1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
|
<html><head><title>GAlib: Extensions</title>
<!-- by matthew wall all rights reserved -->
<!-- Copyright (c) 1995-1996 Massachusetts Institute of Technology -->
<!-- Copyright (c) 1996-1999 Matthew Wall -->
</head>
<body bgcolor="efefef" text="000000">
<strong>Customizing <a href="GAlib.html">GAlib</a></strong><br>
<i>version 2.4</i>
<p>
This document describes how to extend GAlib's capabilities by defining your own genomes and genetic operators. The best way to customize the behavior of an object is to derive a new class. If you do not want to do that much work, GAlib is designed to let you replace behaviors of existing objects by defining new functions.
</p>
<p>
see also: <i><a href="Overview.html">library overview</a>, <a href="ClassHierarchy.html">class hierarchy</a>, <a href="API.html">programming interface</a></i>
</p>
<p>
<strong>Table of contents</strong><br>
<hr>
<br>
</p>
<table>
<tr valign=baseline>
<td width=220>
<ul>
<strong>Genome</strong>
<li><a href="#genome">Deriving a new Genome</a>
<li><a href="#genome_testing">Testing a new Genome</a>
<li><a href="#genome_initialization">Initialization</a>
<li><a href="#genome_mutation">Mutation</a>
<li><a href="#genome_crossover">Crossover</a>
<li><a href="#genome_comparison">Comparison</a>
<li><a href="#genome_evaluation">Evaluation</a>
</ul>
</td>
<td width=6></td>
<td width=180>
<ul>
<strong>Population</strong>
<li><a href="#pop_initialization">Initialization</a>
<li><a href="#pop_evaluation">Evaluation</a>
<li><a href="#pop_scaling">Scaling</a>
<li><a href="#pop_selection">Selection</a>
</ul>
</td>
<td width=6></td>
<td width=220>
<ul>
<strong>Genetic Algorithm</strong>
<li><a href="#ga">Deriving a new Algorithm</a>
<li><a href="#termination">Termination</a>
</ul>
</td>
</tr>
</table>
<br>
<br>
<br>
<a name="genome">
<br><strong>Deriving your own genome class</strong><br></a>
<hr>
You can create your own genome class by multiply-inheriting from the base genome class and your own data type. For example, if you have already have an object defined, say MyObject, then you would derive a new genome class called MyGenome, whose class definition looks like this:
<pre>
// Class definition for the new genome object, including statically defined
// declarations for default evaluation, initialization, mutation, and
// comparison methods for this genome class.
class MyGenome : public MyObject, public GAGenome {
public:
GADefineIdentity("MyGenome", 201);
static void Init(GAGenome&);
static int Mutate(GAGenome&, float);
static float Compare(const GAGenome&, const GAGenome&);
static float Evaluate(GAGenome&);
static int Cross(const GAGenome&, const GAGenome&, GAGenome*, GAGenome*);
public:
MyGenome() : GAGenome(Init, Mutate, Compare) {
evaluator(Evaluate);
crossover(Cross);
}
MyGenome(const MyGenome& orig) { copy(orig); }
virtual ~MyGenome() {}
MyGenome& operator=(const GAGenome& orig){
if(&orig != this) copy(orig);
return *this;
}
virtual GAGenome* clone(CloneMethod) const {return new MyGenome(*this);}
virtual void copy(const GAGenome& orig) {
GAGenome::copy(orig); // this copies all of the base genome parts
// copy any parts of MyObject here
// copy any parts of MyGenome here
}
// any data/member functions specific to this new class
};
void
MyGenome::Init(GAGenome&){
// your initializer here
}
int
MyGenome::Mutate(GAGenome&, float){
// your mutator here
}
float
MyGenome::Compare(const GAGenome&, const GAGenome&){
// your comparison here
}
float
MyGenome::Evaluate(GAGenome&){
// your evaluation here
}
int
MyGenome::Cross(const GAGenome& mom, const GAGenome& dad,
GAGenome* sis, GAGenome* bro){
// your crossover here
}
</pre>
<p>
By convention, one of the arguments to a derived genome constructor is the objective function. Alternatively (as illustrated in this example), you can hard code a default objective function into your genome - just call the <b>evaluator</b> member somewhere in your constructor and pass the function you want used as the default.
</p>
<p>
Once you have defined your genome class, you should define the <a href="#genome_initialization">intialization</a>, <a href="#genome_mutation">mutation</a>, <a href="#genome_comparison">comparison</a>, and <a href="#genome_crossover">crossover</a> operators for it. The comparison operator is optional, but if you do not define it you will not be able to use the diversity measures in the genetic algorithms and/or populations.
</p>
<p>
Note that the genetic comparator is not necessarily the same as the boolean operator== and operator!= comparators. The genetic comparator returns 0 if the two individuals are the same, -1 if the comparison fails for some reason, and a real number greater than 0 indicating the degree of difference if the individuals are not identical but can be compared. It may be based on genotype or phenotype. The boolean comparators, on the other hand, indicate only whether or not two individuals are identical. In most cases, the boolean comparator can simply call the genetic comparator, but in some cases it is more efficient to define different operators (the boolean comparators are called much more often than the genetic comparators, especially if no diversity is being measured).
</p>
<p>
To work properly with the GAlib, you <i>must</i> define the following:
</p>
<pre>
MyGenome( -default-args-for-your-genome-constructor )
MyGenome(const MyGenome&)
virtual GAGenome* clone(GAGenome::CloneMethod) const
</pre>
If your genome adds any non-trivial member data, you must define these:
<pre>
virtual ~MyGenome()
virtual copy(const GAGenome&)
virtual int equal(const GAGenome&) const
</pre>
To enable streams-based reading and writing of your genome, you should define these:
<pre>
virtual int read(istream&)
virtual int write(ostream&) const
</pre>
When you derive a genome, don't forget to use the _evaluated flag to
indicate when the state of the genome has changed and an evaluation is
needed. If a member function changes the state of your genome, that member
function should set the _evaluated flag to gaFalse.
<p>
Assign a default crossover, mutation, initialization, and comparison
method so that users don't have to assign one unless they want to.
</p>
<p>
It is a good idea to define an identity for your genome (especially if you will be using it in an environment with multiple genome types running around). Use the DefineIdentity macro (defined in id.h) to do this in your class definition. The DefineIdentity macro sets a class ID number and the name that will be used in error messages for the class. You can use any number above 200 for the ID, but be sure to use a different number for each of your classes.
</p>
<p>
When run-time type information (RTTI) has stabilized across compilers, GAlib will probably use that instead of the Define/Declare identity macros.
</p>
<br>
<br>
<br>
<a name="genome_testing">
<br><strong>Genome Testing</strong><br></a>
<hr>
Use the following program to test your genome. The basic idea here is to test incrementally in order to isolate problems as they arise. If your genome works with a small test program such as this one, it will function properly with any genetic algorithm in GAlib. (This is no guarantee, however, that your genome will help you find the solution to your problem. That is another matter entirely.)
<pre>
int
main() {
MyGenome genome; // test default constructor (if we have one)
cout << "genome after creation:\n" << genome << endl;
genome.initialize(); // test the initializer
cout << "genome after initialization:\n" << genome << endl;
genome.mutate(); // test the mutator
cout << "genome after mutation:\n" << genome << endl;
MyGenome* a = new MyGenome(genome); // test copy constructor
MyGenome* b = new MyGenome(genome);
MyGenome* c = genome.clone(GAGenome::CONTENTS);
cout << "clone contents:\n" << *c << "\n";
MyGenome* d = genome.clone(GAGenome::ATTRIBUTES);
cout << "clone attributes:\n" << *d << "\n";
a->initialize();
b->initialize();
cout << "parents:\n" << *a << "\n" << *b << "\n";
MyGenome::DefaultCrossover(*a, *b, c, d); // test two child crossover
cout << "children of crossover:\n" << *c << "\n" << *d << "\n";
MyGenome::DefaultCrossover(*a, *b, c, 0); // test single child crossover
cout << "child of crossover:\n" << *c << "\n";
a->compare(*b); // test the comparator
delete a;
delete b;
delete c;
delete d;
return 0;
}
</pre>
<br>
<br>
<br>
<a name="genome_initialization">
<br><strong>Genome Initialization</strong><br></a>
<hr>
The initializer takes a single argument: the genome to be initialized. The genome has already been allocated; the intializer only needs to populate it with appropriate contents.
<p>
Here is the implementation of an initializer for the GATreeGenome<int> class.
</p>
<pre>
void
TreeInitializer(GAGenome & c)
{
GATreeGenome<int> &child=(GATreeGenome<int> &)c;
// destroy any pre-existing tree
child.root();
child.destroy();
// Create a new tree with depth of 'depth' and each eldest node containing
// 'n' children (the other siblings have none).
int depth=2, n=3, count=0;
child.insert(count++,GATreeBASE::ROOT);
for(int i=0; i<depth; i++){
child.eldest();
child.insert(count++);
for(int j=0; j<n; j++)
child.insert(count++,GATreeBASE::AFTER);
}
}
</pre>
<br>
<br>
<br>
<a name="genome_mutation">
<br><strong>Genome Mutation</strong><br></a>
<hr>
The genome mutator takes two arguments: the genome that will receive the mutation(s) and a mutation probability. The exact meaning of the mutation probability is up to the designer of the mutation operator. The mutator should return the number of mutations that occured.
<p>
Most genetic algorithms invoke the mutation method on each newly generated offspring. So your mutation operator should base its actions on the value of the mutation probability. For example, an array of floats could flip a <i>pmut</i>-biased coin for each element in the array. If the coin toss returns true, the element gets a Gaussian mutation. If it returns false, the element is left unchanged. Alternatively, a single biased coin toss could be used to determine whether or not the <i>entire</i> genome should be mutated.
</p>
<p>
Here is an implementation of the flip mutator for the GA1DBinaryString class. This mutator flips a biased coin for each bit in the string.
</p>
<pre>
int
GA1DBinStrFlipMutator(GAGenome & c, float pmut)
{
GA1DBinaryStringGenome &child=(GA1DBinaryStringGenome &)c;
if(pmut <= 0.0) return(0);
int nMut=0;
for(int i=child.length()-1; i>=0; i--){
if(GAFlipCoin(pmut)){
child.gene(i, ((child.gene(i) == 0) ? 1 : 0));
nMut++;
}
}
return nMut;
}
</pre>
<br>
<br>
<br>
<a name="genome_crossover">
<br><strong>Genome Crossover</strong><br></a>
<hr>
The crossover method is used by the genetic algorithm to mate individuals from the population to form new offspring. Each genome should define a default crossover method for the genetic algorithms to use. The <b>sexual</b> and <b>asexual</b> member functions return a pointer to the preferred sexual and asexual mating methods, respectively. The <b>crossover</b> member function is used to change the preferred mating method. The genome does not have a member function to invoke the crossover; only the genetic algorithm can actually perform the crossover.
<p>
Some genetic algorithms use sexual mating, others use asexual mating. If possible, define both so that your genome will work with either kind of genetic algorithm. If your derived class does not define a cross method, an error message will be posted whenever crossover is attempted.
</p>
<p>
Sexual crossover takes four arguments: two parents and two children. If one child is nil, the operator should be able to generate a single child. The genomes have already been allocated, so the crossover operator should simply modify the contents of the child genome as appropriate. The crossover function should return the number of crossovers that occurred. Your crossover function should be able to operate on one or two children, so be sure to test the child pointers to see if the genetic algorithm is asking you to create one or two children.
</p>
<p>
Here is an implementation of the two-parent/one-or-two-child single point crossover operator for fixed-length genomes of the GA1DBinaryStringGenome class.
</p>
<pre>
int
SinglePointCrossover(const GAGenome& p1, const GAGenome& p2, GAGenome* c1, GAGenome* c2){
GA1DBinaryStringGenome &mom=(GA1DBinaryStringGenome &)p1;
GA1DBinaryStringGenome &dad=(GA1DBinaryStringGenome &)p2;
int n=0;
unsigned int site = GARandomInt(0, mom.length());
unsigned int len = mom.length() - site;
if(c1){
GA1DBinaryStringGenome &sis=(GA1DBinaryStringGenome &)*c1;
sis.copy(mom, 0, 0, site);
sis.copy(dad, site, site, len);
n++;
}
if(c2){
GA1DBinaryStringGenome &bro=(GA1DBinaryStringGenome &)*c2;
bro.copy(dad, 0, 0, site);
bro.copy(mom, site, site, len);
n++;
}
return n;
}
</pre>
<br>
<br>
<br>
<a name="genome_comparison">
<br><strong>Genome Comparison</strong><br></a>
<hr>
The comparison method is used for diversity calculations. It compares two genomes and returns a number that is greater than or equal to zero. A value of 0 means that the two genomes are identical (no diversity). There is no maximum value for the return value from the comparator. A value of -1 indicates that the diversity could not be calculated.
<p>
Here is the comparator for the binary string genomes. It simply counts up the number of bits that both genomes share. In this example, we return a -1 if the genomes are not the same length.
</p>
<pre>
float
GA1DBinStrComparator(const GAGenome& a, const GAGenome& b){
GA1DBinaryStringGenome &sis=(GA1DBinaryStringGenome &)a;
GA1DBinaryStringGenome &bro=(GA1DBinaryStringGenome &)b;
if(sis.length() != bro.length()) return -1;
float count = 0.0;
for(int i=sis.length()-1; i>=0; i--)
count += ((sis.gene(i) == bro.gene(i)) ? 0 : 1);
return count/sis.length();
}
</pre>
<br>
<br>
<br>
<a name="genome_evaluation">
<br><strong>Genome Evaluation</strong><br></a>
<hr>
The genome evaluator is the objective function for your problem. It takes a single genome as its argument. The evaluator returns a number that indicates how good or bad the genome is. You must cast the generic genome to the genome type that you are using. If your objective function works with different genome types, then use the genome object's <b>className</b> and/or <b>classID</b> member functions to determine the genome class before you do the casts.
<p>
Here is a simple evaluation function for a real number genome with a single element. The function tries to maximize a sinusoidal.
</p>
<pre>
float
Objective(GAGenome& g){
GARealGenome& genome = (GARealGenome &)g;
return 1 + sin(genome.gene(0)*2*M_PI);
}
</pre>
<br>
<br>
<br>
<a name="pop_initialization">
<br><strong>Population Initialization</strong><br></a>
<hr>
This method is invoked when the population is initialized.
<p>
Here is an implemenation that invokes the initializer for each genome in the population.
</p>
<pre>
void
PopInitializer(GAPopulation & p){
for(int i=0; i<p.size(); i++)
p.individual(i).initialize();
}
</pre>
<br>
<br>
<br>
<a name="pop_evaluation">
<br><strong>Population Evaluation</strong><br></a>
<hr>
This method is invoked when the population is evaluated. If your objective is population-based, you can use this method to set the score for each genome rather than invoking an evaluator for each genome.
<p>
Here is an implementation that invokes the evaluation method for each genome in the population.
</p>
<pre>
void
PopEvaluator(GAPopulation & p){
for(int i=0; i<p.size(); i++)
p.individual(i).evaluate();
}
</pre>
<br>
<br>
<br>
<a name="pop_scaling">
<br><strong>Scaling Scheme</strong><br></a>
<hr>
The scaling object does the transformation from raw (objective) scores to scaled (fitness) scores. The most important member function you will have to define for a new scaling object is the <b>evaluate</b> member function. This function calculates the fitness scores based on the objective scores in the population that is passed to it.
<p>
The GAScalingScheme class is a pure virtual (abstract) class and cannot be instantiated. To make your derived class non-virtual, you <i>must</i> define the <b>clone</b> and <b>evaluate</b> functions. You should also define the <b>copy</b> method if your derived class introduces any additional data members that require non-trivial copy.
</p>
<p>
The scaling class is polymorphic, so you should define the object's identity using the GADefineIdentity macro. This macro sets a class ID number and the name that will be used in error messages for the class. You can use any number above 200 for the ID, but be sure to use a different number for each of your objects.
</p>
<p>
Here is an implementation of sigma truncation scaling.
</p>
<pre>
class SigmaTruncationScaling : public GAScalingScheme {
public:
GADefineIdentity("SigmaTruncationScaling", 286);
SigmaTruncationScaling(float m=gaDefSigmaTruncationMultiplier) : c(m) {}
SigmaTruncationScaling(const SigmaTruncationScaling & arg){copy(arg);}
SigmaTruncationScaling & operator=(const GAScalingScheme & arg)
{ copy(arg); return *this; }
virtual ~SigmaTruncationScaling() {}
virtual GAScalingScheme * clone() const
{ return new SigmaTruncationScaling(*this); }
virtual void evaluate(const GAPopulation & p);
virtual void copy(const GAScalingScheme & arg){
if(&arg != this && sameClass(arg)){
GAScalingScheme::copy(arg);
c=((SigmaTruncationScaling&)arg).c;
}
}
float multiplier(float fm) { return c=fm; }
float multiplier() const { return c; }
protected:
float c; // std deviation multiplier
};
void
SigmaTruncationScaling::evaluate(const GAPopulation & p) {
float f;
for(int i=0; i<p.size(); i++){
f = p.individual(i).score() - p.ave() + c * p.dev();
if(f < 0) f = 0;
p.individual(i).fitness(f);
}
}
</pre>
<br>
<br>
<br>
<a name="pop_selection">
<br><strong>Selection Scheme</strong><br></a>
<hr>
The selection object is used to pick individuals from the population. Before a selection occurs, the <b>update</b> method is called. You can use this method to do any pre-selection data transformations for your selection scheme. When a selection is requested, the <b>select</b> method is called. The <b>select</b> method should return a reference to a single individual from the population.
<p>
A selector may make its selections based either on the scaled (fitness) scores or on the raw (objective) scores of the individuals in the population. Note also that a population may be sorted either low-to-high or high-to-low, depending on which sort order was chosen. Your selector should be able to handle either order (this way it will work with genetic algorithms that maximize or minimize).
</p>
<p>
The selection scheme class is polymorphic, so you should define the object's identity using the GADefineIdentity macro. This macro sets a class ID number and the name that will be used in error messages for the class. You can use any number above 200 for the ID, but be sure to use a different number for each of your objects.
</p>
<p>
Here is an implementation of a tournament selector. It is based on the roulette wheel selector and shares some of the roulette wheel selector's functionality. In particular, this tournament selector uses the roulette wheel selector's <b>update</b> method, so it does not define its own. The <b>select</b> method does two fitness-proportionate selections then returns the individual with better score.
</p>
<pre>
class TournamentSelector : public GARouletteWheelSelector {
public:
GADefineIdentity("TournamentSelector", 255);
TournamentSelector(int w=GASelectionScheme::FITNESS) :
GARouletteWheelSelector(w) {}
TournamentSelector(const TournamentSelector& orig) { copy(orig); }
TournamentSelector& operator=(const GASelectionScheme& orig)
{ if(&orig != this) copy(orig); return *this; }
virtual ~TournamentSelector() {}
virtual GASelectionScheme* clone() const
{ return new TournamentSelector; }
virtual GAGenome& select() const;
};
GAGenome &
TournamentSelector::select() const {
int picked=0;
float cutoff;
int i, upper, lower;
cutoff = GARandomFloat();
lower = 0; upper = pop->size()-1;
while(upper >= lower){
i = lower + (upper-lower)/2;
if(psum[i] > cutoff)
upper = i-1;
else
lower = i+1;
}
lower = Min(pop->size()-1, lower);
lower = Max(0, lower);
picked = lower;
cutoff = GARandomFloat();
lower = 0; upper = pop->size()-1;
while(upper >= lower){
i = lower + (upper-lower)/2;
if(psum[i] > cutoff)
upper = i-1;
else
lower = i+1;
}
lower = Min(pop->size()-1, lower);
lower = Max(0, lower);
GAPopulation::SortBasis basis =
(which == FITNESS ? GAPopulation::SCALED : GAPopulation::RAW);
if(pop->order() == GAPopulation::LOW_IS_BEST){
if(pop->individual(lower,basis).score() <
pop->individual(picked,basis).score())
picked = lower;
}
else{
if(pop->individual(lower,basis).score() >
pop->individual(picked,basis).score())
picked = lower;
}
return pop->individual(picked,basis);
}
</pre>
<br>
<br>
<br>
<a name="ga">
<br><strong>Genetic Algorithm</strong><br></a>
<hr>
Here is a sample derived class that does restricted mating. In this example, one of the parents is selected as usual. The second individual is select as the first, but it is used only if it is similar to the first individual. If not, we make another selection. If enough selections fail, we take what we can get.
<pre>
class RestrictedMatingGA : public GASteadyStateGA {
public:
GADefineIdentity("RestrictedMatingGA", 288);
RestrictedMatingGA(const GAGenome& g) : GASteadyStateGA(g) {}
virtual ~RestrictedMatingGA() {}
virtual void step();
RestrictedMatingGA & operator++() { step(); return *this; }
};
void
RestrictedMatingGA::step()
{
int i, k;
for(i=0; i<tmpPop->size()-; i++){
mom = &(pop->select());
k=0;
do { k++; dad = &(pop->select()); }
while(mom->compare(*dad) < THRESHOLD && k<pop->size());
stats.numsel += 2;
if(GAFlipCoin(pCrossover()))
stats.numcro += (*scross)(*mom, *dad, &tmpPop->individual(i), 0);
else
tmpPop->individual(i).copy(*mom);
stats.nummut += tmpPop->individual(i).mutate(pMutation());
}
for(i=0; i<tmpPop->size(); i++)
pop->add(tmpPop->individual(i));
pop->evaluate(); // get info about current pop for next time
pop->scale(); // remind the population to do its scaling
for(i=0; i<tmpPop->size(); i++)
pop->destroy(GAPopulation::WORST, GAPopulation::SCALED);
stats.update(*pop); // update the statistics by one generation
}
</pre>
<br>
<br>
<br>
<a name="termination">
<br><strong>Termination Function</strong><br></a>
<hr>
The termination function determines when the genetic algorithm should stop evolving. It takes a genetic algorithm as its argument and returns gaTrue if the genetic algorithm should stop or gaFalse if the algorithm should continue.
<p>
Here are three examples of termination functions. The first compares the current generation to the desired number of generations. If the current generation is less than the desired number of generations, it returns gaFalse to signify that the GA is not yet complete.
</p>
<pre>
GABoolean
GATerminateUponGeneration(GAGeneticAlgorithm & ga){
return(ga.generation() < ga.nGenerations() ? gaFalse : gaTrue);
}
</pre>
The second example compares the average score in the current population with the score of the best individual in the current population. If the ratio of these exceeds a specified threshhold, it returns gaTrue to signify that the GA should stop. Basically this means that the entire population has converged to a 'good' score.
<pre>
const float desiredRatio = 0.95; // stop when pop average is 95% of best
GABoolean
GATerminateUponScoreConvergence(GAGeneticAlgorithm & ga){
if(ga.statistics().current(GAStatistics::Mean) /
ga.statistics().current(GAStatistics::Maximum) > desiredRatio)
return gaTrue;
else
return gaFalse;
}
</pre>
The third uses the population diversity as the criterion for stopping. If the diversity drops below a specified threshhold, the genetic algorithm will stop.
<pre>
const float thresh = 0.01; // stop when population diversity is below this
GABoolean
StopWhenNoDiversity(GAGeneticAlgorithm & ga){
if(ga.statistics().current(GAStatistics::Diversity) < thresh)
return gaTrue;
else
return gaFalse;
}
</pre>
A faster method of doing a nearly equivalent termination is to use the population's standard deviation as the stopping criterion (this method does not require comparisons of each individual). Notice that this judges diversity based upon the genome scores rather than their actual genetic diversity.
<pre>
const float thresh = 0.01; // stop when population deviation is below this
GABoolean
StopWhenNoDeviation(GAGeneticAlgorithm & ga){
if(ga.statistics().current(GAStatistics::Deviation) < thresh)
return gaTrue;
else
return gaFalse;
}
</pre>
<hr>
<small><i>Matthew Wall, 23 March 1996</i></small>
</body></html>
|