File: test_dynamfric.py

package info (click to toggle)
galpy 1.10.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,336 kB
  • sloc: python: 117,850; ansic: 13,779; makefile: 4
file content (403 lines) | stat: -rw-r--r-- 15,549 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# Tests of dynamical friction implementation
import sys

import pytest

PY3 = sys.version > "3"
import numpy

from galpy import potential
from galpy.util import galpyWarning


def test_ChandrasekharDynamicalFrictionForce_constLambda():
    # Test that the ChandrasekharDynamicalFrictionForce with constant Lambda
    # agrees with analytical solutions for circular orbits:
    # assuming that a mass remains on a circular orbit in an isothermal halo
    # with velocity dispersion sigma and for constant Lambda:
    # r_final^2 - r_initial^2 = -0.604 ln(Lambda) GM/sigma t
    # (e.g., B&T08, p. 648)
    from galpy.orbit import Orbit
    from galpy.util import conversion

    ro, vo = 8.0, 220.0
    # Parameters
    GMs = 10.0**9.0 / conversion.mass_in_msol(vo, ro)
    const_lnLambda = 7.0
    r_init = 2.0
    dt = 2.0 / conversion.time_in_Gyr(vo, ro)
    # Compute
    lp = potential.LogarithmicHaloPotential(normalize=1.0, q=1.0)
    cdfc = potential.ChandrasekharDynamicalFrictionForce(
        GMs=GMs, const_lnLambda=const_lnLambda, dens=lp
    )  # don't provide sigmar, so it gets computed using galpy.df.jeans
    o = Orbit([r_init, 0.0, 1.0, 0.0, 0.0, 0.0])
    ts = numpy.linspace(0.0, dt, 1001)
    o.integrate(ts, [lp, cdfc], method="odeint")
    r_pred = numpy.sqrt(
        o.r() ** 2.0 - 0.604 * const_lnLambda * GMs * numpy.sqrt(2.0) * dt
    )
    assert numpy.fabs(r_pred - o.r(ts[-1])) < 0.01, (
        "ChandrasekharDynamicalFrictionForce with constant lnLambda for circular orbits does not agree with analytical prediction"
    )
    return None


def test_ChandrasekharDynamicalFrictionForce_varLambda():
    # Test that dynamical friction with variable Lambda for small r ranges
    # gives ~ the same result as using a constant Lambda that is the mean of
    # the variable lambda
    # Also tests that giving an axisymmetric list of potentials for the
    # density works
    from galpy.orbit import Orbit
    from galpy.util import conversion

    ro, vo = 8.0, 220.0
    # Parameters
    GMs = 10.0**9.0 / conversion.mass_in_msol(vo, ro)
    r_init = 3.0
    dt = 2.0 / conversion.time_in_Gyr(vo, ro)
    # Compute evolution with variable ln Lambda
    cdf = potential.ChandrasekharDynamicalFrictionForce(
        GMs=GMs,
        rhm=0.125,
        dens=potential.MWPotential2014,
        sigmar=lambda r: 1.0 / numpy.sqrt(2.0),
    )
    o = Orbit([r_init, 0.0, 1.0, 0.0, 0.0, 0.0])
    ts = numpy.linspace(0.0, dt, 1001)
    o.integrate(ts, [potential.MWPotential2014, cdf], method="odeint")
    lnLs = numpy.array(
        [
            cdf.lnLambda(r, v)
            for (r, v) in zip(
                o.r(ts), numpy.sqrt(o.vx(ts) ** 2.0 + o.vy(ts) ** 2.0 + o.vz(ts) ** 2.0)
            )
        ]
    )
    cdfc = potential.ChandrasekharDynamicalFrictionForce(
        GMs=GMs,
        rhm=0.125,
        const_lnLambda=numpy.mean(lnLs),
        dens=potential.MWPotential2014,
        sigmar=lambda r: 1.0 / numpy.sqrt(2.0),
    )
    oc = o()
    oc.integrate(ts, [potential.MWPotential2014, cdfc], method="odeint")
    assert numpy.fabs(oc.r(ts[-1]) - o.r(ts[-1])) < 0.05, (
        "ChandrasekharDynamicalFrictionForce with variable lnLambda for a short radial range is not close to the calculation using a constant lnLambda"
    )
    return None


def test_ChandrasekharDynamicalFrictionForce_evaloutsideminrmaxr():
    # Test that dynamical friction returns the expected force when evaluating
    # outside of the [minr,maxr] range over which sigmar is interpolated:
    # 0 at r < minr
    # using sigmar(r) for r > maxr
    from galpy.util import conversion

    ro, vo = 8.0, 220.0
    # Parameters
    GMs = 10.0**9.0 / conversion.mass_in_msol(vo, ro)
    # Compute evolution with variable ln Lambda
    sigmar = lambda r: 1.0 / r
    cdf = potential.ChandrasekharDynamicalFrictionForce(
        GMs=GMs,
        rhm=0.125,
        dens=potential.MWPotential2014,
        sigmar=sigmar,
        minr=0.5,
        maxr=2.0,
    )
    # cdf 2 for checking r > maxr of cdf
    cdf2 = potential.ChandrasekharDynamicalFrictionForce(
        GMs=GMs,
        rhm=0.125,
        dens=potential.MWPotential2014,
        sigmar=sigmar,
        minr=0.5,
        maxr=4.0,
    )
    v = [0.1, 0.0, 0.0]
    # r < minr
    assert numpy.fabs(cdf.Rforce(0.1, 0.0, v=v)) < 1e-16, (
        "potential.ChandrasekharDynamicalFrictionForce at r < minr not equal to zero"
    )
    assert numpy.fabs(cdf.zforce(0.1, 0.0, v=v)) < 1e-16, (
        "potential.ChandrasekharDynamicalFrictionForce at r < minr not equal to zero"
    )
    # r > maxr
    assert numpy.fabs(cdf.Rforce(3.0, 0.0, v=v) - cdf2.Rforce(3.0, 0.0, v=v)) < 1e-10, (
        "potential.ChandrasekharDynamicalFrictionForce at r > maxr not as expected"
    )
    assert numpy.fabs(cdf.zforce(3.0, 0.0, v=v) - cdf2.zforce(3.0, 0.0, v=v)) < 1e-10, (
        "potential.ChandrasekharDynamicalFrictionForce at r > maxr not as expected"
    )
    return None


def test_ChandrasekharDynamicalFrictionForce_pickling():
    # Test that ChandrasekharDynamicalFrictionForce objects can/cannot be
    # pickled as expected
    import pickle

    from galpy.util import conversion

    ro, vo = 8.0, 220.0
    # Parameters
    GMs = 10.0**9.0 / conversion.mass_in_msol(vo, ro)
    # sigmar internally computed, should be able to be pickled
    # Compute evolution with variable ln Lambda
    cdf = potential.ChandrasekharDynamicalFrictionForce(
        GMs=GMs, rhm=0.125, dens=potential.MWPotential2014, minr=0.5, maxr=2.0
    )
    pickled = pickle.dumps(cdf)
    cdfu = pickle.loads(pickled)
    # Test a few values
    assert (
        numpy.fabs(
            cdf.Rforce(1.0, 0.2, v=[1.0, 1.0, 0.0])
            - cdfu.Rforce(1.0, 0.2, v=[1.0, 1.0, 0.0])
        )
        < 1e-10
    ), (
        "Pickling of ChandrasekharDynamicalFrictionForce object does not work as expected"
    )
    assert (
        numpy.fabs(
            cdf.zforce(2.0, -0.2, v=[1.0, 1.0, 0.0])
            - cdfu.zforce(2.0, -0.2, v=[1.0, 1.0, 0.0])
        )
        < 1e-10
    ), (
        "Pickling of ChandrasekharDynamicalFrictionForce object does not work as expected"
    )
    # Not providing dens = Logarithmic should also work
    cdf = potential.ChandrasekharDynamicalFrictionForce(
        GMs=GMs, rhm=0.125, minr=0.5, maxr=2.0
    )
    pickled = pickle.dumps(cdf)
    cdfu = pickle.loads(pickled)
    # Test a few values
    assert (
        numpy.fabs(
            cdf.Rforce(1.0, 0.2, v=[1.0, 1.0, 0.0])
            - cdfu.Rforce(1.0, 0.2, v=[1.0, 1.0, 0.0])
        )
        < 1e-10
    ), (
        "Pickling of ChandrasekharDynamicalFrictionForce object does not work as expected"
    )
    assert (
        numpy.fabs(
            cdf.zforce(2.0, -0.2, v=[1.0, 1.0, 0.0])
            - cdfu.zforce(2.0, -0.2, v=[1.0, 1.0, 0.0])
        )
        < 1e-10
    ), (
        "Pickling of ChandrasekharDynamicalFrictionForce object does not work as expected"
    )

    # Providing sigmar as a lambda function gives AttributeError
    sigmar = lambda r: 1.0 / r
    cdf = potential.ChandrasekharDynamicalFrictionForce(
        GMs=GMs,
        rhm=0.125,
        dens=potential.MWPotential2014,
        sigmar=sigmar,
        minr=0.5,
        maxr=2.0,
    )
    if PY3:
        with pytest.raises(AttributeError) as excinfo:
            pickled = pickle.dumps(cdf)
    else:
        with pytest.raises(pickle.PicklingError) as excinfo:
            pickled = pickle.dumps(cdf)
    return None


# Test whether dynamical friction in C works (compare to Python, which is
# tested below; put here because a test of many potentials)
def test_dynamfric_c():
    import copy

    from galpy.orbit import Orbit
    from galpy.potential.mwpotentials import McMillan17
    from galpy.potential.Potential import _check_c

    # Basic parameters for the test
    times = numpy.linspace(0.0, -100.0, 1001)  # ~3 Gyr at the Solar circle
    integrator = "dop853_c"
    py_integrator = "dop853"
    # Define all of the potentials (by hand, because need reasonable setup)
    MWPotential3021 = copy.deepcopy(potential.MWPotential2014)
    MWPotential3021[2] *= 1.5  # Increase mass by 50%
    pots = [
        potential.LogarithmicHaloPotential(normalize=1),
        potential.LogarithmicHaloPotential(normalize=1.3, q=0.9, b=0.7),  # nonaxi
        potential.NFWPotential(normalize=1.0, a=1.5),
        potential.MiyamotoNagaiPotential(normalize=0.02, a=10.0, b=10.0),
        potential.MiyamotoNagaiPotential(normalize=0.6, a=0.0, b=3.0),  # special case
        potential.PowerSphericalPotential(alpha=2.3, normalize=2.0),
        potential.DehnenSphericalPotential(normalize=4.0, alpha=1.2),
        potential.DehnenCoreSphericalPotential(normalize=4.0),
        potential.HernquistPotential(normalize=1.0, a=3.5),
        potential.JaffePotential(normalize=1.0, a=20.5),
        potential.DoubleExponentialDiskPotential(normalize=0.2, hr=3.0, hz=0.6),
        potential.FlattenedPowerPotential(normalize=3.0),
        potential.FlattenedPowerPotential(normalize=3.0, alpha=0),  # special case
        potential.IsochronePotential(normalize=2.0),
        potential.PowerSphericalPotentialwCutoff(normalize=0.3, rc=10.0),
        potential.PlummerPotential(normalize=0.6, b=3.0),
        potential.PseudoIsothermalPotential(normalize=0.1, a=3.0),
        potential.BurkertPotential(normalize=0.2, a=2.5),
        potential.TriaxialHernquistPotential(normalize=1.0, a=3.5, b=0.8, c=0.9),
        potential.TriaxialNFWPotential(normalize=1.0, a=1.5, b=0.8, c=0.9),
        potential.TriaxialJaffePotential(normalize=1.0, a=20.5, b=0.8, c=1.4),
        potential.PerfectEllipsoidPotential(normalize=0.3, a=3.0, b=0.7, c=1.5),
        potential.PerfectEllipsoidPotential(
            normalize=0.3, a=3.0, b=0.7, c=1.5, pa=3.0, zvec=[0.0, 1.0, 0.0]
        ),  # rotated
        potential.HomogeneousSpherePotential(
            normalize=0.02, R=82.0 / 8
        ),  # make sure to go to dens = 0 part,
        potential.interpSphericalPotential(
            rforce=potential.HomogeneousSpherePotential(normalize=0.02, R=82.0 / 8.0),
            rgrid=numpy.linspace(0.0, 82.0 / 8.0, 201),
        ),
        potential.TriaxialGaussianPotential(
            normalize=0.03, sigma=4.0, b=0.8, c=1.5, pa=3.0, zvec=[1.0, 0.0, 0.0]
        ),
        potential.SCFPotential(
            Acos=numpy.array([[[1.0]]]),
            normalize=1.0,
            a=3.5,  # same as Hernquist
        ),
        potential.SCFPotential(
            Acos=numpy.array([[[1.0, 0.0], [0.3, 0.0]]]),  # nonaxi
            Asin=numpy.array([[[0.0, 0.0], [1e-1, 0.0]]]),
            normalize=1.0,
            a=3.5,
        ),
        MWPotential3021,
        McMillan17,  # SCF + DiskSCF
    ]
    # tolerances in log10
    tol = {}
    tol["default"] = -7.0
    # Following are a little more difficult
    tol["DoubleExponentialDiskPotential"] = -4.5
    tol["TriaxialHernquistPotential"] = -6.0
    tol["TriaxialNFWPotential"] = -6.0
    tol["TriaxialJaffePotential"] = -6.0
    tol["MWPotential3021"] = -6.0
    tol["HomogeneousSpherePotential"] = -6.0
    tol["interpSphericalPotential"] = -6.0  # == HomogeneousSpherePotential
    tol["McMillan17"] = -6.0
    for p in pots:
        if not _check_c(p, dens=True):
            continue  # dynamfric not in C!
        pname = type(p).__name__
        if pname == "list":
            if (
                isinstance(p[0], potential.PowerSphericalPotentialwCutoff)
                and len(p) > 1
                and isinstance(p[1], potential.MiyamotoNagaiPotential)
                and len(p) > 2
                and isinstance(p[2], potential.NFWPotential)
            ):
                pname = "MWPotential3021"  # Must be!
            else:
                pname = "McMillan17"
        # print(pname)
        if pname in list(tol.keys()):
            ttol = tol[pname]
        else:
            ttol = tol["default"]
        # Setup orbit, ~ LMC
        o = Orbit(
            [5.13200034, 1.08033051, 0.23323391, -3.48068653, 0.94950884, -1.54626091]
        )
        # Setup dynamical friction object
        if pname == "McMillan17":
            cdf = potential.ChandrasekharDynamicalFrictionForce(
                GMs=0.5553870441722593, rhm=5.0 / 8.0, dens=p, maxr=500.0 / 8, nr=101
            )
            ttimes = numpy.linspace(0.0, -30.0, 1001)  # ~1 Gyr at the Solar circle
        else:
            cdf = potential.ChandrasekharDynamicalFrictionForce(
                GMs=0.5553870441722593, rhm=5.0 / 8.0, dens=p, maxr=500.0 / 8, nr=201
            )
            ttimes = times
        # Integrate in C
        o.integrate(ttimes, p + cdf, method=integrator)
        # Integrate in Python
        op = o()
        op.integrate(ttimes, p + cdf, method=py_integrator)
        # Compare r (most important)
        assert numpy.amax(numpy.fabs(o.r(ttimes) - op.r(ttimes))) < 10**ttol, (
            f"Dynamical friction in C does not agree with dynamical friction in Python for potential {pname}"
        )
    return None


# Test that r < minr in ChandrasekharDynamFric works properly
def test_dynamfric_c_minr():
    from galpy.orbit import Orbit

    times = numpy.linspace(0.0, -100.0, 1001)  # ~3 Gyr at the Solar circle
    integrator = "dop853_c"
    pot = potential.LogarithmicHaloPotential(normalize=1)
    # Setup orbit, ~ LMC
    o = Orbit(
        [5.13200034, 1.08033051, 0.23323391, -3.48068653, 0.94950884, -1.54626091]
    )
    # Setup dynamical friction object, with minr = 130 st always 0 for this orbit
    cdf = potential.ChandrasekharDynamicalFrictionForce(
        GMs=0.5553870441722593,
        rhm=5.0 / 8.0,
        dens=pot,
        minr=130.0 / 8.0,
        maxr=500.0 / 8,
    )
    # Integrate in C with dynamical friction
    o.integrate(times, pot + cdf, method=integrator)
    # Integrate in C without dynamical friction
    op = o()
    op.integrate(times, pot, method=integrator)
    # Compare r (most important)
    assert numpy.amax(numpy.fabs(o.r(times) - op.r(times))) < 10**-8.0, (
        "Dynamical friction in C does not properly use minr"
    )
    return None


# Test that when an orbit reaches r < minr, a warning is raised to alert the user
def test_dynamfric_c_minr_warning():
    from galpy.orbit import Orbit

    times = numpy.linspace(0.0, 100.0, 1001)  # ~3 Gyr at the Solar circle
    integrator = "dop853_c"
    pot = potential.LogarithmicHaloPotential(normalize=1)
    # Setup orbit
    o = Orbit()
    # Setup dynamical friction object, with minr = 1, should thus reach it
    cdf = potential.ChandrasekharDynamicalFrictionForce(
        GMs=0.5553870441722593, rhm=5.0 / 8.0, dens=pot, minr=1.0
    )
    # Integrate, should raise warning
    with pytest.warns(galpyWarning) as record:
        o.integrate(times, pot + cdf, method=integrator)
    raisedWarning = False
    for rec in record:
        # check that the message matches
        raisedWarning += (
            str(rec.message.args[0])
            == "Orbit integration with ChandrasekharDynamicalFrictionForce entered domain where r < minr and ChandrasekharDynamicalFrictionForce is turned off; initialize ChandrasekharDynamicalFrictionForce with a smaller minr to avoid this if you wish (but note that you want to turn it off close to the center for an object that sinks all the way to r=0, to avoid numerical instabilities)"
        )
    assert raisedWarning, (
        "Integrating an orbit that goes to r < minr with dynamical friction should have raised a warning, but didn't"
    )
    return None