File: GA1DArrayGenome.C

package info (click to toggle)
galib 2.4.7-3
  • links: PTS, VCS
  • area: main
  • in suites: squeeze, wheezy
  • size: 2,216 kB
  • ctags: 3,153
  • sloc: cpp: 23,666; ansic: 520; makefile: 247; sh: 93
file content (1166 lines) | stat: -rw-r--r-- 35,741 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
// $Header$
/* ----------------------------------------------------------------------------
  array1.C
  mbwall 25feb95
  Copyright (c) 1995 Massachusetts Institute of Technology
                     all rights reserved

 DESCRIPTION:
  Source file for the 1D array genome.
---------------------------------------------------------------------------- */
#ifndef _ga_array1_C_
#define _ga_array1_C_

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ga/garandom.h>
#include <ga/GA1DArrayGenome.h>
#include <ga/GAMask.h>

template <class T> int 
GA1DArrayIsHole(const GA1DArrayGenome<T>&, const GA1DArrayGenome<T>&,
		int, int, int);


/* ----------------------------------------------------------------------------
1DArrayGenome
---------------------------------------------------------------------------- */
template <class T> const char *
GA1DArrayGenome<T>::className() const {return "GA1DArrayGenome";}
template <class T> int
GA1DArrayGenome<T>::classID() const {return GAID::ArrayGenome;}

// Set all the initial values to NULL or zero, then allocate the space we'll
// need (using the resize method).  We do NOT call the initialize method at
// this point - initialization must be done explicitly by the user of the
// genome (eg when the population is created or reset).  If we called the
// initializer routine here then we could end up with multiple initializations
// and/or calls to dummy initializers (for example when the genome is 
// created with a dummy initializer and the initializer is assigned later on).
// Besides, we default to the no-initialization initializer by calling the
// default genome constructor.
template <class T> 
GA1DArrayGenome<T>::
GA1DArrayGenome(unsigned int length, GAGenome::Evaluator f, void * u) :
GAArray<T>(length),
GAGenome(DEFAULT_1DARRAY_INITIALIZER, 
	 DEFAULT_1DARRAY_MUTATOR,
	 DEFAULT_1DARRAY_COMPARATOR) {
  evaluator(f);
  userData(u);
  nx=minX=maxX=length;
  crossover(DEFAULT_1DARRAY_CROSSOVER);
}


// This is the copy initializer.  We set everything to the default values, then
// copy the original.  The Array creator takes care of zeroing the data.
template <class T> 
GA1DArrayGenome<T>::
GA1DArrayGenome(const GA1DArrayGenome<T> & orig) : 
GAArray<T>(orig.sz), GAGenome() {
  GA1DArrayGenome<T>::copy(orig);
}


// Delete whatever we own.
template <class T>
GA1DArrayGenome<T>::~GA1DArrayGenome() { }


// This is the class-specific copy method.  It will get called by the super
// class since the superclass operator= is set up to call ccopy (and that is
// what we define here - a virtual function).  We should check to be sure that
// both genomes are the same class and same dimension.  This function tries
// to be smart about they way it copies.  If we already have data, then we do
// a memcpy of the one we're supposed to copy.  If we don't or we're not the 
// same size as the one we're supposed to copy, then we adjust ourselves.
//   The Array takes care of the resize in its copy method.
template <class T> void
GA1DArrayGenome<T>::copy(const GAGenome & orig){
  if(&orig == this) return;
  const GA1DArrayGenome<T>* c = DYN_CAST(const GA1DArrayGenome<T>*, &orig);
  if(c) {
    GAGenome::copy(*c);
    GAArray<T>::copy(*c);
    nx = c->nx; minX = c->minX; maxX = c->maxX;
  }
}


template <class T> GAGenome *
GA1DArrayGenome<T>::clone(GAGenome::CloneMethod flag) const {
  GA1DArrayGenome<T> *cpy = new GA1DArrayGenome<T>(nx);
  if(flag == CONTENTS){ 
    cpy->copy(*this);
  }
  else{
    cpy->GAGenome::copy(*this);
    cpy->maxX = maxX; cpy->minX = minX;
  }
  return cpy;
}


//   Resize the genome.
//   A negative value for the length means that we should randomly set the
// length of the genome (if the resize behaviour is resizeable).  If
// someone tries to randomly set the length and the resize behaviour is fixed
// length, then we don't do anything.
//   We pay attention to the values of minX and maxX - they determine what kind
// of resizing we are allowed to do.  If a resize is requested with a length
// less than the min length specified by the behaviour, we set the minimum 
// to the length.  If the length is longer than the max length specified by
// the behaviour, we set the max value to the length.
//   We return the total size (in bits) of the genome after resize. 
//   We don't do anything to the new contents!
template <class T> int
GA1DArrayGenome<T>::resize(int len)
{
  if(len == STA_CAST(int,nx)) return nx;

  if(len == GAGenome::ANY_SIZE)
    len = GARandomInt(minX, maxX);
  else if(len < 0)
    return nx;			// do nothing
  else if(minX == maxX)
    minX=maxX=len;
  else{
    if(len < STA_CAST(int,minX)) len=minX;
    if(len > STA_CAST(int,maxX)) len=maxX;
  }

  nx = GAArray<T>::size(len);
  _evaluated = gaFalse;
  return this->sz;
}


#ifdef GALIB_USE_STREAMS
// We don't define this one apriori.  Do it in a specialization.
template <class T> int
GA1DArrayGenome<T>::read(STD_ISTREAM &) {
  GAErr(GA_LOC, className(), "read", gaErrOpUndef);
  return 1;
}


// When we write the data to a stream we do it with spaces between elements.
// Also, there is no newline at the end of the stream of digits.
template <class T> int
GA1DArrayGenome<T>::write(STD_OSTREAM & os) const {
  for(unsigned int i=0; i<nx; i++)
    os << gene(i) << " ";
  return 0;
}
#endif


//   Set the resize behaviour of the genome.  A genome can be fixed
// length, resizeable with a max and min limit, or resizeable with no limits
// (other than an implicit one that we use internally).
//   A value of 0 means no resize, a value less than zero mean unlimited 
// resize, and a positive value means resize with that value as the limit.
template <class T> int
GA1DArrayGenome<T>::
resizeBehaviour(unsigned int lower, unsigned int upper)
{
  if(upper < lower){
    GAErr(GA_LOC, className(), "resizeBehaviour", gaErrBadResizeBehaviour);
    return resizeBehaviour();
  }
  minX = lower; maxX = upper;
  if(nx > upper) GA1DArrayGenome<T>::resize(upper);
  if(nx < lower) GA1DArrayGenome<T>::resize(lower);
  return resizeBehaviour();
}

template <class T> int
GA1DArrayGenome<T>::resizeBehaviour() const {
  int val = maxX;
  if(maxX == minX) val = FIXED_SIZE;
  return val;
}

template <class T> int 
GA1DArrayGenome<T>::equal(const GAGenome & c) const {
  const GA1DArrayGenome<T> & b = DYN_CAST(const GA1DArrayGenome<T> &, c);
  return((this == &c) ? 1 : ((nx != b.nx) ? 0 : GAArray<T>::equal(b,0,0,nx)));
}









/* ----------------------------------------------------------------------------
1DArrayAlleleGenome

  These genomes contain an allele set.  When we create a new genome, it owns
its own, independent allele set.  If we clone a new genome, the new one gets a
link to our allele set (so we don't end up with zillions of allele sets).  Same
is true for the copy constructor.
  The array may have a single allele set or an array of allele sets, depending
on which creator was called.  Either way, the allele set cannot be changed 
once the array is created.
---------------------------------------------------------------------------- */
template <class T> const char *
GA1DArrayAlleleGenome<T>::className() const {return "GA1DArrayAlleleGenome";}
template <class T> int
GA1DArrayAlleleGenome<T>::classID() const {return GAID::ArrayAlleleGenome;}

template <class T> 
GA1DArrayAlleleGenome<T>::
GA1DArrayAlleleGenome(unsigned int length, const GAAlleleSet<T> & s,
		      GAGenome::Evaluator f, void * u) :
GA1DArrayGenome<T>(length, f, u){
  naset = 1;
  aset = new GAAlleleSet<T>[1];
  aset[0] = s;

  initializer(GA1DArrayAlleleGenome<T>::DEFAULT_1DARRAY_ALLELE_INITIALIZER);
  mutator(GA1DArrayAlleleGenome<T>::DEFAULT_1DARRAY_ALLELE_MUTATOR);
  comparator(GA1DArrayAlleleGenome<T>::DEFAULT_1DARRAY_ALLELE_COMPARATOR);
  crossover(GA1DArrayAlleleGenome<T>::DEFAULT_1DARRAY_ALLELE_CROSSOVER);
}

template <class T> 
GA1DArrayAlleleGenome<T>::
GA1DArrayAlleleGenome(const GAAlleleSetArray<T> & sa,
		      GAGenome::Evaluator f, void * u) :
GA1DArrayGenome<T>(sa.size(), f, u) {
  naset = sa.size();
  aset = new GAAlleleSet<T>[naset];
  for(int i=0; i<naset; i++)
    aset[i] = sa.set(i);

  initializer(GA1DArrayAlleleGenome<T>::DEFAULT_1DARRAY_ALLELE_INITIALIZER);
  mutator(GA1DArrayAlleleGenome<T>::DEFAULT_1DARRAY_ALLELE_MUTATOR);
  comparator(GA1DArrayAlleleGenome<T>::DEFAULT_1DARRAY_ALLELE_COMPARATOR);
  crossover(GA1DArrayAlleleGenome<T>::DEFAULT_1DARRAY_ALLELE_CROSSOVER);
}


// The copy constructor creates a new genome whose allele set refers to the
// original's allele set.
template <class T> 
GA1DArrayAlleleGenome<T>::
GA1DArrayAlleleGenome(const GA1DArrayAlleleGenome<T>& orig) : 
GA1DArrayGenome<T>(orig.sz) {
  naset = 0;
  aset = (GAAlleleSet<T>*)0;
  GA1DArrayAlleleGenome<T>::copy(orig);
}


// Delete the allele set
template <class T>
GA1DArrayAlleleGenome<T>::~GA1DArrayAlleleGenome(){
  delete [] aset;
}


// This implementation of clone does not make use of the contents/attributes
// capability because this whole interface isn't quite right yet...  Just 
// clone the entire thing, contents and all.
template <class T> GAGenome *
GA1DArrayAlleleGenome<T>::clone(GAGenome::CloneMethod) const {
  return new GA1DArrayAlleleGenome<T>(*this);
}


template <class T> void 
GA1DArrayAlleleGenome<T>::copy(const GAGenome& orig){
  if(&orig == this) return;
  const GA1DArrayAlleleGenome<T> * c = 
    DYN_CAST(const GA1DArrayAlleleGenome<T>*, &orig);
  if(c) {
    GA1DArrayGenome<T>::copy(*c);
    if(naset != c->naset){
      delete [] aset;
      naset = c->naset;
      aset = new GAAlleleSet<T>[naset];
    }
    for(int i=0; i<naset; i++)
      aset[i].link(c->aset[i]);
  }
}


// If we resize to a larger length then we need to set the contents to a valid
// value (ie one of our alleles).
template <class T> int
GA1DArrayAlleleGenome<T>::resize(int len){
  unsigned int oldx = this->nx;
  GA1DArrayGenome<T>::resize(len);
  if(this->nx > oldx){
    for(unsigned int i=oldx; i<this->nx; i++)
      this->a[i] = aset[i % naset].allele();
  }
  return len;
}



// Define these so they can easily be specialized as needed.
#ifdef GALIB_USE_STREAMS
template <class T> int
GA1DArrayAlleleGenome<T>::read(STD_ISTREAM& is){
  return GA1DArrayGenome<T>::read(is);
}

template <class T> int
GA1DArrayAlleleGenome<T>::write(STD_OSTREAM& os) const {
  return GA1DArrayGenome<T>::write(os);
}
#endif

template <class T> int
GA1DArrayAlleleGenome<T>::equal(const GAGenome & c) const {
  return GA1DArrayGenome<T>::equal(c);
}











/* ----------------------------------------------------------------------------
   Operator definitions
---------------------------------------------------------------------------- */
// The random initializer sets the elements of the array based on the alleles
// set.  We choose randomly the allele for each element.
template <class ARRAY_TYPE> void 
GA1DArrayAlleleGenome<ARRAY_TYPE>::UniformInitializer(GAGenome & c)
{
  GA1DArrayAlleleGenome<ARRAY_TYPE> &child=
    DYN_CAST(GA1DArrayAlleleGenome<ARRAY_TYPE> &, c);
  child.resize(GAGenome::ANY_SIZE); // let chrom resize if it can
  for(int i=child.length()-1; i>=0; i--)
    child.gene(i, child.alleleset(i).allele());
}


// Random initializer for order-based genome.  Loop through the genome
// and assign each element the next allele in the allele set.  Once each
// element has been initialized, scramble the contents by swapping elements.
// This assumes that there is only one allele set for the array.
template <class ARRAY_TYPE> void 
GA1DArrayAlleleGenome<ARRAY_TYPE>::OrderedInitializer(GAGenome & c)
{
  GA1DArrayAlleleGenome<ARRAY_TYPE> &child=
    DYN_CAST(GA1DArrayAlleleGenome<ARRAY_TYPE> &, c);
  child.resize(GAGenome::ANY_SIZE); // let chrom resize if it can
  int length = child.length()-1;
  int n=0;
  int i;
  for(i=length; i>=0; i--){
    child.gene(i, child.alleleset().allele(n++));
    if(n >= child.alleleset().size()) n = 0;
  }
  for(i=length; i>=0; i--)
    child.swap(i, GARandomInt(0, length));
}


// Randomly pick elements in the array then set the element to any of the 
// alleles in the allele set for this genome.  This will work for any number
// of allele sets for a given array.
template <class ARRAY_TYPE> int 
GA1DArrayAlleleGenome<ARRAY_TYPE>::FlipMutator(GAGenome & c, float pmut)
{
  GA1DArrayAlleleGenome<ARRAY_TYPE> &child=
    DYN_CAST(GA1DArrayAlleleGenome<ARRAY_TYPE> &, c);
  register int n, i;
  if(pmut <= 0.0) return(0);

  float nMut = pmut * STA_CAST(float,child.length());
  if(nMut < 1.0){		// we have to do a flip test on each bit
    nMut = 0;
    for(i=child.length()-1; i>=0; i--){
      if(GAFlipCoin(pmut)){
	child.gene(i, child.alleleset(i).allele());
	nMut++;
      }
    }
  }
  else{				// only flip the number of bits we need to flip
    for(n=0; n<nMut; n++){
      i = GARandomInt(0, child.length()-1);
      child.gene(i, child.alleleset(i).allele());
    }
  }
  return(STA_CAST(int,nMut));
}


// Randomly swap elements in the array.
template <class ARRAY_TYPE> int 
GA1DArrayGenome<ARRAY_TYPE>::SwapMutator(GAGenome & c, float pmut)
{
  GA1DArrayGenome<ARRAY_TYPE> &child=DYN_CAST(GA1DArrayGenome<ARRAY_TYPE>&, c);
  register int n, i;
  if(pmut <= 0.0) return(0);

  float nMut = pmut * STA_CAST(float,child.length());
  int length = child.length()-1;
  if(nMut < 1.0){		// we have to do a flip test on each bit
    nMut = 0;
    for(i=length; i>=0; i--){
      if(GAFlipCoin(pmut)){
	child.swap(i, GARandomInt(0, length));
	nMut++;
      }
    }
  }
  else{				// only flip the number of bits we need to flip
    for(n=0; n<nMut; n++)
      child.swap(GARandomInt(0, length), GARandomInt(0, length));
  }
  return(STA_CAST(int,nMut));
}


// The comparator is supposed to return a number that indicates how similar
// two genomes are, so here we just compare elements and return a number that
// indicates how many elements match.  If they are different lengths then we
// return -1 to indicate that we could not calculate the differences.
//   This assumes that there is an operator == defined for the object in the
// elements of the array.
template <class ARRAY_TYPE> float
GA1DArrayGenome<ARRAY_TYPE>::
ElementComparator(const GAGenome& a, const GAGenome& b)
{
  const GA1DArrayGenome<ARRAY_TYPE>& sis=
    DYN_CAST(const GA1DArrayGenome<ARRAY_TYPE>&, a);
  const GA1DArrayGenome<ARRAY_TYPE>& bro=
    DYN_CAST(const GA1DArrayGenome<ARRAY_TYPE>&, b);

  if(sis.length() != bro.length()) return -1;
  if(sis.length() == 0) return 0;
  float count = 0.0;
  for(int i=sis.length()-1; i>=0; i--)
    count += ((sis.gene(i) == bro.gene(i)) ? 0 : 1);
  return count/sis.length();
}














#define SWAP(a,b) {unsigned int tmp=a; a=b; b=tmp;}

// Randomly take bits from each parent.  For each bit we flip a coin to see if
// that bit should come from the mother or the father.  If strings are 
// different lengths then we need to use the mask to get things right.
template <class T> int
GA1DArrayGenome<T>::
UniformCrossover(const GAGenome& p1, const GAGenome& p2,
		 GAGenome* c1, GAGenome* c2){
  const GA1DArrayGenome<T> &mom=DYN_CAST(const GA1DArrayGenome<T> &, p1);
  const GA1DArrayGenome<T> &dad=DYN_CAST(const GA1DArrayGenome<T> &, p2);

  int n=0;
  int i;

  if(c1 && c2){
    GA1DArrayGenome<T> &sis=DYN_CAST(GA1DArrayGenome<T> &, *c1);
    GA1DArrayGenome<T> &bro=DYN_CAST(GA1DArrayGenome<T> &, *c2);

    if(sis.length() == bro.length() &&
       mom.length() == dad.length() &&
       sis.length() == mom.length()){
      for(i=sis.length()-1; i>=0; i--){
	if(GARandomBit()){
	  sis.gene(i, mom.gene(i));
	  bro.gene(i, dad.gene(i));
	}
	else{
	  sis.gene(i, dad.gene(i));
	  bro.gene(i, mom.gene(i));
	}
      }
    }
    else{
      GAMask mask;
      int start;
      int max = (sis.length() > bro.length()) ? sis.length() : bro.length();
      int min = (mom.length() < dad.length()) ? mom.length() : dad.length();
      mask.size(max);
      for(i=0; i<max; i++)
	mask[i] = GARandomBit();
      start = (sis.length() < min) ? sis.length()-1 : min-1;
      for(i=start; i>=0; i--)
	sis.gene(i, (mask[i] ? mom.gene(i) : dad.gene(i)));
      start = (bro.length() < min) ? bro.length()-1 : min-1;
      for(i=start; i>=0; i--)
	bro.gene(i, (mask[i] ? dad.gene(i) : mom.gene(i)));
    }
    n = 2;
  }
  else if(c1 || c2){
    GA1DArrayGenome<T> &sis = (c1 ? 
			       DYN_CAST(GA1DArrayGenome<T> &, *c1) : 
			       DYN_CAST(GA1DArrayGenome<T> &, *c2));

    if(mom.length() == dad.length() && sis.length() == mom.length()){
      for(i=sis.length()-1; i>=0; i--)
	sis.gene(i, (GARandomBit() ? mom.gene(i) : dad.gene(i)));
    }
    else{
      int min = (mom.length() < dad.length()) ? mom.length() : dad.length();
      min = (sis.length() < min) ? sis.length() : min;
      for(i=min-1; i>=0; i--)
	sis.gene(i, (GARandomBit() ? mom.gene(i) : dad.gene(i)));
    }
    n = 1;
  }

  return n;
}





// Single point crossover for 1D array genomes.  Pick a single point then
// copy genetic material from each parent.  We must allow for resizable genomes
// so be sure to check the behaviours before we do the crossovers.  If resizing
// is allowed then the children will change depending on where the site is
// located.  It is also possible to have a mixture of resize behaviours, but
// we won't worry about that at this point.  If this happens we just say that
// we cannot handle that and post an error message.
template <class T> int
GA1DArrayGenome<T>::
OnePointCrossover(const GAGenome& p1, const GAGenome& p2, 
		  GAGenome* c1, GAGenome* c2){
  const GA1DArrayGenome<T> &mom=DYN_CAST(const GA1DArrayGenome<T> &, p1);
  const GA1DArrayGenome<T> &dad=DYN_CAST(const GA1DArrayGenome<T> &, p2);

  int nc=0;
  unsigned int momsite, momlen;
  unsigned int dadsite, dadlen;

  if(c1 && c2){
    GA1DArrayGenome<T> &sis=DYN_CAST(GA1DArrayGenome<T> &, *c1);
    GA1DArrayGenome<T> &bro=DYN_CAST(GA1DArrayGenome<T> &, *c2);

    if(sis.resizeBehaviour() == GAGenome::FIXED_SIZE &&
       bro.resizeBehaviour() == GAGenome::FIXED_SIZE){
      if(mom.length() != dad.length() || 
	 sis.length() != bro.length() ||
	 sis.length() != mom.length()){
	GAErr(GA_LOC, mom.className(), "one-point cross", gaErrSameLengthReqd);
	return nc;
      }
      momsite = dadsite = GARandomInt(0, mom.length());
      momlen = dadlen = mom.length() - momsite;
    }
    else if(sis.resizeBehaviour() == GAGenome::FIXED_SIZE ||
	    bro.resizeBehaviour() == GAGenome::FIXED_SIZE){
      GAErr(GA_LOC, mom.className(), "one-point cross", gaErrSameBehavReqd);
      return nc;
    }
    else{
      momsite = GARandomInt(0, mom.length());
      dadsite = GARandomInt(0, dad.length());
      momlen = mom.length() - momsite;
      dadlen = dad.length() - dadsite;
      sis.resize(momsite+dadlen);
      bro.resize(dadsite+momlen);
    }
    
    sis.copy(mom, 0, 0, momsite);
    sis.copy(dad, momsite, dadsite, dadlen);
    bro.copy(dad, 0, 0, dadsite);
    bro.copy(mom, dadsite, momsite, momlen);
  
    nc = 2;
  }
  else if(c1 || c2){
    GA1DArrayGenome<T> &sis = (c1 ? 
			       DYN_CAST(GA1DArrayGenome<T> &, *c1) : 
			       DYN_CAST(GA1DArrayGenome<T> &, *c2));

    if(sis.resizeBehaviour() == GAGenome::FIXED_SIZE){
      if(mom.length() != dad.length() || sis.length() != mom.length()){
	GAErr(GA_LOC, mom.className(), "one-point cross", gaErrSameLengthReqd);
	return nc;
      }
      momsite = dadsite = GARandomInt(0, mom.length());
      momlen = dadlen = mom.length() - momsite;
    }
    else{
      momsite = GARandomInt(0, mom.length());
      dadsite = GARandomInt(0, dad.length());
      momlen = mom.length() - momsite;
      dadlen = dad.length() - dadsite;
      sis.resize(momsite+dadlen);
    }
    
    if(GARandomBit()){
      sis.copy(mom, 0, 0, momsite);
      sis.copy(dad, momsite, dadsite, dadlen);
    }
    else{
      sis.copy(dad, 0, 0, dadsite);
      sis.copy(mom, dadsite, momsite, momlen);
    }

    nc = 1;
  }

  return nc;
}











// Two point crossover for the 1D array genome.  Similar to the single point
// crossover, but here we pick two points then grab the sections based upon 
// those two points.
//   When we pick the points, it doesn't matter where they fall (one is not
// dependent upon the other).  Make sure we get the lesser one into the first
// position of our site array.
template <class T> int
GA1DArrayGenome<T>::
TwoPointCrossover(const GAGenome& p1, const GAGenome& p2, 
		  GAGenome* c1, GAGenome* c2){
  const GA1DArrayGenome<T> &mom=DYN_CAST(const GA1DArrayGenome<T> &, p1);
  const GA1DArrayGenome<T> &dad=DYN_CAST(const GA1DArrayGenome<T> &, p2);

  int nc=0;
  unsigned int momsite[2], momlen[2];
  unsigned int dadsite[2], dadlen[2];

  if(c1 && c2){
    GA1DArrayGenome<T> &sis=DYN_CAST(GA1DArrayGenome<T> &, *c1);
    GA1DArrayGenome<T> &bro=DYN_CAST(GA1DArrayGenome<T> &, *c2);

    if(sis.resizeBehaviour() == GAGenome::FIXED_SIZE &&
       bro.resizeBehaviour() == GAGenome::FIXED_SIZE){
      if(mom.length() != dad.length() || 
	 sis.length() != bro.length() ||
	 sis.length() != mom.length()){
	GAErr(GA_LOC, mom.className(), "two-point cross", gaErrSameLengthReqd);
	return nc;
      }
      momsite[0] = GARandomInt(0, mom.length());
      momsite[1] = GARandomInt(0, mom.length());
      if(momsite[0] > momsite[1]) SWAP(momsite[0], momsite[1]);
      momlen[0] = momsite[1] - momsite[0];
      momlen[1] = mom.length() - momsite[1];
      
      dadsite[0] = momsite[0];
      dadsite[1] = momsite[1];
      dadlen[0] = momlen[0];
      dadlen[1] = momlen[1];
    }
    else if(sis.resizeBehaviour() == GAGenome::FIXED_SIZE ||
	    bro.resizeBehaviour() == GAGenome::FIXED_SIZE){
      return nc;
    }
    else{
      momsite[0] = GARandomInt(0, mom.length());
      momsite[1] = GARandomInt(0, mom.length());
      if(momsite[0] > momsite[1]) SWAP(momsite[0], momsite[1]);
      momlen[0] = momsite[1] - momsite[0];
      momlen[1] = mom.length() - momsite[1];
      
      dadsite[0] = GARandomInt(0, dad.length());
      dadsite[1] = GARandomInt(0, dad.length());
      if(dadsite[0] > dadsite[1]) SWAP(dadsite[0], dadsite[1]);
      dadlen[0] = dadsite[1] - dadsite[0];
      dadlen[1] = dad.length() - dadsite[1];
      
      sis.resize(momsite[0]+dadlen[0]+momlen[1]);
      bro.resize(dadsite[0]+momlen[0]+dadlen[1]);
    }

    sis.copy(mom, 0, 0, momsite[0]);
    sis.copy(dad, momsite[0], dadsite[0], dadlen[0]);
    sis.copy(mom, momsite[0]+dadlen[0], momsite[1], momlen[1]);
    bro.copy(dad, 0, 0, dadsite[0]);
    bro.copy(mom, dadsite[0], momsite[0], momlen[0]);
    bro.copy(dad, dadsite[0]+momlen[0], dadsite[1], dadlen[1]);

    nc = 2;
  }
  else if(c1 || c2){
    GA1DArrayGenome<T> &sis = (c1 ?
			       DYN_CAST(GA1DArrayGenome<T> &, *c1) :
			       DYN_CAST(GA1DArrayGenome<T> &, *c2));

    if(sis.resizeBehaviour() == GAGenome::FIXED_SIZE){
      if(mom.length() != dad.length() || sis.length() != mom.length()){
	GAErr(GA_LOC, mom.className(), "two-point cross", gaErrSameLengthReqd);
	return nc;
      }
      momsite[0] = GARandomInt(0, mom.length());
      momsite[1] = GARandomInt(0, mom.length());
      if(momsite[0] > momsite[1]) SWAP(momsite[0], momsite[1]);
      momlen[0] = momsite[1] - momsite[0];
      momlen[1] = mom.length() - momsite[1];
      
      dadsite[0] = momsite[0];
      dadsite[1] = momsite[1];
      dadlen[0] = momlen[0];
      dadlen[1] = momlen[1];
    }
    else{
      momsite[0] = GARandomInt(0, mom.length());
      momsite[1] = GARandomInt(0, mom.length());
      if(momsite[0] > momsite[1]) SWAP(momsite[0], momsite[1]);
      momlen[0] = momsite[1] - momsite[0];
      momlen[1] = mom.length() - momsite[1];
      
      dadsite[0] = GARandomInt(0, dad.length());
      dadsite[1] = GARandomInt(0, dad.length());
      if(dadsite[0] > dadsite[1]) SWAP(dadsite[0], dadsite[1]);
      dadlen[0] = dadsite[1] - dadsite[0];
      dadlen[1] = dad.length() - dadsite[1];

      sis.resize(momsite[0]+dadlen[0]+momlen[1]);
    }

    if(GARandomBit()){
      sis.copy(mom, 0, 0, momsite[0]);
      sis.copy(dad, momsite[0], dadsite[0], dadlen[0]);
      sis.copy(mom, momsite[0]+dadlen[0], momsite[1], momlen[1]);
    }
    else{
      sis.copy(dad, 0, 0, dadsite[0]);
      sis.copy(mom, dadsite[0], momsite[0], momlen[0]);
      sis.copy(dad, dadsite[0]+momlen[0], dadsite[1], dadlen[1]);
    }

    nc = 1;
  }

  return nc;
}







// Even and odd crossover for the array works just like it does for the 
// binary strings.  For even crossover we take the 0th element and every other
// one after that from the mother.  The 1st and every other come from the
// father.  For odd crossover, we do just the opposite.
template <class T> int
GA1DArrayGenome<T>::
EvenOddCrossover(const GAGenome& p1, const GAGenome& p2, 
		 GAGenome* c1, GAGenome* c2){
  const GA1DArrayGenome<T> &mom=DYN_CAST(const GA1DArrayGenome<T> &, p1);
  const GA1DArrayGenome<T> &dad=DYN_CAST(const GA1DArrayGenome<T> &, p2);

  int nc=0;
  int i;

  if(c1 && c2){
    GA1DArrayGenome<T> &sis=DYN_CAST(GA1DArrayGenome<T> &, *c1);
    GA1DArrayGenome<T> &bro=DYN_CAST(GA1DArrayGenome<T> &, *c2);
    if(sis.length() == bro.length() &&
       mom.length() == dad.length() &&
       sis.length() == mom.length()){
      for(i=sis.length()-1; i>=1; i-=2){
	sis.gene(i, mom.gene(i));
	bro.gene(i, dad.gene(i));
	sis.gene(i-1, dad.gene(i-1));
	bro.gene(i-1, mom.gene(i-1));
      }
      if(i==0){
	sis.gene(0, mom.gene(0));
	bro.gene(0, dad.gene(0));
      }
    }
    else{
      int start;
      int min = (mom.length() < dad.length()) ? mom.length() : dad.length();
      start = (sis.length() < min) ? sis.length()-1 : min-1;
      for(i=start; i>=0; i--)
	sis.gene(i, ((i%2 == 0) ? mom.gene(i) : dad.gene(i)));
      start = (bro.length() < min) ? bro.length()-1 : min-1;
      for(i=start; i>=0; i--)
	bro.gene(i, ((i%2 == 0) ? dad.gene(i) : mom.gene(i)));
    }

    nc = 2;
  }
  else if(c1 || c2){
    GA1DArrayGenome<T> &sis = (c1 ? 
			       DYN_CAST(GA1DArrayGenome<T> &, *c1) : 
			       DYN_CAST(GA1DArrayGenome<T> &, *c2));
    
    if(mom.length() == dad.length() && sis.length() == mom.length()){
      for(i=sis.length()-1; i>=1; i-=2){
	sis.gene(i, mom.gene(i));
	sis.gene(i-1, dad.gene(i-1));
      }
      if(i==0){
	sis.gene(0, mom.gene(0));
      }
    }
    else{
      int min = (mom.length() < dad.length()) ? mom.length() : dad.length();
      min = (sis.length() < min) ? sis.length()-1 : min-1;
      for(i=min; i>=0; i--)
	sis.gene(i, ((i%2 == 0) ? mom.gene(i) : dad.gene(i)));
    }

    nc = 1;
  }

  return nc;
}





// Partial match crossover for the 1D array genome.  This uses the partial
// matching algorithm described in Goldberg's book.
//   Parents and children must be the same size for this crossover to work.  If
// they are not, we post an error message.
//   We make sure that b will be greater than a.
template <class T> int
GA1DArrayGenome<T>::
PartialMatchCrossover(const GAGenome& p1, const GAGenome& p2, 
		      GAGenome* c1, GAGenome* c2){
  const GA1DArrayGenome<T> &mom=DYN_CAST(const GA1DArrayGenome<T> &, p1);
  const GA1DArrayGenome<T> &dad=DYN_CAST(const GA1DArrayGenome<T> &, p2);

  int nc=0;
  int a = GARandomInt(0, mom.length());
  int b = GARandomInt(0, dad.length());
  if(b < a) SWAP(a,b);
  int i,j,index;

  if(mom.length() != dad.length()){
    GAErr(GA_LOC, mom.className(), "parial match cross", gaErrBadParentLength);
    return nc;
  }
  
  if(c1 && c2){
    GA1DArrayGenome<T> &sis=DYN_CAST(GA1DArrayGenome<T> &, *c1);
    GA1DArrayGenome<T> &bro=DYN_CAST(GA1DArrayGenome<T> &, *c2);

    sis.GAArray<T>::copy(mom);
    for(i=a, index=a; i<b; i++, index++){
      for(j=0; j<sis.length()-1 && sis.gene(j) != dad.gene(index); j++);
      sis.swap(i,j);
    }
    bro.GAArray<T>::copy(dad);
    for(i=a, index=a; i<b; i++, index++){
      for(j=0; j<bro.length()-1 && bro.gene(j) != mom.gene(index); j++);
      bro.swap(i,j);
    }

    nc = 2;
  }
  else if(c1 || c2){
    GA1DArrayGenome<T> &sis = (c1 ? 
			       DYN_CAST(GA1DArrayGenome<T> &, *c1) : 
			       DYN_CAST(GA1DArrayGenome<T> &, *c2));

    const GA1DArrayGenome<T> *parent1, *parent2;
    if(GARandomBit()) { parent1 = &mom; parent2 = &dad; }
    else              { parent1 = &dad; parent2 = &mom; }

    sis.GAArray<T>::copy(*parent1);
    for(i=a, index=a; i<b; i++, index++){
      for(j=0; j<sis.length()-1 && sis.gene(j) != parent2->gene(index); j++);
      sis.swap(i,j);
    }

    nc = 1;
  }

  return nc;
}





// This function determines whether or not an indexed position is a hole that
// we can substitute into.  It does a linear search to find the holes (yuk).
template <class T> int
GA1DArrayIsHole(const GA1DArrayGenome<T> &c, const GA1DArrayGenome<T> &dad,
		int index, int a, int b){
  for(int i=a; i<b; i++)
    if(c.gene(index) == dad.gene(i)) return 1;
  return 0;
}


// Order crossover for the 1D array genome.  This uses the order crossover
// described in Goldberg's book.
//   Parents and children must be the same length.
//   We make sure that b will be greater than a.
//   This implementation isn't terribly smart.  For example, I do a linear
// search rather than caching and doing binary search or smarter hash tables.
//   First we copy the mother into the sister.  Then move the 'holes' into the
// crossover section and maintain the ordering of the non-hole elements.  
// Finally, put the 'holes' in the proper order within the crossover section.
// After we have done the sister, we do the brother.
template <class T> int
GA1DArrayGenome<T>::
OrderCrossover(const GAGenome& p1, const GAGenome& p2,
	       GAGenome* c1, GAGenome* c2){
  const GA1DArrayGenome<T> &mom=DYN_CAST(const GA1DArrayGenome<T> &, p1);
  const GA1DArrayGenome<T> &dad=DYN_CAST(const GA1DArrayGenome<T> &, p2);

  int nc=0;
  int a = GARandomInt(0, mom.length());
  int b = GARandomInt(0, mom.length());
  if(b < a) SWAP(a,b);
  int i,j, index;

  if(mom.length() != dad.length()){
    GAErr(GA_LOC, mom.className(), "order cross", gaErrBadParentLength);
    return nc;
  }
  
  if(c1 && c2){
    GA1DArrayGenome<T> &sis=DYN_CAST(GA1DArrayGenome<T> &, *c1);
    GA1DArrayGenome<T> &bro=DYN_CAST(GA1DArrayGenome<T> &, *c2);

// Copy the parent
    sis.GAArray<T>::copy(mom);

// Move all the 'holes' into the crossover section
    for(i=0, index=b; i<sis.size(); i++, index++){
      if(index >= sis.size()) index=0;
      if(GA1DArrayIsHole(sis,dad,index,a,b)) break;
    }
    
    for(; i<sis.size()-b+a; i++, index++){
      if(index >= sis.size()) index=0;
      j=index;
      do{
	j++;
	if(j >= sis.size()) j=0;
      } while(GA1DArrayIsHole(sis,dad,j,a,b));
      sis.swap(index,j);
    }

// Now put the 'holes' in the proper order within the crossover section.
    for(i=a; i<b; i++){
      if(sis.gene(i) != dad.gene(i)){
	for(j=i+1; j<b; j++)
	  if(sis.gene(j) == dad.gene(i)) sis.swap(i,j);
      }
    }

// Now do the other child
    bro.GAArray<T>::copy(dad);

// Move all the 'holes' into the crossover section
    for(i=0, index=b; i<bro.size(); i++, index++){
      if(index >= bro.size()) index=0;
      if(GA1DArrayIsHole(bro,mom,index,a,b)) break;
    }

    for(; i<bro.size()-b+a; i++, index++){
      if(index >= bro.size()) index=0;
      j=index;
      do{
	j++;
	if(j >= bro.size()) j=0;
      } while(GA1DArrayIsHole(bro,mom,j,a,b));
      bro.swap(index,j);
    }
    
// Now put the 'holes' in the proper order within the crossover section.
    for(i=a; i<b; i++){
      if(bro.gene(i) != mom.gene(i)){
	for(j=i+1; j<b; j++)
	  if(bro.gene(j) == mom.gene(i)) bro.swap(i,j);
      }
    }

    nc = 2;
  }
  else if(c1 || c2){
    GA1DArrayGenome<T> &sis = (c1 ? 
			       DYN_CAST(GA1DArrayGenome<T> &, *c1) : 
			       DYN_CAST(GA1DArrayGenome<T> &, *c2));

    const GA1DArrayGenome<T> *parent1, *parent2;
    if(GARandomBit()) { parent1 = &mom; parent2 = &dad; }
    else              { parent1 = &dad; parent2 = &mom; }

    sis.GAArray<T>::copy(*parent1);
    for(i=0, index=b; i<sis.size(); i++, index++){
      if(index >= sis.size()) index=0;
      if(GA1DArrayIsHole(sis,*parent2,index,a,b)) break;
    }
    for(; i<sis.size()-b+a; i++, index++){
      if(index >= sis.size()) index=0;
      j=index;
      do{
	j++;
	if(j >= sis.size()) j=0;
      } while(GA1DArrayIsHole(sis,*parent2,j,a,b));
      sis.swap(index,j);
    }
    for(i=a; i<b; i++){
      if(sis.gene(i) != parent2->gene(i)){
	for(j=i+1; j<b; j++)
	  if(sis.gene(j) == parent2->gene(i)) sis.swap(i,j);
      }
    }

    nc = 1;
  }

  return nc;
}








// Cycle crossover for the 1D array genome.  This is implemented as described 
// in goldberg's book.  The first is picked from mom, then cycle using dad.
// Finally, fill in the gaps with the elements from dad.
//   We allocate space for a temporary array in this routine.  It never frees
// the memory that it uses, so you might want to re-think this if you're really
// memory-constrained (similar to what we do with the uniform crossover when
// the children are resizeable).
//  Allocate space for an array of flags.  We use this to keep track of whether
// the child's contents came from the mother or the father.  We don't free the
// space here, but it is not a memory leak.
//   The first step is to cycle through mom & dad to get the cyclic part of 
// the crossover.  Then fill in the rest of the sis with dad's contents that 
// we didn't use in the cycle.  Finally, do the same thing for the other child.
//   Notice that this implementation makes serious use of the operator= for the
// objects in the array.  It also requires the operator != and == comparators.
template <class T> int
GA1DArrayGenome<T>::
CycleCrossover(const GAGenome& p1, const GAGenome& p2,
	       GAGenome* c1, GAGenome* c2){
  const GA1DArrayGenome<T> &mom=DYN_CAST(const GA1DArrayGenome<T> &, p1);
  const GA1DArrayGenome<T> &dad=DYN_CAST(const GA1DArrayGenome<T> &, p2);

  int nc=0;
  int i, current=0;

  if(mom.length() != dad.length()){
    GAErr(GA_LOC, mom.className(), "cycle cross", gaErrBadParentLength);
    return nc;
  }

  if(c1 && c2){
    GAMask mask;
    GA1DArrayGenome<T> &sis=DYN_CAST(GA1DArrayGenome<T> &, *c1);
    GA1DArrayGenome<T> &bro=DYN_CAST(GA1DArrayGenome<T> &, *c2);

    mask.size(sis.length());
    mask.clear();

    sis.gene(0, mom.gene(0));
    mask[0] = 1;
    while(dad.gene(current) != mom.gene(0)){
      for(i=0; i<sis.size(); i++){
	if(mom.gene(i) == dad.gene(current)){
	  sis.gene(i, mom.gene(i));
	  mask[i] = 1;
	  current = i;
	  break;
	}
      }
    }

    for(i=0; i<sis.size(); i++)
      if(mask[i] == 0) sis.gene(i, dad.gene(i));

    mask.clear();

    bro.gene(0, dad.gene(0));
    mask[0] = 1;
    while(mom.gene(current) != dad.gene(0)){
      for(i=0; i<bro.size(); i++){
	if(dad.gene(i) == mom.gene(current)){
	  bro.gene(i, dad.gene(i));
	  mask[i] = 1;
	  current = i;
	  break;
	}
      }
    }

    for(i=0; i<bro.size(); i++)
      if(mask[i] == 0) bro.gene(i, mom.gene(i));

    nc = 2;
  }
  else if(c1 || c2){
    GA1DArrayGenome<T> &sis = (c1 ?
			       DYN_CAST(GA1DArrayGenome<T> &, *c1) :
			       DYN_CAST(GA1DArrayGenome<T> &, *c2));

    const GA1DArrayGenome<T> *parent1, *parent2;
    if(GARandomBit()) { parent1 = &mom; parent2 = &dad; }
    else              { parent1 = &dad; parent2 = &mom; }

    GAMask mask;
    mask.size(sis.length());
    mask.clear();
    
    sis.gene(0, parent1->gene(0));
    mask[0] = 1;
    while(parent2->gene(current) != parent1->gene(0)){
      for(i=0; i<sis.size(); i++){
	if(parent1->gene(i) == parent2->gene(current)){
	  sis.gene(i, parent1->gene(i));
	  mask[i] = 1;
	  current = i;
	  break;
	}
      }
    }
    for(i=0; i<sis.size(); i++)
      if(mask[i] == 0) sis.gene(i, parent2->gene(i));

    nc = 1;
  }

  return nc;
}

#undef SWAP

#endif