File: test_scf.py

package info (click to toggle)
galpy 1.10.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,336 kB
  • sloc: python: 117,850; ansic: 13,779; makefile: 4
file content (901 lines) | stat: -rw-r--r-- 32,311 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
############################TESTS ON POTENTIALS################################

import numpy

from galpy import df, potential
from galpy.orbit import Orbit
from galpy.potential import SCFPotential
from galpy.util import coords

EPS = 1e-13  ## default epsilon

DEFAULT_R = numpy.array([0.5, 1.0, 2.0])
DEFAULT_Z = numpy.array([0.0, 0.125, -0.125, 0.25, -0.25])
DEFAULT_PHI = numpy.array(
    [0.0, 0.5, -0.5, 1.0, -1.0, numpy.pi, 0.5 + numpy.pi, 1.0 + numpy.pi]
)

##Tests whether invalid coefficients will throw an error at runtime


def test_coeffs_toomanydimensions():
    Acos = numpy.ones((10, 2, 32, 34))
    try:
        SCFPotential(Acos=Acos)
        raise Exception("Expected RuntimeError")
    except RuntimeError:
        pass


def test_coeffs_toolittledimensions():
    Acos = numpy.ones((10, 2))
    try:
        SCFPotential(Acos=Acos)
        raise Exception("Expected RuntimeError")
    except RuntimeError:
        pass


def test_coeffs_AsinNone_LnotequalM():
    Acos = numpy.ones((2, 3, 4))
    try:
        SCFPotential(Acos=Acos)
        raise Exception("Expected RuntimeError")
    except RuntimeError:
        pass


def test_coeffs_AsinNotNone_LnotequalM():
    Acos = numpy.ones((2, 3, 4))
    Asin = numpy.ones((2, 3, 4))

    try:
        SCFPotential(Acos=Acos, Asin=Asin)
        raise Exception("Expected RuntimeError")
    except RuntimeError:
        pass


def test_coeffs_AsinNone_Mequals1():
    Acos = numpy.zeros((2, 3, 1))
    Asin = None

    SCFPotential(Acos=Acos, Asin=Asin)


def test_coeffs_AsinNone_MequalsL():
    Acos = numpy.zeros((2, 3, 3))
    Asin = None

    SCFPotential(Acos=Acos, Asin=Asin)


def test_coeffs_AsinNone_AcosNotaxisym():
    Acos = numpy.ones((2, 3, 3))
    try:
        SCFPotential(Acos=Acos)
        raise Exception("Expected RuntimeError")
    except RuntimeError:
        pass


def test_coeffs_AsinShape_notequal_AcosShape():
    Acos = numpy.ones((2, 3, 3))
    Asin = numpy.ones((2, 2, 2))
    try:
        SCFPotential(Acos=Acos, Asin=Asin)
        raise Exception("Expected RuntimeError")
    except RuntimeError:
        pass


def test_coeffs_Acos_L_M_notLowerTriangular():
    Acos = numpy.ones((2, 3, 3))
    Asin = numpy.zeros((2, 3, 3))
    try:
        SCFPotential(Acos=Acos, Asin=Asin)
        raise Exception("Expected RuntimeWarning")
    except RuntimeWarning:
        pass


def test_coeffs_Asin_L_M_notLowerTriangular():
    Acos = numpy.zeros((2, 3, 3))
    Asin = numpy.ones((2, 3, 3))
    try:
        SCFPotential(Acos=Acos, Asin=Asin)
        raise Exception("Expected RuntimeWarning")
    except RuntimeWarning:
        pass


def testAxi_phiIsNone():
    R = 1
    z = 0
    phi = 1.1
    scf = SCFPotential()
    assert scf(R, z, None) == scf(R, z, phi), (
        "The axisymmetric potential does not work at phi=None"
    )
    assert scf.dens(R, z, None) == scf.dens(R, z, phi), (
        "The axisymmetric density does not work at phi=None"
    )
    assert scf.Rforce(R, z, None) == scf.Rforce(R, z, phi), (
        "The axisymmetric Rforce does not work at phi=None"
    )
    assert scf.zforce(R, z, None) == scf.zforce(R, z, phi), (
        "The axisymmetric zforce does not work at phi=None"
    )
    assert scf.phitorque(R, z, None) == scf.phitorque(R, z, phi), (
        "The axisymmetric phitorque does not work at phi=None"
    )


##Tests user inputs as arrays


def testArray_RArray():
    scf = SCFPotential()
    array = numpy.linspace(0, 3, 100)
    ArrayTest(scf, [array, 1.0, 0])


def testArray_zArray():
    scf = SCFPotential()
    array = numpy.linspace(0, 3, 100)
    ArrayTest(scf, [1.0, array, 0])


def testArray_phiArray():
    scf = SCFPotential()
    array = numpy.linspace(0, 3, 100)
    ArrayTest(scf, [1.0, 1.0, array])


def testArrayBroadcasting():
    scf = SCFPotential()
    R = numpy.ones((10, 20, 2))
    z = numpy.linspace(0, numpy.pi, 10)[:, None, None]
    phi = numpy.zeros((10, 20))[:, :, None]

    ArrayTest(scf, [R, z, phi])


## tests whether scf_compute_spherical computes the correct coefficients for a Hernquist Potential
def test_scf_compute_spherical_hernquist():
    Acos, Asin = potential.scf_compute_coeffs_spherical(sphericalHernquistDensity, 10)
    spherical_coeffsTest(Acos, Asin)
    assert numpy.fabs(Acos[0, 0, 0] - 1.0) < EPS, (
        f"Acos(n=0,l=0,m=0) = 1 fails. Found to be Acos(n=0,l=0,m=0) = {Acos[0, 0, 0]}"
    )
    assert numpy.all(numpy.fabs(Acos[1:, 0, 0]) < EPS), "Acos(n>0,l=0,m=0) = 0 fails."


## tests whether scf_compute_spherical computes the correct coefficients for Zeeuw's Potential
def test_scf_compute_spherical_zeeuw():
    Acos, Asin = potential.scf_compute_coeffs_spherical(rho_Zeeuw, 10)
    spherical_coeffsTest(Acos, Asin)
    assert numpy.fabs(Acos[0, 0, 0] - 2 * 3.0 / 4) < EPS, (
        f"Acos(n=0,l=0,m=0) = 3/2 fails. Found to be Acos(n=0,l=0,m=0) = {Acos[0, 0, 0]}"
    )
    assert numpy.fabs(Acos[1, 0, 0] - 2 * 1.0 / 12) < EPS, (
        f"Acos(n=1,l=0,m=0) = 1/6 fails. Found to be Acos(n=0,l=0,m=0) = {Acos[0, 0, 0]}"
    )
    assert numpy.all(numpy.fabs(Acos[2:, 0, 0]) < EPS), "Acos(n>1,l=0,m=0) = 0 fails."


##Tests that the numerically calculated results from axi_density1 matches with the analytic results
def test_scf_compute_axi_density1():
    A = potential.scf_compute_coeffs_axi(axi_density1, 10, 10)
    axi_coeffsTest(A[0], A[1])
    analytically_calculated = numpy.array(
        [
            [4.0 / 3, 7.0 * 3 ** (-5 / 2.0), 2 * 11 * 5 ** (-5.0 / 2), 0],
            [0, 0, 0, 0],
            [
                0,
                11.0 / (3.0 ** (5.0 / 2) * 5 * 7.0 * 2),
                1.0 / (2 * 3.0 * 5**0.5 * 7.0),
                0,
            ],
        ]
    )
    numerically_calculated = A[0][:3, :4, 0]
    shape = numerically_calculated.shape
    for n in range(shape[0]):
        for l in range(shape[1]):
            assert (
                numpy.fabs(numerically_calculated[n, l] - analytically_calculated[n, l])
                < EPS
            ), (
                f"Acos(n={n},l={l},0) = {numerically_calculated[n, l]}, whereas it was analytically calculated to be {analytically_calculated[n, l]}"
            )
    # Checks that A at l != 0,1,2 are always zero
    assert numpy.all(numpy.fabs(A[0][:, 3:, 0]) < 1e-10), "Acos(n,l>2,m=0) = 0 fails."

    # Checks that A at n odd is always zero
    assert numpy.all(numpy.fabs(A[0][1::2, :, 0]) < 1e-10), (
        "Acos(n odd,l,m=0) = 0 fails."
    )

    # Checks that A = 0 when n != 0 and l = 0
    assert numpy.all(numpy.fabs(A[0][1:, 0, 0]) < 1e-10), (
        "Acos(n > 1,l=0,m=0) = 0 fails."
    )


##Tests that the numerically calculated results from axi_density2 matches with the analytic results
def test_scf_compute_axi_density2():
    A = potential.scf_compute_coeffs_axi(
        axi_density2, 10, 10, radial_order=30, costheta_order=12
    )
    axi_coeffsTest(A[0], A[1])
    analytically_calculated = 2 * numpy.array(
        [
            [1.0, 7.0 * 3 ** (-3 / 2.0) / 4.0, 3 * 11 * 5 ** (-5.0 / 2) / 2.0, 0],
            [0, 0, 0, 0],  ##I never did analytically solve for n=1
            [
                0,
                11.0 / (7 * 5 * 3 ** (3.0 / 2) * 2 ** (3.0)),
                (7 * 5 ** (0.5) * 2**3.0) ** -1.0,
                0,
            ],
        ]
    )
    numerically_calculated = A[0][:3, :4, 0]
    shape = numerically_calculated.shape
    for n in range(shape[0]):
        if n == 1:
            continue
        for l in range(shape[1]):
            assert (
                numpy.fabs(numerically_calculated[n, l] - analytically_calculated[n, l])
                < EPS
            ), (
                f"Acos(n={n},l={l},0) = {numerically_calculated[n, l]}, whereas it was analytically calculated to be {analytically_calculated[n, l]}"
            )

    # Checks that A at l != 0,1,2 are always zero
    assert numpy.all(numpy.fabs(A[0][:, 3:, 0]) < 1e-10), "Acos(n,l>2,m=0) = 0 fails."

    # Checks that A = 0 when n = 2,4,..,2*n and l = 0
    assert numpy.all(numpy.fabs(A[0][2::2, 0, 0]) < 1e-10), (
        "Acos(n > 1,l = 0,m=0) = 0 fails."
    )


## Tests how nbody calculation compares to density calculation for scf_compute_coeff in the spherical case
def test_scf_compute_spherical_nbody_hernquist():
    N = int(1e6)
    Mh = 11.0
    ah = 50.0 / 8.0
    m = Mh / N
    factor = 1.0
    nsamp = 10
    Norder = 10

    hern = potential.HernquistPotential(amp=2 * Mh, a=ah)
    hern.turn_physical_off()
    hdf = df.isotropicHernquistdf(hern)
    numpy.random.seed(1)
    samples = [hdf.sample(n=N) for i in range(nsamp)]

    positions = numpy.array(
        [
            [samples[i].x(), samples[i].y(), samples[i].z() * factor]
            for i in range(nsamp)
        ]
    )

    c = numpy.zeros((nsamp, Norder, 1, 1))
    s = numpy.zeros((nsamp, Norder, 1, 1))
    for i in range(nsamp):
        c[i], s[i] = potential.scf_compute_coeffs_spherical_nbody(
            positions[i], Norder, mass=m * numpy.ones(N), a=ah
        )

    cc, ss = potential.scf_compute_coeffs_spherical(hern.dens, Norder, a=ah)

    # Check that the difference between the coefficients is within the standard deviation
    assert (cc - numpy.mean(c, axis=0) < numpy.std(c, axis=0)).all()

    # Repeat test for single mass
    c = numpy.zeros((nsamp, Norder, 1, 1))
    s = numpy.zeros((nsamp, Norder, 1, 1))
    for i in range(nsamp):
        c[i], s[i] = potential.scf_compute_coeffs_spherical_nbody(
            positions[i], Norder, mass=m, a=ah
        )
    assert (cc - numpy.mean(c, axis=0) < numpy.std(c, axis=0)).all()
    return None


## Tests how nbody calculation compares to density calculation for scf_compute_coeff
def test_scf_compute_axi_nbody_twopowertriaxial():
    N = int(1e5)
    Mh = 11.0
    ah = 50.0 / 8.0
    m = Mh / N
    zfactor = 2.5
    nsamp = 10
    Norder = 10
    Lorder = 10

    hern = potential.HernquistPotential(amp=2 * Mh, a=ah)
    hern.turn_physical_off()
    hdf = df.isotropicHernquistdf(hern)
    numpy.random.seed(1)
    samp = [hdf.sample(n=N) for i in range(nsamp)]

    positions = numpy.array(
        [[samp[i].x(), samp[i].y(), samp[i].z() * zfactor] for i in range(nsamp)]
    )

    # This is an axisymmtric Hernquist profile with the same mass as the above
    tptp = potential.TwoPowerTriaxialPotential(
        amp=2.0 * Mh / zfactor, a=ah, alpha=1.0, beta=4.0, b=1.0, c=zfactor
    )
    tptp.turn_physical_off()

    cc, ss = potential.scf_compute_coeffs_axi(tptp.dens, Norder, Lorder, a=ah)
    c, s = numpy.zeros((2, nsamp, Norder, Lorder, 1))
    for i, p in enumerate(positions):
        c[i], s[i] = potential.scf_compute_coeffs_axi_nbody(
            p, Norder, Lorder, mass=m * numpy.ones(N), a=ah
        )

    # Check that the difference between the coefficients is within two standard deviations
    assert (cc - (numpy.mean(c, axis=0)) <= (2.0 * numpy.std(c, axis=0))).all()

    # Repeat test for single mass
    c, s = numpy.zeros((2, nsamp, Norder, Lorder, 1))
    for i, p in enumerate(positions):
        c[i], s[i] = potential.scf_compute_coeffs_axi_nbody(
            p, Norder, Lorder, mass=m, a=ah
        )
    assert (cc - (numpy.mean(c, axis=0)) <= (2.0 * numpy.std(c, axis=0))).all()
    return None


## Tests how nbody calculation compares to density calculation for scf_compute_coeff
def test_scf_compute_nbody_twopowertriaxial():
    N = int(1e5)
    Mh = 11.0
    ah = 50.0 / 8.0
    m = Mh / N
    yfactor = 1.5
    zfactor = 2.5
    nsamp = 10
    Norder = 10
    Lorder = 10

    hern = potential.HernquistPotential(amp=2 * Mh, a=ah)
    hern.turn_physical_off()
    hdf = df.isotropicHernquistdf(hern)
    numpy.random.seed(2)
    samp = [hdf.sample(n=N) for i in range(nsamp)]

    positions = numpy.array(
        [
            [samp[i].x(), samp[i].y() * yfactor, samp[i].z() * zfactor]
            for i in range(nsamp)
        ]
    )

    # This is an triaxial Hernquist profile with the same mass as the above
    tptp = potential.TwoPowerTriaxialPotential(
        amp=2.0 * Mh / yfactor / zfactor,
        a=ah,
        alpha=1.0,
        beta=4.0,
        b=yfactor,
        c=zfactor,
    )
    tptp.turn_physical_off()

    cc, ss = potential.scf_compute_coeffs(tptp.dens, Norder, Lorder, a=ah)
    c, s = numpy.zeros((2, nsamp, Norder, Lorder, Lorder))
    for i, p in enumerate(positions):
        c[i], s[i] = potential.scf_compute_coeffs_nbody(
            p, Norder, Lorder, mass=m * numpy.ones(N), a=ah
        )

    # Check that the difference between the coefficients is within two standard deviations
    assert (cc - (numpy.mean(c, axis=0)) <= (2.0 * numpy.std(c, axis=0))).all()

    # Repeat test for single mass
    c, s = numpy.zeros((2, nsamp, Norder, Lorder, Lorder))
    for i, p in enumerate(positions):
        c[i], s[i] = potential.scf_compute_coeffs_nbody(p, Norder, Lorder, mass=m, a=ah)
    assert (cc - (numpy.mean(c, axis=0)) <= (2.0 * numpy.std(c, axis=0))).all()
    return None


def test_scf_compute_nfw():
    Acos, Asin = potential.scf_compute_coeffs_spherical(rho_NFW, 10)
    spherical_coeffsTest(Acos, Asin)


##Tests radial order from scf_compute_coeffs_spherical
def test_nfw_sphericalOrder():
    Acos, Asin = potential.scf_compute_coeffs_spherical(rho_NFW, 10)
    Acos2, Asin2 = potential.scf_compute_coeffs_spherical(rho_NFW, 10, radial_order=50)

    assert numpy.all(numpy.fabs(Acos - Acos2) < EPS), (
        "Increasing the radial order fails for scf_compute_coeffs_spherical"
    )


##Tests radial and costheta order from scf_compute_coeffs_axi
def test_axi_density1_axiOrder():
    Acos, Asin = potential.scf_compute_coeffs_axi(axi_density1, 10, 10)
    Acos2, Asin2 = potential.scf_compute_coeffs_axi(
        axi_density1, 10, 10, radial_order=50, costheta_order=50
    )

    assert numpy.all(numpy.fabs(Acos - Acos2) < 1e-10), (
        "Increasing the radial and costheta order fails for scf_compute_coeffs_axi"
    )


##Tests radial, costheta and phi order from scf_compute_coeffs
def test_density1_Order():
    Acos, Asin = potential.scf_compute_coeffs(density1, 5, 5)
    Acos2, Asin2 = potential.scf_compute_coeffs(
        density1, 5, 5, radial_order=19, costheta_order=19, phi_order=19
    )
    assert numpy.all(numpy.fabs(Acos - Acos2) < 1e-3), (
        "Increasing the radial, costheta, and phi order fails for Acos from scf_compute_coeffs"
    )

    assert numpy.all(numpy.fabs(Asin - Asin) < EPS), (
        "Increasing the radial, costheta, and phi order fails for Asin from scf_compute_coeffs"
    )


## Tests whether scf_compute_axi reduces to scf_compute_spherical for the Hernquist Potential
def test_scf_axiHernquistCoeffs_ReducesToSpherical():
    Aspherical = potential.scf_compute_coeffs_spherical(sphericalHernquistDensity, 10)
    Aaxi = potential.scf_compute_coeffs_axi(sphericalHernquistDensity, 10, 10)
    axi_reducesto_spherical(Aspherical, Aaxi, "Hernquist Potential")


## Tests whether scf_compute_axi reduces to scf_compute_spherical for Zeeuw's Potential
def test_scf_axiZeeuwCoeffs_ReducesToSpherical():
    Aspherical = potential.scf_compute_coeffs_spherical(rho_Zeeuw, 10)
    Aaxi = potential.scf_compute_coeffs_axi(rho_Zeeuw, 10, 10)
    axi_reducesto_spherical(Aspherical, Aaxi, "Zeeuw Potential")


## Tests whether scf_compute reduces to scf_compute_spherical for Hernquist Potential
def test_scf_HernquistCoeffs_ReducesToSpherical():
    Aspherical = potential.scf_compute_coeffs_spherical(sphericalHernquistDensity, 5)
    Aaxi = potential.scf_compute_coeffs(sphericalHernquistDensity, 5, 5)
    reducesto_spherical(Aspherical, Aaxi, "Hernquist Potential")


## Tests whether scf_compute reduces to scf_compute_spherical for Zeeuw's Potential
def test_scf_ZeeuwCoeffs_ReducesToSpherical():
    Aspherical = potential.scf_compute_coeffs_spherical(rho_Zeeuw, 5)
    Aaxi = potential.scf_compute_coeffs(
        rho_Zeeuw, 5, 5, radial_order=20, costheta_order=20
    )
    reducesto_spherical(Aspherical, Aaxi, "Zeeuw Potential")


## Tests whether scf density matches with Hernquist density
def test_densMatches_hernquist():
    h = potential.HernquistPotential()
    Acos, Asin = potential.scf_compute_coeffs_spherical(sphericalHernquistDensity, 10)
    scf = SCFPotential()
    assertmsg = "Comparing the density of Hernquist Potential with SCF fails at R={0}, Z={1}, phi={2}"
    compareFunctions(h.dens, scf.dens, assertmsg)


## Tests whether scf density matches with Zeeuw density
def test_densMatches_zeeuw():
    Acos, Asin = potential.scf_compute_coeffs_spherical(rho_Zeeuw, 10)
    scf = SCFPotential(amp=1, Acos=Acos, Asin=Asin)
    assertmsg = "Comparing the density of Zeeuw's perfect ellipsoid with SCF fails at R={0}, Z={1}, phi={2}"
    compareFunctions(rho_Zeeuw, scf.dens, assertmsg)


## Tests whether scf density matches with axi_density1
def test_densMatches_axi_density1():
    Acos, Asin = potential.scf_compute_coeffs_axi(axi_density1, 50, 3)
    scf = SCFPotential(amp=1, Acos=Acos, Asin=Asin)
    assertmsg = "Comparing axi_density1 with SCF fails at R={0}, Z={1}, phi={2}"
    compareFunctions(axi_density1, scf.dens, assertmsg, eps=1e-3)


## Tests whether scf density matches with axi_density2
def test_densMatches_axi_density2():
    Acos, Asin = potential.scf_compute_coeffs_axi(axi_density2, 50, 3)
    scf = SCFPotential(amp=1, Acos=Acos, Asin=Asin)
    assertmsg = "Comparing axi_density2 with SCF fails at R={0}, Z={1}, phi={2}"
    compareFunctions(axi_density2, scf.dens, assertmsg, eps=1e-3)


## Tests whether scf density matches with NFW
def test_densMatches_nfw():
    nfw = potential.NFWPotential()
    Acos, Asin = potential.scf_compute_coeffs_spherical(rho_NFW, 50, a=50)
    scf = SCFPotential(amp=1, Acos=Acos, Asin=Asin, a=50)
    assertmsg = "Comparing nfw with SCF fails at R={0}, Z={1}, phi={2}"
    compareFunctions(nfw.dens, scf.dens, assertmsg, eps=1e-2)


## Tests whether scf potential matches with Hernquist potential
def test_potentialMatches_hernquist():
    h = potential.HernquistPotential()
    Acos, Asin = potential.scf_compute_coeffs_spherical(sphericalHernquistDensity, 10)
    scf = SCFPotential()
    assertmsg = "Comparing the potential of Hernquist Potential with SCF fails at R={0}, Z={1}, phi={2}"
    compareFunctions(h, scf, assertmsg)


## Tests whether scf Potential matches with NFW
def test_potentialMatches_nfw():
    nfw = potential.NFWPotential()
    Acos, Asin = potential.scf_compute_coeffs_spherical(rho_NFW, 50, a=50)
    scf = SCFPotential(amp=1, Acos=Acos, Asin=Asin, a=50)
    assertmsg = "Comparing nfw with SCF fails at R={0}, Z={1}, phi={2}"
    compareFunctions(nfw, scf, assertmsg, eps=1e-4)


## Tests whether scf Rforce matches with Hernquist Rforce
def test_RforceMatches_hernquist():
    h = potential.HernquistPotential()
    Acos, Asin = potential.scf_compute_coeffs_spherical(sphericalHernquistDensity, 1)
    scf = SCFPotential(amp=1, Acos=Acos, Asin=Asin)
    assertmsg = "Comparing the radial force of Hernquist Potential with SCF fails at R={0}, Z={1}, phi={2}"
    compareFunctions(h.Rforce, scf.Rforce, assertmsg)


## Tests whether scf zforce matches with Hernquist zforce
def test_zforceMatches_hernquist():
    h = potential.HernquistPotential()
    Acos, Asin = potential.scf_compute_coeffs_spherical(sphericalHernquistDensity, 1)
    scf = SCFPotential(amp=1, Acos=Acos, Asin=Asin)
    assertmsg = "Comparing the vertical force of Hernquist Potential with SCF fails at R={0}, Z={1}, phi={2}"
    compareFunctions(h.zforce, scf.zforce, assertmsg)


## Tests whether scf phitorque matches with Hernquist phitorque
def test_phitorqueMatches_hernquist():
    h = potential.HernquistPotential()
    Acos, Asin = potential.scf_compute_coeffs_spherical(sphericalHernquistDensity, 1)
    scf = SCFPotential(amp=1, Acos=Acos, Asin=Asin)
    assertmsg = "Comparing the azimuth force of Hernquist Potential with SCF fails at R={0}, Z={1}, phi={2}"
    compareFunctions(h.phitorque, scf.phitorque, assertmsg)


## Tests whether scf Rforce matches with NFW Rforce
def test_RforceMatches_nfw():
    nfw = potential.NFWPotential()
    Acos, Asin = potential.scf_compute_coeffs_spherical(rho_NFW, 50, a=50)
    scf = SCFPotential(amp=1, Acos=Acos, Asin=Asin, a=50)
    assertmsg = "Comparing the radial force of NFW Potential with SCF fails at R={0}, Z={1}, phi={2}"
    compareFunctions(nfw.Rforce, scf.Rforce, assertmsg, eps=1e-3)


## Tests whether scf zforce matches with NFW zforce
def test_zforceMatches_nfw():
    nfw = potential.NFWPotential()
    Acos, Asin = potential.scf_compute_coeffs_spherical(rho_NFW, 50, a=50)
    scf = SCFPotential(amp=1, Acos=Acos, Asin=Asin, a=50)
    assertmsg = "Comparing the vertical force of NFW Potential with SCF fails at R={0}, Z={1}, phi={2}"
    compareFunctions(nfw.zforce, scf.zforce, assertmsg, eps=1e-3)


## Tests whether scf phitorque matches with NFW Rforce
def test_phitorqueMatches_nfw():
    nfw = potential.NFWPotential()
    Acos, Asin = potential.scf_compute_coeffs_spherical(rho_NFW, 10)
    scf = SCFPotential(amp=1, Acos=Acos, Asin=Asin)
    assertmsg = "Comparing the azimuth force of NFW Potential with SCF fails at R={0}, Z={1}, phi={2}"
    compareFunctions(nfw.phitorque, scf.phitorque, assertmsg)


# Test that "FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated ..." warning doesn't happen (#461)
def test_FutureWarning_multid_indexing():
    scf = SCFPotential()
    array = numpy.linspace(0, 3, 100)
    # Turn warnings into errors to test for them
    import warnings

    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always", FutureWarning)
        ArrayTest(scf, [array, 1.0, 0])
        raisedWarning = False
        for wa in w:
            raisedWarning = (
                "Using a non-tuple sequence for multidimensional indexing is deprecated"
                in str(wa.message)
            )
            if raisedWarning:
                break
        assert not raisedWarning, (
            "SCFPotential should not raise 'FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated ...', but did"
        )
    return None


# Test that running with a density in physical units works as expected
def test_physical_dens_spherical():
    a = 1.3
    ro, vo = 7.0, 230.0
    hp = potential.HernquistPotential(a=a, ro=ro, vo=vo)
    Acos, Asin = potential.scf_compute_coeffs_spherical(hp.dens, 10, a=a)
    sp = potential.SCFPotential(Acos=Acos, Asin=Asin, a=a)
    rs = numpy.geomspace(0.1, 10.0, 101)
    assert numpy.all(
        numpy.fabs(
            1.0
            - sp.dens(rs, 0.0, use_physical=False)
            / hp.dens(rs, 0.0, use_physical=False)
        )
        < 1e-10
    ), (
        "SCF density does not agree with input density when calculated with physical density"
    )
    return None


# Test that running with a density in physical units works as expected
def test_physical_dens_axi():
    a = 1.3
    ro, vo = 7.0, 230.0
    hp = potential.HernquistPotential(a=a, ro=ro, vo=vo)
    Acos, Asin = potential.scf_compute_coeffs_axi(hp.dens, 10, 2, a=a)
    sp = potential.SCFPotential(Acos=Acos, Asin=Asin, a=a)
    rs = numpy.geomspace(0.1, 10.0, 101)
    assert numpy.all(
        numpy.fabs(
            1.0
            - sp.dens(rs, 0.0, use_physical=False)
            / hp.dens(rs, 0.0, use_physical=False)
        )
        < 1e-10
    ), (
        "SCF density does not agree with input density when calculated with physical density"
    )
    return None


# Test that running with a density in physical units works as expected
def test_physical_dens():
    a = 1.3
    ro, vo = 7.0, 230.0
    hp = potential.HernquistPotential(a=a, ro=ro, vo=vo)
    Acos, Asin = potential.scf_compute_coeffs(hp.dens, 10, 2, a=a)
    sp = potential.SCFPotential(Acos=Acos, Asin=Asin, a=a)
    rs = numpy.geomspace(0.1, 10.0, 101)
    assert numpy.all(
        numpy.fabs(
            1.0
            - sp.dens(rs, 0.0, use_physical=False)
            / hp.dens(rs, 0.0, use_physical=False)
        )
        < 1e-10
    ), (
        "SCF density does not agree with input density when calculated with physical density"
    )
    return None


# Test that from_density acts as expected
def test_from_density_hernquist():
    a = 1.3
    hp = potential.HernquistPotential(a=a)
    Acos, Asin = potential.scf_compute_coeffs_spherical(hp.dens, 10, a=a)
    sp_direct = potential.SCFPotential(Acos=Acos, Asin=Asin, a=a)
    sp_from = potential.SCFPotential.from_density(
        hp.dens, 10, a=a, symmetry="spherical"
    )
    rs = numpy.geomspace(0.1, 10.0, 101)
    assert numpy.all(
        numpy.fabs(
            1.0
            - sp_direct.dens(rs, 0.0, use_physical=False)
            / sp_from.dens(rs, 0.0, use_physical=False)
        )
        < 1e-10
    ), "SCF density does not agree between direct init and from_density init"
    return None


# Test that from_density acts as expected
def test_from_density_axi():
    a = 1.0
    Acos, Asin = potential.scf_compute_coeffs_axi(
        axi_density2, 10, 10, a=a, radial_order=30, costheta_order=12
    )
    sp_direct = potential.SCFPotential(Acos=Acos, Asin=Asin, a=a)
    sp_from = potential.SCFPotential.from_density(
        axi_density2, 10, L=10, a=a, symmetry="axi", radial_order=30, costheta_order=12
    )
    rs = numpy.geomspace(0.1, 10.0, 101)
    assert numpy.all(
        numpy.fabs(
            1.0
            - sp_direct.dens(rs, rs, use_physical=False)
            / sp_from.dens(rs, rs, use_physical=False)
        )
        < 1e-10
    ), "SCF density does not agree between direct init and from_density init"
    return None


# Test that from_density acts as expected
def test_from_density():
    a = 1.0
    Acos, Asin = potential.scf_compute_coeffs(rho_Zeeuw, 10, 3, a=a)
    sp_direct = potential.SCFPotential(Acos=Acos, Asin=Asin, a=a)
    sp_from = potential.SCFPotential.from_density(
        rho_Zeeuw, 10, L=3, a=a, symmetry=None
    )
    rs = numpy.geomspace(0.1, 10.0, 101)
    assert numpy.all(
        numpy.fabs(
            1.0
            - sp_direct.dens(rs, rs, phi=rs, use_physical=False)
            / sp_from.dens(rs, rs, phi=rs, use_physical=False)
        )
        < 1e-10
    ), "SCF density does not agree between direct init and from_density init"
    return None


##############GENERIC FUNCTIONS BELOW###############


##This is used to test whether input as arrays works
def ArrayTest(scf, params):
    def compareFunctions(func, result, i):
        if numpy.isnan(result[i]):
            return numpy.isnan(func(R[i], z[i], phi[i]))
        if numpy.isinf(result[i]):
            return numpy.isinf(func(R[i], z[i], phi[i]))
        return numpy.all(numpy.fabs(result[i] - func(R[i], z[i], phi[i])) < EPS)

    potential = scf(*params).flatten()
    density = scf.dens(*params).flatten()
    Rforce = scf.Rforce(*params).flatten()
    zforce = scf.zforce(*params).flatten()
    phitorque = scf.phitorque(*params).flatten()

    R, z, phi = params
    shape = numpy.array(R * z * phi).shape
    R = (numpy.ones(shape) * R).flatten()
    z = (numpy.ones(shape) * z).flatten()
    phi = (numpy.ones(shape) * phi).flatten()
    message = "{0} at R={1}, z={2}, phi={3} was found to be {4} where it was expected to be equal to {5}"
    for i in range(len(R)):
        assert compareFunctions(scf, potential, i), message.format(
            "Potential", R[i], z[i], phi[i], potential[i], scf(R[i], z[i], phi[i])
        )
        assert compareFunctions(scf.dens, density, i), message.format(
            "Density", R[i], z[i], phi[i], density[i], scf.dens(R[i], z[i], phi[i])
        )
        assert compareFunctions(scf.Rforce, Rforce, i), message.format(
            "Rforce", R[i], z[i], phi[i], Rforce[i], scf.Rforce(R[i], z[i], phi[i])
        )
        assert compareFunctions(scf.zforce, zforce, i), message.format(
            "zforce", R[i], z[i], phi[i], zforce[i], scf.zforce(R[i], z[i], phi[i])
        )
        assert compareFunctions(scf.phitorque, phitorque, i), message.format(
            "phitorque",
            R[i],
            z[i],
            phi[i],
            phitorque[i],
            scf.phitorque(R[i], z[i], phi[i]),
        )


## This is used to compare scf functions with its corresponding galpy function
def compareFunctions(
    galpyFunc, scfFunc, assertmsg, Rs=DEFAULT_R, Zs=DEFAULT_Z, phis=DEFAULT_PHI, eps=EPS
):
    ##Assert msg must have 3 placeholders ({}) for Rs, Zs, and phis
    for ii in range(len(Rs)):
        for jj in range(len(Zs)):
            for kk in range(len(phis)):
                e = numpy.divide(
                    galpyFunc(Rs[ii], Zs[jj], phis[kk])
                    - scfFunc(Rs[ii], Zs[jj], phis[kk]),
                    galpyFunc(Rs[ii], Zs[jj], phis[kk]),
                )
                e = numpy.fabs(numpy.fabs(e))
                if galpyFunc(Rs[ii], Zs[jj], phis[kk]) == 0:
                    continue  ## Ignoring divide by zero
                assert e < eps, assertmsg.format(Rs[ii], Zs[jj], phis[kk])


##General function that tests whether coefficients for a spherical density has the expected property
def spherical_coeffsTest(Acos, Asin, eps=EPS):
    ## We expect Asin to be zero
    assert Asin is None or numpy.all(numpy.fabs(Asin) < eps), (
        "Confirming Asin = 0 fails"
    )
    ## We expect that the only non-zero values occur at (n,l=0,m=0)
    assert numpy.all(numpy.fabs(Acos[:, 1:, :]) < eps) and numpy.all(
        numpy.fabs(Acos[:, :, 1:]) < eps
    ), "Non Zero value found outside (n,l,m) = (n,0,0)"


##General function that tests whether coefficients for an axi symmetric density has the expected property
def axi_coeffsTest(Acos, Asin):
    ## We expect Asin to be zero
    assert Asin is None or numpy.all(numpy.fabs(Asin) < EPS), (
        "Confirming Asin = 0 fails"
    )
    ## We expect that the only non-zero values occur at (n,l,m=0)
    assert numpy.all(numpy.fabs(Acos[:, :, 1:]) < EPS), (
        "Non Zero value found outside (n,l,m) = (n,0,0)"
    )


## Tests whether the coefficients of a spherical density computed using the scf_compute_coeffs_axi reduces to
## The coefficients computed using the scf_compute_coeffs_spherical
def axi_reducesto_spherical(Aspherical, Aaxi, potentialName):
    Acos_s, Asin_s = Aspherical
    Acos_a, Asin_a = Aaxi

    spherical_coeffsTest(Acos_a, Asin_a, eps=1e-10)
    n = min(Acos_s.shape[0], Acos_a.shape[0])
    assert numpy.all(numpy.fabs(Acos_s[:n, 0, 0] - Acos_a[:n, 0, 0]) < EPS), (
        f"The axi symmetric Acos(n,l=0,m=0) does not reduce to the spherical Acos(n,l=0,m=0) for {potentialName}"
    )


## Tests whether the coefficients of a spherical density computed using the scf_compute_coeffs reduces to
## The coefficients computed using the scf_compute_coeffs_spherical
def reducesto_spherical(Aspherical, A, potentialName):
    Acos_s, Asin_s = Aspherical
    Acos, Asin = A

    spherical_coeffsTest(Acos, Asin, eps=1e-10)
    n = min(Acos_s.shape[0], Acos.shape[0])
    assert numpy.all(numpy.fabs(Acos_s[:n, 0, 0] - Acos[:n, 0, 0]) < EPS), (
        f"Acos(n,l=0,m=0) as generated by scf_compute_coeffs does not reduce to the spherical Acos(n,l=0,m=0) for {potentialName}"
    )


## Hernquist potential as a function of r
def sphericalHernquistDensity(R, z=0, phi=0):
    h = potential.HernquistPotential()
    return h.dens(R, z, phi)


def rho_Zeeuw(R, z, phi, a=1.0):
    r, theta, phi = coords.cyl_to_spher(R, z, phi)
    return 3.0 / (4 * numpy.pi) * numpy.power((a + r), -4.0) * a


def rho_NFW(R, z=0, phi=0.0):
    nfw = potential.NFWPotential()
    return nfw.dens(R, z, phi)


def axi_density1(R, z=0, phi=0.0):
    r, theta, phi = coords.cyl_to_spher(R, z, phi)
    h = potential.HernquistPotential()
    return h.dens(R, z, phi) * (1 + numpy.cos(theta) + numpy.cos(theta) ** 2.0)


def axi_density2(R, z=0, phi=0.0):
    spherical_coords = coords.cyl_to_spher(R, z, phi)
    theta = spherical_coords[1]
    return rho_Zeeuw(R, z, phi) * (1 + numpy.cos(theta) + numpy.cos(theta) ** 2)


def density1(R, z=0, phi=0.0):
    r, theta, phi = coords.cyl_to_spher(R, z, phi)
    h = potential.HernquistPotential(2)
    return (
        h.dens(R, z, phi)
        * (1 + numpy.cos(theta) + numpy.cos(theta) ** 2.0)
        * (1 + numpy.cos(phi) + numpy.sin(phi))
    )