</b>
<dd>Returns the current generation number.
<dt><b>initial</b>
<dd>Returns the specified score from the initial population.
<dt><b>maxEver</b>
<dd>Returns the maximum score ever encountered.
<dt><b>minEver</b>
<dd>Returns the minimum score ever encountered.
<dt><b>mutations</b>
<dd>Returns the number of mutations that have occurred since initialization.
<dt><b>nBestGenomes</b>
<dd>Set/Get the number of unique best genomes to keep.
<dt><b>nConvergence</b>
<dd>Set/Get the number of generations to use for the convergence measure. A value of 10 means the best-of-generation from 10 generations previous will be used for the convergence test.
<dt><b>offlineMax</b>
<dd>Returns the average of the maximum scores.
<dt><b>offlineMin</b>
<dd>Returns the average of the minimum scores.
<dt><b>online</b>
<dd>Returns the average of all scores.
<dt><b>recordDiversity</b>
<dd>This boolean option determines whether or not the diversity of the population will be calculated each generation. By default, this option is set to false.
<dt><b>replacements</b>
<dd>Returns the number of replacements that have occurred since initialization.
<dt><b>reset</b>
<dd>Reset the contents of the statistics object using the contents of the specified population.
<dt><b>scoreFilename</b>
<dd>Set the name of the file to which the scores should be output. If the filename is set to nil, the scores will not be written to disk. The default filename is "generations.dat".
<dt><b>scoreFrequency</b>
<dd>Set/Get the frequency at which the generational scores should be recorded. A score frequency of 1 means the scores will be recorded each generation. The default depends on the type of genetic algorithm that is being used.
<dt><b>scores</b>
<dd>Print the generational scores to the specified stream. Output is tab-delimited with each line containing the generation number and the specified scores. You can specify which score you would like by logically ORing one of the score identifiers listed above. The order of the tab-delimited scores is as follows:
<pre>
generation TAB mean TAB max TAB min TAB deviation TAB diversity NEWLINE
</pre>
<dt><b>selections</b>
<dd>Returns the number of selections that have occurred since initialization.
<dt><b>selectScores</b>
<dd>This function is used to specify which scores should be saved to disk. The argument is the logical OR of the following values: Mean, Maximum, Minimum, Deviation, Diversity (all defined in the scope of the GAStatistics object). To record all of the scores, pass GAStatistics::AllScores.
<dt><b>update</b>
<dd>Update the contents of the statistics object to reflect the state of the specified population.
</dl>
</blockquote>
<br>
<br>
<br>
<br>
<a name="parameters">
<big><strong>GAParameterList</strong></big></a><br>
<hr>
<blockquote>
The parameter list object contains information about how genetic algorithms should behave. Each parameter list contains an array of parameters. Each parameter is a name-value pair, where the name is a string (e.g. "number_of_generations") and the value is an int, float, double, char, string, boolean, or pointer.
<p>
Each parameter is uniquely identified by a pair of names: the full name and the short name. Associated with the names is a value. Each parameter also has a type from the enumerated list of types shown above. The GAParameter object automatically does type coercion of the pointer that is passed to it based upon the type that is passed to it upon its creation. The type cannot be changed once the parameter has been created.
</p>
</blockquote>
<big><strong>typedefs and constants</strong></big><br>
<blockquote>
<pre>
enum GAParameter::Type {BOOLEAN, CHAR, STRING, INT, FLOAT, DOUBLE, POINTER};
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GAParameter(const char* fn, const char* sn, Type tp, const void* v)
GAParameter(const GAParameter& orig)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
void <b>copy</b>(const GAParameter&)
char* <b>fullname</b>() const
char* <b>shrtname</b>() const
const void* <b>value</b>() const
const void* <b>value</b>(const void* v)
Type <b>type</b>() const
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GAParameterList()
GAParameterList(const GAParameterList&)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
int <b>size</b>() const
int <b>get</b>(const char*, void*) const
int <b>set</b>(const char*, const void*)
int <b>set</b>(const char* s, int v)
int <b>set</b>(const char* s, unsigned int v)
int <b>set</b>(const char* s, char v)
int <b>set</b>(const char* s, char* v)
int <b>set</b>(const char* s, double v)
int <b>add</b>(const char*, const char*, GAParameter::Type, const void*)
int <b>remove</b>();
GAParameter& <b>operator[]</b>(unsigned int i) const
GAParameter& <b>next</b>()
GAParameter& <b>prev</b>()
GAParameter& <b>current</b>() const
GAParameter& <b>first</b>()
GAParameter& <b>last</b>()
GAParameter* <b>operator()</b>(const char* name)
int <b>parse</b>(int& argc, char **argv, GABoolean flag = <i>gaFalse</i>)
int <b>write</b>(const char* filename) const
int <b>write</b>(ostream& os) const
int <b>read</b>(const char* filename)
int <b>read</b>(istream& is)
friend ostream& <b>operator<<</b>(ostream& os, const GAParameterList& plist)
friend istream& <b>operator>></b>(istream& is, GAParameterList& plist)
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>add</b>
<dd>Add a parameter with specified name, type, and default value to the parameter list. This becomes the current parameter.
<dt><b>current</b>
<dd>Return a reference to the current parameter in the list.
<dt><b>first</b>
<dd>Return a reference to the first parameter in the list. This becomes the current parameter.
<dt><b>get</b>
<dd>Fills the contents of the space pointed to by ptr with the current value of the named parameter. Returns 0 if the parameter was found, non-zero otherwise.
<dt><b>last</b>
<dd>Return a reference to the last parameter in the list. This becomes the current parameter.
<dt><b>next</b>
<dd>Return a reference to the next parameter in the list. This becomes the current parameter.
<dt><b>parse</b>
<dd>Parse an argument list (in command-line format) for recognized name-value pairs. If you pass gaTrue as the third argument then this method will post warnings about names that it does not recognize.
<dt><b>prev</b>
<dd>Return a reference to the next parameter in the list. This becomes the current parameter.
<dt><b>read</b>
<dd>Read a parameter list from the specified file or stream.
<dt><b>set</b>
<dd>Set the named parameter to the specified value. Returns 0 if the paramter was found and successfully set, non-zero otherwise. You can use either the full or short name to specify a parameter.
<dt><b>size</b>
<dd>Returns the number of parameters in the parameter list.
<dt><b>remove</b>
<dd>Remove the current parameter from the parameter list.
<dt><b>write</b>
<dd>Write the parameter list to the specified file or stream.
</dl>
</blockquote>
<br>
<br>
<br>
<br>
<a name="pop">
<big><strong>GAPopulation</strong></big></a><br>
<hr>
<blockquote>
The population object is a container for the genomes. It also contains population statistics such as average, maximum, and minimum genome objective scores. Each population contains a scaling object that is used to determine the fitness of its genomes. The population also contains a function used for selecting individuals from the population.
<p>
Whenever possible, the population caches the statistics. This means that the first call to one of the statistics members will be slower than subsequent calls.
</p>
<p>
You can customize the initialization, evaluation, and sort methods. Use the appropriate member function. Your customized functions must have the appropriate <a href="#signatures">signature</a>.
</p>
<p>
The default scaling scheme is linear scaling. The default evaluator invokes the objective function for each genome. The default selector is roulette wheel and uses the scaled (fitness) scores for its selections.
</p>
</blockquote>
<big><strong>typedefs and constants</strong></big><br>
<blockquote>
<pre>
void (*<b>GAPopulation::Initializer</b>)(GAPopulation &)
void (*<b>GAPopulation::Evaluator</b>)(GAPopulation &)
enum SortBasis { <b>RAW</b>, <b>SCALED</b> };
enum SortOrder { <b>LOW_IS_BEST</b>, <b>HIGH_IS_BEST</b> };
enum Replacement { <b>BEST</b> = -1, <b>WORST</b> = -2, <b>RANDOM</b> = -3 };
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GAPopulation()
GAPopulation(const GAGenome&, unsigned int popsize = <i>gaDefPopSize</i>)
GAPopulation(const GAPopulation&)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
GAPopulation * <b>clone</b>() const
void <b>copy</b>(const GAPopulation&)
int <b>size</b>(unsigned int popsize)
int <b>size</b>() const
float <b>sum</b>() const
float <b>ave</b>() const
float <b>var</b>() const
float <b>dev</b>() const
float <b>max</b>() const
float <b>min</b>() const
float <b>div</b>() const
float <b>div</b>(unsigned int i, unsigned int j) const
float <b>fitsum</b>() const
float <b>fitave</b>() const
float <b>fitmax</b>() const
float <b>fitmin</b>() const
float <b>fitvar</b>() const
float <b>fitdev</b>() const
float <b>psum</b>(unsigned int i) const
int <b>nevals</b>() const
void <b>touch</b>()
void <b>statistics</b>(GABoolean flag = <i>gaFalse</i>) const;
void <b>diversity</b>(GABoolean flag = <i>gaFalse</i>) const;
void <b>prepselect</b>(GABoolean flag = <i>gaFalse</i>) const;
GAGenome& <b>select</b>()
GASelectionScheme& <b>selector</b>() const
GASelectionScheme& <b>selector</b>(const GASelectionScheme&)
void <b>scale</b>(GABoolean flag = <i>gaFalse</i>) const;
GAScalingScheme& <b>scaling</b>() const
GAScalingScheme& <b>scaling</b>(const GAScalingScheme&)
void <b>sort</b>(GABoolean flag = <i>gaFalse</i>, SortBasis basis = <i>RAW</i>) const;
SortOrder <b>order</b>() const
SortOrder <b>order</b>(SortOrder flag)
void <b>evaluate</b>(GABoolean flag = <i>gaFalse</i>) const
GAPopulation::Evaluator <b>evaluator</b>(GAPopulation::Evaluator func)
GAPopulation::Evaluator <b>evaluator</b>(GAPopulation::Evaluator func)
void <b>initialize</b>()
GAPopulation::Initializer <b>initializer</b>(GAPopulation::Initializer func)
GAPopulation::Initializer <b>initializer</b>(GAPopulation::Initializer func)
GAGeneticAlgorithm * <b>geneticAlgorithm</b>() const
GAGeneticAlgorithm * <b>geneticAlgorithm</b>(GA&)
void * <b>userData</b>() const
void * <b>userData</b>(void * u)
GAEvalData * <b>evalData</b>() const
GAEvalData * <b>evalData</b>(const GAEvalData&)
GAGenome& <b>individual</b>(unsigned int x, SortBasis basis = <i>RAW</i>) const
GAGenome& <b>best</b>(unsigned int i = <i>0</i>, SortBasis basis = <i>RAW</i>) const
GAGenome& <b>worst</b>(unsigned int i = <i>0</i>, SortBasis basis = <i>RAW</i>) const
GAGenome * <b>add</b>(GAGenome *)
GAGenome * <b>add</b>(const GAGenome&)
GAGenome * <b>remove</b>(unsigned int i, SortBasis basis = <i>RAW</i>)
GAGenome * <b>remove</b>(GAGenome *)
GAGenome * <b>replace</b>(GAGenome *, int which = <i>gaPopReplaceRandom</i>, SortBasis basis = <i>RAW</i>)
GAGenome * <b>replace</b>(GAGenome *, GAGenome *)
void <b>destroy</b>(int w = <i>WORST</i>, SortBasis basis = <i>RAW</i>)
virtual void <b>read</b>(istream &)
virtual void <b>write</b>(ostream &) const
friend ostream& <b>operator<<</b>(ostream &, const GAPopulation &)
friend istream& <b>operator>></b>(istream &, GAPopulation &)
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>add</b>
<dd>Add the specified individual to the population. If you call this method with a reference to a genome, the population will clone the genome. If you call this method with a pointer to a genome, the population will use the genome pointed to by the pointer. From then on the population is responsible for deleting the genome.
<dt><b>ave</b>
<dd>Returns the average of the objective scores.
<dt><b>best</b>
<dd>Returns a reference to the best individual in the population. Use the SortBasis flag to specify whether you want the best in terms of raw objective score or scaled (fitness) score.
<dt><b>destroy</b>
<dd>Remove the specified individual from the population and free the memory used by that individual. Use the SortBasis flag to specify whether to use raw objective score or scaled (fitness) score when determining which genome to destroy.
<dt><b>dev</b>
<dd>Returns the standard deviation of the objective scores.
<dt><b>div</b>
<dd>Returns the diversity of the population. Diversity is a number between 0 and 1 where 1 indicates that each individual is completely different than every other individual. If you specify two indices, this member function returns the diversity of the specified individuals (it invokes the comparison function for those individuals).
<dt><b>evalData</b>
<dd>Set/Get the evaluation data for the population. This object is unrelated to any evaluation data objects used by the genomes in the population.
<dt><b>evaluate</b>
<dd>Evaluate the population using the method set by the <b>evaluator</b> function. The default evaluator simply calls the evaluate member of each genome in the population. If you call this function with gaTrue then the population performs the evaluation even if it has already cached the evaluation results.
<dt><b>evaluator</b>
<dd>Specifies which function to use to evaluate the population. The specified function must have the proper <a href="#signatures">signature</a>.
<dt><b>fitave</b>
<dd>Returns the average of the fitness scores.
<dt><b>fitdev</b>
<dd>Returns the standard deviation of the fitness scores.
<dt><b>fitmax</b>
<dd>Returns the maximum fitness score.
<dt><b>fitmin</b>
<dd>Returns the minimum fitness score.
<dt><b>fitsum</b>
<dd>Returns the sum of the fitness scores.
<dt><b>fitvar</b>
<dd>Returns the variance of the fitness scores.
<dt><b>geneticAlgorithm</b>
<dd>Set/Get the genetic algorithm that 'owns' this population. A return value of nil indicates that the population is owned by no genetic algorithm.
<dt><b>individual</b>
<dd>Returns a reference to the specified individual. Indices for individuals in the population start at 0 and go to size()-1. the <i>0</i>th individual is the best individual when the population has been sorted. Use the SortBasis flag to specify whether you want the <i>i</i>th individual based upon the raw objective score or scaled (fitness) score.
<dt><b>initialize</b>
<dd>Initialize the population using the method set by <b>initializer</b>. The default initializer simply calls the initialize method of each genome in the population.
<dt><b>initializer</b>
<dd>Specifies which function to use to initialize the population. The specified function must have the proper <a href="#signatures">signature</a>.
<dt><b>max</b>
<dd>Returns the maximum objective score in the population.
<dt><b>min</b>
<dd>Returns the minimum objective score in the population.
<dt><b>order</b>
<dd>Set/Get the sort order. A population may be sorted in two ways, highest-score-is-best or lowest-score-is-best.
<dt><b>prepselect</b>
<dd>The function calls the selector's <b>update</b> method. It is typically called by the population before it does a selection.
<dt><b>psum</b>
<dd>Returns the partial sum of the <i>i</i>th fitness score in the array of (sorted) fitness scores.
<dt><b>remove</b>
<dd>Remove the specified individual from the population. The genome to be replaced can be specified by either an index or by pointer. This function returns a pointer to the genome that was removed from the population. The caller is responsible for the memory used by the returned genome. Use the SortBasis flag to specify whether to use raw objective score or scaled (fitness) score when determining which genome to remove.
<dt><b>replace</b>
<dd>Replace the specified individual with the first argument. The genome to be replaced can be specified by either an index or by pointer. This function returns a pointer to the genome that was replaced. If no genome was replaced or the specified index or pointer is bogus, it returns nil. Use the SortBasis flag to specify whether to use raw objective score or scaled (fitness) score when determining which genome to replace.
<dt><b>scale</b>
<dd>Scale the raw (objective) scores in the population using the scaling method. If you call this function with gaTrue then the scaled scores are recalculated even if the population has already cached them.
<dt><b>scaling</b>
<dd>Set/Get the scaling method for this population.
<dt><b>select</b>
<dd>Returns a reference to a genome from the population using the selection scheme associated with the population.
<dt><b>selector</b>
<dd>Set/Get the selection method for this population.
<dt><b>size</b>
<dd>Set/Get the number of individuals in the population. If you resize to a larger size, the new individuals will be initialized but not evaluated. If you resize to a smaller size, the best individuals will be kept.
<dt><b>sort</b>
<dd>Sort the individuals in the population. Individuals may be sorted based upon their raw or scaled scores.
<dt><b>statistics</b>
<dd>Calculate the population statistics. This method is automatically invoked whenever any of the population statistics are requested. If you call this function with gaTrue then the statistics are recalculated even if the population has already cached them.
<dt><b>sum</b>
<dd>Returns the sum of the objective scores.
<dt><b>touch</b>
<dd>The population object remembers its state so that it does not execute the evaluate or sort methods unless its state has been changed. If you want to force the population to execute any of its methods the next time they are invoked, invoke this method.
<dt><b>userData</b>
<dd>Set/Get the user data pointer for the population. You can use the user data member to store a pointer to any object.
<dt><b>var</b>
<dd>Returns the variance of the objective scores.
<dt><b>worst</b>
<dd>Returns a reference to the worst individual in the population. Use the SortBasis flag to specify whether you want the worst in terms of raw objective score or scaled (fitness) score.
</dl>
</blockquote>
<br>
<br>
<br>
<br>
<a name="scaling">
<big><strong>GAScalingScheme</strong></big></a><br>
<hr>
<blockquote>
The scaling object is embedded in the population object. This object keeps track of the fitness scores (not the objective scores) of each individual in the population.
<p>
The base scaling object is not instantiable. The genomes that it returns are the genomes in the population to which it is linked; it does not make its own copies.
</p>
<p>
For details about how to write your own scaling scheme, see the <a href="Extensions.html">customizations</a> page.
</p>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GAScalingScheme()
GAScalingScheme(const GAScalingScheme& s)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
virtual GAScalingScheme * <b>clone</b>() const
virtual void <b>copy</b>(const GAScalingScheme &)
virtual void <b>evaluate</b>(const GAPopulation & p)
</pre>
</blockquote>
<big><strong>built-in scaling schemes</strong></big><br>
<blockquote>
<p>
GAlib contains a number of instantiable scaling objects derived from the base class. Here are the constructors for these scaling schemes:
</p>
<dl>
<p>
<dt><b>GANoScaling</b>()
<dd>The fitness scores are identical to the objective scores. No scaling takes place.
</p>
<p>
<dt><b>GALinearScaling</b>(float c = <i>gaDefLinearScalingMultiplier</i>)
<dd>The fitness scores are derived from the objective scores using the linear scaling method described in Goldberg's book. You can specify the scaling coefficient. Negative objective scores are not allowed with this method. Objective scores are converted to fitness scores using the relation
<pre>
f = a * obj + b
</pre>
where a and b are calculated based upon the objective scores of the individuals in the population as described in Goldberg's book.
</p>
<p>
<dt><b>GASigmaTruncationScaling</b>(float c = <i>gaDefSigmaTruncationMultiplier</i>)
<dd>Use this scaling method if your objective scores will be negative. It scales based on the variation from the population average and truncates arbitrarily at 0. The mapping from objective to fitness score for each individual is given by
<pre>
f = obj - (obj_ave - c * obj_dev)
</pre>
</p>
<p>
<dt><b>GAPowerLawScaling</b>(int k = <i>gaDefPowerScalingFactor</i>)
<dd>Power law scaling maps objective scores to fitness scores using an exponential relationship defined as
<pre>
f = obj ^ k
</pre>
</p>
<p>
<dt><b>GASharing</b>(GAGenomeComparator func = <i>0</i>, float cutoff = <i>gaDefSharingCutoff</i>, float alpha = <i>1</i>)
<dd>This scaling method is used to do speciation. The fitness score is derived from its objective score by comparing the individual against the other individuals in the population. If there are other similar individuals then the fitness is derated. The distance function is used to specify how similar to each other two individuals are. A distance function must return a value of 0 or higher, where 0 means that the two individuals are identical (no diversity). For a given individual,
</p>
<pre>
f = obj / summation( s( d(j))) for all j = [0,popsize]
/
| 1 - (d(j) / sigma) ^ alpha d(j) < sigma
s(d(j)) = |
| 0 d(j) >= sigma
\
d(j) = distance function with respect to individual j
</pre>
<p>
The default sharing object uses the triangular sharing function described in Goldberg's book. You can specify the cutoff value (sigma in Goldberg's book) using the <b>sigma</b> member function. The curvature of the sharing function is controlled by the <b>alpha</b> value. When alpha is 1.0 the sharing function is a straight line (triangular sharing). If you specify a comparator, that function will be used as the distance function for all comparisons. If you do not specify a comparator, the sharing object will use the default comparator of each genome.
</p>
<p>
Notice that the sharing scaling differs depending on whether the objective is to maximized or minimized. If the goal is to maximize the objective score, the raw scores will be divided by the sharing factor. If the goal is to minimize the objective score, the raw scores will be multiplied by the sharing factor. You can explicitly tell the sharing object to do minimize- or maximize-based scaling by using the <b>minimaxi</b> member function. By default, it uses the min/max settings of the genetic algorithm that is using it (based on information in the population with which the sharing object is associated). If the scaling object is associated with a population that has been created independently of any genetic algorithm object, the sharing object will use the population's <b>order</b> to decide whether to multiply or divide to do its scaling.
</p>
</dl>
</blockquote>
<br>
<br>
<br>
<br>
<a name="selection">
<big><strong>GASelectionScheme</strong></big></a><br>
<hr>
<blockquote>
Selection schemes are used to pick genomes from a population for mating. The GASelectionScheme object defines the basic selector behavior. It is an abstract class and cannot be instantiated. Each selector object may be linked to a population from which it will make its selections. The <b>select</b> member returns a reference to a single genome. A selector may operate on the scaled objective scores or the raw objective scores. Default behavior is to operate on the scaled (fitness) scores.
<p>
For details about how to write your own selection scheme, see the <a href="Extensions.html">customizations</a> page.
</p>
</blockquote>
<big><strong>typedefs and constants</strong></big><br>
<blockquote>
<pre>
enum { <b>RAW</b>, <b>SCALED</b> };
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GASelectionScheme(int which = <i>SCALED</i>)
GASelectionScheme(const GASelectionScheme&)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
virtual GASelectionScheme* <b>clone</b>() const;
virtual void <b>copy</b>(const GASelectionScheme& orig)
virtual void <b>assign</b>(GAPopulation& pop)
virtual void <b>update</b>()
virtual GAGenome& <b>select</b>() const;
</pre>
</blockquote>
<big><strong>built-in scaling schemes</strong></big><br>
<blockquote>
<p>
GAlib contains a number of instantiable scaling objects derived from the base class. Here are the constructors for these scaling schemes:
</p>
<dl>
<p>
<dt><b>GARankSelector</b>
<dd>The rank selector picks the best member of the population every time.
</p>
<p>
<dt><b>GARouletteWheelSelector</b>
<dd>This selection method picks an individual based on the magnitude of the fitness score relative to the rest of the population. The higher the score, the more likely an individual will be selected. Any individual has a probability p of being chosen where p is equal to the fitness of the individual divided by the sum of the fitnesses of each individual in the population.
</p>
<p>
<dt><b>GATournamentSelector</b>
<dd>The tournament selector uses the roulette wheel method to select two individuals then picks the one with the higher score. The tournament selector typically chooses higher valued individuals more often than the RouletteWheelSelector.
</p>
<p>
<dt><b>GADSSelector</b>
<dd>The deterministic sampling selector (DS) uses a two-staged selection procedure. In the first stage, each individual's expected representation is calculated. A temporary population is filled using the individuals with the highest expected numbers. Any remaining positions are filled by first sorting the original individuals according to the decimal part of their expected representation, then selecting those highest in the list. The second stage of selection is uniform random selection from the temporary population.
</p>
<p>
<dt><b>GASRSSelector</b>
<dd>The stochastic remainder sampling selector (SRS) uses a two-staged selection procedure. In the first stage, each individual's expected representation is calculated. A temporary population is filled using the individuals with the highest expected numbers. Any fractional expected representations are used to give the individual more likeliehood of filling a space. For example, an individual with e of 1.4 will have 1 position then a 40% chance of a second position. The second stage of selection is uniform random selection from the temporary population.
</p>
<p>
<dt><b>GAUniformSelector</b>
<dd>The stochastic uniform sampling selector picks randomly from the population. Any individual in the population has a probability p of being chosen where p is equal to 1 divided by the population size.
</p>
</dl>
</blockquote>
<br>
<br>
<br>
<br>
<a name="binstr">
<big><strong>GABinaryString</strong></big></a><br>
<hr>
<blockquote>
<p>
The binary string object is a simple implementation of a string of bits. Each bit is represented by a single word of memory (no fancy bit-munging happens here). The binary string class defines the following member functions. Binary strings are resizable.
</p>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GABinaryString(unsigned int length)
GABinaryString(const GABinaryString&)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
void <b>copy</b>(const GABinaryString&)
int <b>resize</b>(unsigned int)
int <b>size</b>() const
short <b>bit</b>(unsigned int a) const
short <b>bit</b>(unsigned int a, short val)
int <b>equal</b>(const GABinaryString& b,
unsigned int dest, unsigned int src, unsigned int length) const
void <b>copy</b>(const GABinaryString& orig,
unsigned int dest, unsigned int src, unsigned int length)
void <b>move</b>(unsigned int dest, unsigned int src, unsigned int length)
void <b>set</b>(unsigned int a, unsigned int length)
void <b>unset</b>(unsigned int a, unsigned int length)
void <b>randomize</b>(unsigned int a, unsigned int length)
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>copy</b>
<dd>Makes an exact copy of the specified string. If invoked with a range of bits then copies the specified range of bits.
<dt><b>bit</b>
<dd>Set/Get the specified bit.
<dt><b>equal</b>
<dd>Returns 1 if the specified range of bits are equal, 0 otherwise.
<dt><b>move</b>
<dd>Move <i>length</i> bits starting at <i>src</i> to <i>dest</i>.
<dt><b>set/unset</b>
<dd>Set/Unset <i>length</i> bits starting at <i>a</i>
<dt><b>size</b>
<dt><b>resize</b>
<dd>Set/Get the length of the bit string.
<dt><b>randomize</b>
<dd>Set to random values <i>length</i> bits starting at <i>a</i>
</dl>
</blockquote>
<br>
<br>
<br>
<br>
<a name="array">
<big><strong>GAArray<T></strong></big></a><br>
<hr>
<blockquote>
The GAArray<T> object is defined for your convenience so that you do not have to create your own array object. It is a template-ized container class whose elements can contain objects of any type. The 1-, 2-, and 3-dimensional arrays used in GAlib are all based upon this single-dimensional array object. This object is defined in the file arraytmpl.h.
<p>
<img src="images/GAArray.gif" alt="array" align=left>
<strong><i>The GAArray object</i></strong><br>
<small><i>The squares are elements in the array. Arrays are 1 dimensional, but derived classes can have 2 or more dimensions. Each element contains a user-specified object.</i></small>
<br clear=all>
</p>
<p>
Any object in the array must have the following methods defined and publicly available:
</p>
<ul>
<li>copy constructor
<li>operator =
<li>operator ==
<li>operator !=
</ul>
<p>
The elements in an array are indexed starting with 0 (the first element in the array is element number 0). The last element in array with <i>n</i> elements is element <i>n-1</i>.
</p>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GAArray(unsigned int)
GAArray(const GAArray<T>&)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
GAArray<T> & <b>operator=</b>(const GAArray<T>& orig)
GAArray<T> & <b>operator=</b>(const T array [])
GAArray<T> * <b>clone</b>()
const T & <b>operator[]</b>(unsigned int i) const
T & <b>operator[]</b>(unsigned int i)
void <b>copy</b>(const GAArray<T>& orig)
void <b>copy</b>(const GAArray<T>& orig, unsigned int dest,
unsigned int src, unsigned int length)
void <b>move</b>(unsigned int dest,
unsigned int src, unsigned int length)
void <b>swap</b>(unsigned int i, unsigned int j)
int <b>size</b>() const
int <b>size</b>(unsigned int n)
int <b>equal</b>(const GAArray<T>& b,
unsigned int dest, unsigned int src,
unsigned int length) const
int <b>operator==</b>(const GAArray<T>& a, const GAArray<T>& b)
int <b>operator!=</b>(const GAArray<T>& a, const GAArray<T>& b)
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<dl>
<dt><b>clone</b>
<dd>Return a pointer to an exact duplicate of the original array. The caller is responsible for the memory allocated by the call to this function.
<dt><b>copy</b>
<dd>Duplicate the specified array or part of the specified array. If duplicating a part of the specified array, <i>length</i> elements starting at position <i>src</i> in the original are copied into position <i>dest</i> in the copy. If there is not enough space in the copy, the extra elements are not copied.
<dt><b>equal</b>
<dd>Return 1 if the specified portion of the two arrays is identical, return 0 otherwise.
<dt><b>move</b>
<dd>Move the number of elements specified with <i>length</i> from position <i>src</i> to position <i>dest</i>.
<dt><b>operator[]</b>
<dd>Return a reference to the contents of the <i>i</i>th element of the array.
<dt><b>size</b>
<dd>Return the number of elements in the array.
<dt><b>swap</b>
<dd>Swap the contents of element <i>i</i> with the contents of element <i>j</i>.
</dl>
</blockquote>
<br>
<br>
<br>
<br>
<a name="list">
<big><strong>GAList<T></strong></big></a> and <big><strong>GAListIter<T></strong></big><br>
<hr>
<blockquote>
The GAList<T> object is defined for your convenience so that you do not have to create your own list object. It is a template-ized container class whose nodes can contain objects of any type. The GAList<T> object is circular and doubly-linked. A list iterator object is also defined to be used when moving around the list to keep track of the current, next, previous, or whichever node. Iterators do not change the state of the list.
<p>
<img src="images/GAList.gif" alt="list" align=right>
<strong><i>The GAList object</i></strong><br>
<small><i>The circles are nodes in the list. Each node contains a user-specified object; the initialization method determines the size of the list and the contents of each node. The list is circular and doubly linked.</i></small>
<br clear=all>
</p>
<p>
The template-ized GAList<T> is derived from a generic list base class called GAListBASE. The template list is defined in listtmpl.h, the list base class is defined in listbase.h
</p>
<p>
Any object used in the nodes must have the following methods defined and publicly available:
</p>
<ul>
<li>copy constructor
<li>operator =
<li>operator ==
<li>operator !=
</ul>
<p>
Each list object contains an iterator. The list's traversal member functions (next, prev, etc) simply call the member functions on the internal iterator. You can also instantiate iterators external to the list object so that you can traverse the list without modifying its state.
</p>
<p>
The list base class defines constants for specifying where insertions should take place (these are relative to the node to which the iterator is currently pointing).
</p>
<p>
Nodes in the list are numbered from 0 to 1 less than the list size. The head node is node 0.
</p>
<p>
When you do an insertion, the list makes a copy of the specified object (allocating space for it in the process). The internal iterator is left pointing to the node which was just inserted. The insertion function uses the copy constructor member to do this, so the objects in your list must have a copy constructor defined. The new node is inserted relative to the current location of the list's internal iterator. Use the <i>where</i> flag to determine whether the new node will be inserted before or after the current node, or if the new node should become the head node of the list.
</p>
<p>
The remove member returns a pointer to the object that was in the specified node. You are responsible for deallocating the memory for this object! The destroy member deallocates the memory used by the object in the current node. In both cases the iterator is left pointing to the node previous to the one that was deleted.
</p>
<p>
All of the list traversal functions (prev, next, current, etc) return a pointer to the contents of the node on which they are operating. You should test the pointer to see if it is NULL before you dereference it. When you call any of the traversal functions, the list's internal iterator is left pointing to the node to which traversal function moved. You can create additional iterators (external to the list) to keep track of multiple positions in the list.
</p>
</blockquote>
<big><strong>typedefs and constants</strong></big><br>
<blockquote>
<pre>
GAListBASE::<b>HEAD</b>
GAListBASE::<b>TAIL</b>
GAListBASE::<b>BEFORE</b>
GAListBASE::<b>AFTER</b>
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GAListIter(const GAList<T> &)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
T * <b>current</b>()
T * <b>head</b>()
T * <b>tail</b>()
T * <b>next</b>()
T * <b>prev</b>()
T * <b>warp</b>(const GAList<T>& t)
T * <b>warp</b>(const GAListIter<T>& i)
T * <b>warp</b>(unsigned int i)
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GAList()
GAList(const T& t)
GAList(const GAList<T>& orig)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
GAList<T> * <b>clone</b>()
void <b>copy</b>(const GAList<T>& orig)
void <b>destroy</b>()
void <b>swap</b>(unsigned int, unsigned int)
T * <b>remove</b>()
void <b>insert</b>(GAList<T> * t, GAListBASE::Location where=AFTER)
void <b>insert</b>(const T& t, GAListBASE::Location where=AFTER)
T * <b>current</b>()
T * <b>head</b>()
T * <b>tail</b>()
T * <b>next</b>()
T * <b>prev</b>()
T * <b>warp</b>(unsigned int i)
T * <b>warp</b>(const GAListIter<T>& i)
T * <b>operator[]</b>(unsigned int i)
int <b>size</b>() const
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<p>
<i>These functions change the state of the list.</i>
</p>
<dl>
<dt><b>clone</b>
<dd>Return a pointer to an exact duplicate of the original list. The caller is responsible for the memory allocated by the call to this function.
<dt><b>copy</b>
<dd>Duplicate the specified list.
<dt><b>destroy</b>
<dd>Destroy the current node in the list. This function uses the location of the internal iterator to determine which node should be destroyed. If the head node is destroyed, the next node in the list becomes the head node.
<dt><b>insert</b>
<dd>Add a node or list to the list. The insertion is made relative to the location of the internal iterator. The <i>where</i> flag specifies whether the insertion should be made before or after the current node.
<dt><b>remove</b>
<dd>Returns a pointer to the contents of the current node and removes the current node from the list. The iterator moves to the previous node. The caller is responsible for the memory used by the contents.
<dt><b>swap</b>
<dd>Swap the positions of the two specified nodes. The internal iterator is not affected. If the iterator was pointing to one of the nodes before the swap it will still point to that node after the swap, even if that node was swapped.
</dl>
<p>
<i>These functions do not change the contents of the list, but they change the state of the list's internal iterator (when invoked on a list object).</i>
</p>
<dl>
<dt><b>current</b>
<dd>Returns a pointer to the contents of the current node.
<dt><b>head</b>
<dd>Returns a pointer to the contents of the first node in the list.
<dt><b>next</b>
<dd>Returns a pointer to the contents of the next node.
<dt><b>operator[]</b>
<dd>Returns a pointer to the contents of the <i>i</i>th node in the list (same as warp).
<dt><b>prev</b>
<dd>Returns a pointer to the contents of the previous node.
<dt><b>tail</b>
<dd>Returns a pointer to the contents of the last node in the list.
<dt><b>warp</b>
<dd>Returns a pointer to the contents of the <i>i</i>th node in the list, or a pointer to the element in the list pointed to by the specified iterator. The head node is number 0.
</dl>
</blockquote>
<br>
<br>
<br>
<br>
<a name="tree">
<big><strong>GATree<T></strong></big></a> and <big><strong>GATreeIter<T></strong></big><br>
<hr>
<blockquote>
The GATree<T> object is defined for your convenience so that you do not have to create your own tree object. It is a template-ized container class whose nodes can contain objects of any type. Each level in the GATree<T> object is a circular and doubly-linked list. The eldest child of a level is the head of the linked list, each child in a level points to its parent, and the parent of those children points to the eldest child. Any tree can have only one root node. Any node can have any number of children. A tree iterator is also defined to be used when moving around the list to keep track of the current, next, parent, or whichever node. Iterators do not change the state of the tree.
<p>
<img src="images/GATree.gif" alt="tree" align=left>
<strong><i>The GATree object</i></strong><br>
<small><i>The circles are nodes in the tree. Each node contains a user-specified object; the initialization method determines the tree topology and the contents of each node. Each tree contains one (and only one) root node. Each level in the tree is a circular, doubly linked list. The head of each list is called the 'eldest' child, each node in a level has a link to its parent, and each parent has a link to the eldest of its children (if it has any children).</i></small>
<br clear=all>
</p>
<p>
The template-ized GATree<T> is derived from a generic tree base class called GATreeBASE. The template tree is defined in treetmpl.h, the tree base class is defined in treebase.h
</p>
<p>
Any object used in the nodes have the following methods defined and publicly available:
</p>
<ul>
<li>copy constructor
<li>operator =
<li>operator ==
<li>operator !=
</ul>
<p>
Each tree object contains an iterator. The tree's traversal member functions (next, prev, etc) simply call the member functions on the internal iterator. You can also instantiate iterators external to the tree object so that you can traverse the tree without modifying its contents.
</p>
<p>
The tree base class defines constants for specifying where insertions should occur.
</p>
<p>
Nodes in a tree are numbered starting at 0 then increasing in a depth-first traversal of the tree. The root node is node 0. A tree can have only one root node, but any node in the tree can have any number of children.
</p>
<p>
When you do an insertion, the tree makes a copy of the specified object (allocating space for it in the process). The internal iterator is left pointing to the node which was just inserted. The insertion function uses the copy constructor member to do this, so the objects in your tree must have a copy constructor defined. The new node is inserted relative to the current location of the tree's internal iterator. Use the where flag to determine whether the new node will be inserted before, after, or below the current node, or if the new node should become the root node of the tree.
</p>
<p>
The remove member returns a pointer to a tree. The root node of this tree is the node at which the iterator was pointing. You are responsible for deallocating the memory for this tree! The destroy member deallocates the memory used by the object in the current node and completely destroys any subtree hanging on that node. In both cases, the iterator is left pointing to the elder child or parent of the node that was removed/destroyed.
</p>
<p>
All of the tree traversal functions (prev, next, current, etc) return a pointer to the contents of the node on which they are operating. You should test the pointer to see if it is NULL before you dereference it. Also, the iterator is left pointing to the node to which you traverse with each traversal function. You can create additional iterators (external to the tree) to keep track of multiple positions in the tree.
</p>
</blockquote>
<big><strong>typedefs and constants</strong></big><br>
<blockquote>
<pre>
GATreeBASE::<b>ROOT</b>
GATreeBASE::<b>BEFORE</b>
GATreeBASE::<b>AFTER</b>
GATreeBASE::<b>BELOW</b>
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GATreeIter(const GATree<T>& t)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
T * <b>current</b>()
T * <b>root</b>()
T * <b>next</b>()
T * <b>prev</b>()
T * <b>parent</b>()
T * <b>child</b>()
T * <b>eldest</b>()
T * <b>youngest</b>()
T * <b>warp</b>(const GATree<T>& t)
T * <b>warp</b>(const GATreeIter<T>& i)
T * <b>warp</b>(unsigned int i)
int <b>size</b>()
int <b>depth</b>()
int <b>nchildren</b>()
int <b>nsiblings</b>()
</pre>
</blockquote>
<big><strong>constructors</strong></big><br>
<blockquote>
<pre>
GATree()
GATree(const T& t)
GATree(const GATree<T>& orig)
</pre>
</blockquote>
<big><strong>member function index</strong></big><br>
<blockquote>
<pre>
GATree<T> * <b>clone</b>()
void <b>copy</b>(const GATree<T>& orig)
void <b>destroy</b>()
void <b>swaptree</b>(GATree<T> * t)
void <b>swaptree</b>(unsigned int, unsigned int)
void <b>swap</b>(unsigned int, unsigned int)
GATree<T> * <b>remove</b>()
void <b>insert</b>(GATree<T> * t, GATreeBASE::Location where=BELOW)
void <b>insert</b>(const T& t, GATreeBASE::Location where=BELOW)
T * <b>current</b>()
T * <b>root</b>()
T * <b>next</b>()
T * <b>prev</b>()
T * <b>parent</b>()
T * <b>child</b>()
T * <b>eldest</b>()
T * <b>youngest</b>()
T * <b>warp</b>(unsigned int i)
T * <b>warp</b>(const GATreeIter<T>& i)
int <b>ancestral</b>(unsigned int i, unsigned int j) const
int <b>size</b>()
int <b>depth</b>()
int <b>nchildren</b>()
int <b>nsiblings</b>()
</pre>
</blockquote>
<big><strong>member function descriptions</strong></big><br>
<blockquote>
<p>
<i>These functions change the state of the tree.</i>
</p>
<dl>
<dt><b>clone</b>
<dd>Return a pointer to an exact duplicate of the original tree. The caller is responsible for the memory allocated by the call to this function.
<dt><b>copy</b>
<dd>Duplicate the specified tree.
<dt><b>destroy</b>
<dd>Destroy the current node in the tree. If the node has children, the entire sub-tree connected to the node is destroyed as well. This function uses the location of the internal iterator to determine which node should be destroyed. If the root node is destroyed, the entire contents of the tree will be destroyed, but the tree object itself will not be deleted.
<dt><b>insert</b>
<dd>Add a node or tree to the tree. The insertion is made relative to the location of the internal iterator. The <i>where</i> flag specifies whether the insertion should be made before, after, or below the current node.
<dt><b>remove</b>
<dd>Returns a pointer to a new tree object whose root node is the (formerly) current node of the original tree. Any subtree connected to the node stays with the node. The iterator moves to the previous node in the current generation, or the parent node if no elder sibling exists. The caller is responsible for the memory used by the new tree.
<dt><b>swap</b>
<dd>Swap the contents of the two specified nodes. Sub-trees connected to either node are not affected; only the specified nodes are swapped.
<dt><b>swaptree</b>
<dd>Swap the contents of the two specified nodes as well as any sub-trees connected to the specified nodes.
</dl>
<i>These functions do not change the contents of the tree, but they change the state of the tree's internal iterator (when invoked on a tree object).</i>
<dl>
<dt><b>ancestral</b>
<dd>Returns 1 if one of the two specified nodes is the ancestor of the other, returns 0 otherwise.
<dt><b>child</b>
<dd>Returns a pointer to the contents of the eldest child of the current node. If the current node has no children, this function returns NULL.
<dt><b>current</b>
<dd>Returns a pointer to the contents of the current node.
<dt><b>depth</b>
<dd>Returns the number of generations (the depth) of the tree. When called as the member function of a tree iterator, this function returns the depth of the subtree connected to the iterator's current node.
<dt><b>eldest</b>
<dd>Returns a pointer to the contents of the eldest node in the current generation. The eldest node is the node pointed to by the 'child' function in the node's parent.
<dt><b>nchildren</b>
<dd>Returns the number of children of the node to which the iterator is pointing.
<dt><b>next</b>
<dd>Returns a pointer to the contents of the next node in the current generation.
<dt><b>nsiblings</b>
<dd>Returns the number of nodes in the level of the tree as the node to which the iterator is pointing.
<dt><b>parent</b>
<dd>Returns a pointer to the contents of the parent of the current node. If the current node is the root node, this function returns NULL.
<dt><b>prev</b>
<dd>Returns a pointer to the contents of the previous node in the current generation.
<dt><b>root</b>
<dd>Returns a pointer to the contents of the root node of the tree.
<dt><b>size</b>
<dd>Returns the number of nodes in the tree. When called as the member function of a tree iterator, this function returns the size of the subtree connected to the iterator's current node.
<dt><b>warp</b>
<dd>Returns a pointer to the contents of the <i>i</i>th node in the tree, or a pointer to the element in the tree pointed to by the specified iterator. The head node is number 0 then the count increases as a depth-first traversal of the tree.
<dt><b>youngest</b>
<dd>Returns a pointer to the contents of the youngest node in the current generation.
</dl>
</blockquote>
<hr>
<small><i>Matthew Wall, 28 May 1996</i></small>
</body></html>
|