1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
# Test consistency between galpy and amuse
import numpy
from amuse.couple import bridge
from amuse.datamodel import Particles
from amuse.lab import * # nopycln: import
from astropy import units as apy_u
from galpy import potential
from galpy.orbit import Orbit
from galpy.potential import to_amuse
from galpy.util import conversion
def test_amuse_potential_with_physical():
ro, vo = 8.0, 220.0
amp = 1e8 / conversion.mass_in_msol(ro=ro, vo=vo)
a = 0.8 / ro
amp_u = 1e8 * apy_u.solMass
a_u = 0.8 * apy_u.kpc
ro_u, vo_u = 8.0 * apy_u.kpc, 220.0 * apy_u.km / apy_u.s
x, y, z = 3 | units.kpc, 4 | units.kpc, 2 | units.kpc
r = 5 | units.kpc
# ------------------------------------
# get_potential_at_point
pot1 = potential.TwoPowerSphericalPotential(amp=amp, a=a, ro=ro, vo=vo)
gg1 = pot1(5 / ro, 2 / ro)
gg1 = gg1.to_value(apy_u.km**2 / apy_u.s**2) if hasattr(gg1, "unit") else gg1
amuse_pot1 = to_amuse(pot1)
ag1 = amuse_pot1.get_potential_at_point(0, x, y, z)
assert numpy.abs(gg1 - ag1.value_in(units.kms**2)) < 1e-10
pot2 = potential.TwoPowerSphericalPotential(amp=amp_u, a=a_u, ro=ro_u, vo=vo_u)
gg2 = pot1(5 * apy_u.kpc, 2 * apy_u.kpc)
gg2 = gg2.to_value(apy_u.km**2 / apy_u.s**2) if hasattr(gg2, "unit") else gg2
amuse_pot2 = to_amuse(pot2)
ag2 = amuse_pot2.get_potential_at_point(0, x, y, z)
assert numpy.abs(gg2 - ag2.value_in(units.kms**2)) < 1e-10
assert numpy.abs(ag1 - ag2) < 1e-10 | units.kms**2
# ------------------------------------
# test get_gravity_at_point
pot1 = potential.TwoPowerSphericalPotential(amp=amp, a=a, ro=ro, vo=vo)
amuse_pot1 = to_amuse(pot1)
ax1, ay1, az1 = amuse_pot1.get_gravity_at_point(0, x, y, z)
pot2 = potential.TwoPowerSphericalPotential(amp=amp_u, a=a_u, ro=ro_u, vo=vo_u)
amuse_pot2 = to_amuse(pot2)
ax2, ay2, az2 = amuse_pot2.get_gravity_at_point(0, x, y, z)
assert numpy.abs(ax1 - ax2) < 1e-10 | units.kms / units.Myr
assert numpy.abs(ay1 - ay2) < 1e-10 | units.kms / units.Myr
assert numpy.abs(az1 - az2) < 1e-10 | units.kms / units.Myr
# ------------------------------------
# test mass_density
pot1 = potential.TwoPowerSphericalPotential(amp=amp, a=a, ro=ro, vo=vo)
grho1 = pot1.dens(5 / ro, 2 / ro)
grho1 = (
grho1.to_value(apy_u.solMass / apy_u.pc**3) if hasattr(grho1, "unit") else grho1
)
amuse_pot1 = to_amuse(pot1)
arho1 = amuse_pot1.mass_density(x, y, z)
assert numpy.abs(grho1 - arho1.value_in(units.MSun / units.parsec**3)) < 1e-10
pot2 = potential.TwoPowerSphericalPotential(amp=amp_u, a=a_u, ro=ro_u, vo=vo_u)
grho2 = pot2.dens(5 * apy_u.kpc, 2 * apy_u.kpc)
grho2 = (
grho2.to_value(apy_u.solMass / apy_u.pc**3) if hasattr(grho2, "unit") else grho2
)
amuse_pot2 = to_amuse(pot2)
arho2 = amuse_pot2.mass_density(x, y, z)
assert numpy.abs(grho2 - arho2.value_in(units.MSun / units.parsec**3)) < 1e-10
assert numpy.abs(arho1 - arho2) < 1e-10 | units.MSun / units.parsec**3
# ------------------------------------
# test circular_velocity
pot1 = potential.TwoPowerSphericalPotential(amp=amp, a=a, ro=ro, vo=vo)
gv1 = pot1.vcirc(1 * apy_u.kpc)
gv1 = gv1.to_value(apy_u.km / apy_u.s) if hasattr(gv1, "unit") else gv1
amuse_pot1 = to_amuse(pot1)
av1 = amuse_pot1.circular_velocity(1 | units.kpc)
assert numpy.abs(gv1 - av1.value_in(units.kms)) < 1e-10
pot2 = potential.TwoPowerSphericalPotential(amp=amp_u, a=a_u, ro=ro_u, vo=vo_u)
gv2 = pot2.vcirc(1 * apy_u.kpc)
gv2 = gv2.to_value(apy_u.km / apy_u.s) if hasattr(gv2, "unit") else gv2
amuse_pot2 = to_amuse(pot2)
av2 = amuse_pot2.circular_velocity(1 | units.kpc)
assert numpy.abs(gv2 - av2.value_in(units.kms)) < 1e-10
assert numpy.abs(av1 - av2) < 1e-10 | units.kms
# ------------------------------------
# test enclosed_mass
pot1 = potential.TwoPowerSphericalPotential(amp=amp, a=a, ro=ro, vo=vo)
gm1 = pot1.mass(1 / ro)
gm1 = gm1.to_value(apy_u.solMass) if hasattr(gm1, "unit") else gm1
amuse_pot1 = to_amuse(pot1)
am1 = amuse_pot1.enclosed_mass(1 | units.kpc)
assert numpy.abs(gm1 - am1.value_in(units.MSun)) < 3e-8
pot2 = potential.TwoPowerSphericalPotential(amp=amp_u, a=a_u, ro=ro_u, vo=vo_u)
gm2 = pot2.mass(1 * apy_u.kpc)
gm2 = gm2.to_value(apy_u.solMass) if hasattr(gm2, "unit") else gm2
amuse_pot2 = to_amuse(pot2)
am2 = amuse_pot2.enclosed_mass(1 | units.kpc)
assert numpy.abs(gm2 - am2.value_in(units.MSun)) < 3e-8
assert numpy.abs(am1 - am2) < 1e-10 | units.MSun
return None
def test_amuse_MN3ExponentialDiskPotential():
mn = potential.MN3ExponentialDiskPotential(normalize=1.0, hr=0.5, hz=0.1)
tmax = 3.0
vo, ro = 215.0, 8.75
o = Orbit([1.0, 0.1, 1.1, 0.3, 0.1, 0.4], ro=ro, vo=vo)
run_orbitIntegration_comparison(o, mn, tmax, vo, ro)
return None
def test_amuse_MiyamotoNagaiPotential():
mp = potential.MiyamotoNagaiPotential(normalize=1.0, a=0.5, b=0.1)
tmax = 4.0
vo, ro = 220.0, 8.0
o = Orbit([1.0, 0.1, 1.1, 0.3, 0.1, 0.4], ro=ro, vo=vo)
run_orbitIntegration_comparison(o, mp, tmax, vo, ro)
return None
def test_amuse_NFWPotential():
np = potential.NFWPotential(normalize=1.0, a=3.0)
tmax = 3.0
vo, ro = 200.0, 7.0
o = Orbit([1.0, 0.5, 1.3, 0.3, 0.1, 0.4], ro=ro, vo=vo)
run_orbitIntegration_comparison(o, np, tmax, vo, ro)
return None
def test_amuse_HernquistPotential():
hp = potential.HernquistPotential(normalize=1.0, a=3.0)
tmax = 3.0
vo, ro = 210.0, 7.5
o = Orbit([1.0, 0.25, 1.4, 0.3, -0.1, 0.4], ro=ro, vo=vo)
run_orbitIntegration_comparison(o, hp, tmax, vo, ro, tol=0.02)
return None
def test_amuse_PowerSphericalPotentialwCutoffPotential():
pp = potential.PowerSphericalPotentialwCutoff(normalize=1.0, alpha=1.0, rc=0.4)
tmax = 2.0
vo, ro = 180.0, 9.0
o = Orbit([1.0, 0.03, 1.03, 0.2, 0.1, 0.4], ro=ro, vo=vo)
run_orbitIntegration_comparison(o, pp, tmax, vo, ro)
return None
def test_amuse_LogarithmicHaloPotential():
lp = potential.LogarithmicHaloPotential(normalize=1.0)
tmax = 2.0
vo, ro = 210.0, 8.5
o = Orbit([1.0, 0.1, 1.1, 0.3, 0.1, 0.4], ro=ro, vo=vo)
run_orbitIntegration_comparison(o, lp, tmax, vo, ro, tol=0.03)
return None
def test_amuse_PlummerPotential():
pp = potential.PlummerPotential(normalize=1.0, b=2.0)
tmax = 3.0
vo, ro = 213.0, 8.23
o = Orbit([1.0, 0.1, 1.1, 0.3, 0.1, 0.4], ro=ro, vo=vo)
run_orbitIntegration_comparison(o, pp, tmax, vo, ro, tol=0.03)
return None
def test_amuse_MWPotential2014():
mp = potential.MWPotential2014
tmax = 3.5
vo, ro = 220.0, 8.0
o = Orbit([1.0, 0.1, 1.1, 0.2, 0.1, 1.4], ro=ro, vo=vo)
run_orbitIntegration_comparison(o, mp, tmax, vo, ro)
return None
def run_orbitIntegration_comparison(orb, pot, tmax, vo, ro, tol=0.01):
# Integrate in galpy
ts = numpy.linspace(0.0, tmax / conversion.time_in_Gyr(vo, ro), 1001)
orb.integrate(ts, pot)
# Integrate with amuse
x, y, z, vx, vy, vz = integrate_amuse(orb, pot, tmax | units.Gyr, vo, ro)
# Read and compare
xdiff = numpy.fabs((x - orb.x(ts[-1])) / x)
ydiff = numpy.fabs((y - orb.y(ts[-1])) / y)
zdiff = numpy.fabs((z - orb.z(ts[-1])) / z)
vxdiff = numpy.fabs((vx - orb.vx(ts[-1])) / vx)
vydiff = numpy.fabs((vy - orb.vy(ts[-1])) / vy)
vzdiff = numpy.fabs((vz - orb.vz(ts[-1])) / vz)
assert xdiff < tol, (
"galpy and amuse orbit integration inconsistent for x by %g" % xdiff
)
assert ydiff < tol, (
"galpy and amuse orbit integration inconsistent for y by %g" % ydiff
)
assert zdiff < tol, (
"galpy and amuse orbit integration inconsistent for z by %g" % zdiff
)
assert vxdiff < tol, (
"galpy and amuse orbit integration inconsistent for vx by %g" % vxdiff
)
assert vydiff < tol, (
"galpy and amuse orbit integration inconsistent for vy by %g" % vydiff
)
assert vzdiff < tol, (
"galpy and amuse orbit integration inconsistent for vz by %g" % vzdiff
)
return None
def integrate_amuse(orb, pot, tmax, vo, ro):
"""Integrate a snapshot in infile until tmax in Gyr, save to outfile"""
time = 0.0 | tmax.unit
dt = tmax / 10001.0
orbit = Particles(1)
orbit.mass = 1.0 | units.MSun
orbit.radius = 1.0 | units.RSun
orbit.position = [orb.x(), orb.y(), orb.z()] | units.kpc
orbit.velocity = [orb.vx(), orb.vy(), orb.vz()] | units.kms
galaxy_code = to_amuse(pot, ro=ro, vo=vo)
orbit_gravity = drift_without_gravity(orbit)
orbit_gravity.particles.add_particles(orbit)
channel_from_gravity_to_orbit = orbit_gravity.particles.new_channel_to(orbit)
gravity = bridge.Bridge(use_threading=False)
gravity.add_system(orbit_gravity, (galaxy_code,))
gravity.add_system(
galaxy_code,
)
gravity.timestep = dt
while time <= tmax:
time += dt
gravity.evolve_model(time)
channel_from_gravity_to_orbit.copy()
gravity.stop()
return (
orbit.x[0].value_in(units.kpc),
orbit.y[0].value_in(units.kpc),
orbit.z[0].value_in(units.kpc),
orbit.vx[0].value_in(units.kms),
orbit.vy[0].value_in(units.kms),
orbit.vz[0].value_in(units.kms),
)
class drift_without_gravity:
def __init__(self, convert_nbody, time=0 | units.Myr):
self.model_time = time
self.particles = Particles()
def evolve_model(self, t_end):
dt = t_end - self.model_time
self.particles.position += self.particles.velocity * dt
self.model_time = t_end
@property
def potential_energy(self):
return quantities.zero
@property
def get_potential_at_point(self):
return quantities.zero
@property
def kinetic_energy(self):
return (
0.5 * self.particles.mass * self.particles.velocity.lengths() ** 2
).sum()
@property
def angular_momenum(self):
return numpy.cross(self.particles.position, self.particles.velocity)
def stop(self):
pass
|