1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
|
# Tests of the various variations on the impulse approx. from Sanders, Bovy,
# & Erkal (2016)
import numpy
import pytest
# Test the Plummer calculation for a perpendicular impact, B&T ex. 8.7
def test_impulse_deltav_plummer_subhalo_perpendicular():
from galpy.df import impulse_deltav_plummer
tol = -10.0
kick = impulse_deltav_plummer(
numpy.array([[0.0, numpy.pi, 0.0]]),
numpy.array([0.0]),
3.0,
numpy.array([0.0, numpy.pi / 2.0, 0.0]),
1.5,
4.0,
)
# Should be B&T (8.152)
assert (
numpy.fabs(kick[0, 0] - 2.0 * 1.5 * 3.0 / numpy.pi * 2.0 / 25.0) < 10.0**tol
), "Perpendicular kick of subhalo perpendicular not as expected"
assert (
numpy.fabs(kick[0, 2] + 2.0 * 1.5 * 3.0 / numpy.pi * 2.0 / 25.0) < 10.0**tol
), "Perpendicular kick of subhalo perpendicular not as expected"
# Same for along z
kick = impulse_deltav_plummer(
numpy.array([[0.0, 0.0, numpy.pi]]),
numpy.array([0.0]),
3.0,
numpy.array([0.0, 0.0, numpy.pi / 2.0]),
1.5,
4.0,
)
# Should be B&T (8.152)
assert (
numpy.fabs(kick[0, 0] - 2.0 * 1.5 * 3.0 / numpy.pi * 2.0 / 25.0) < 10.0**tol
), "Perpendicular kick of subhalo perpendicular not as expected"
assert (
numpy.fabs(kick[0, 1] - 2.0 * 1.5 * 3.0 / numpy.pi * 2.0 / 25.0) < 10.0**tol
), "Perpendicular kick of subhalo perpendicular not as expected"
return None
# Test the Plummer curved calculation for a perpendicular impact
def test_impulse_deltav_plummer_curved_subhalo_perpendicular():
from galpy.df import impulse_deltav_plummer, impulse_deltav_plummer_curvedstream
tol = -10.0
kick = impulse_deltav_plummer(
numpy.array([[3.4, 0.0, 0.0]]),
numpy.array([4.0]),
3.0,
numpy.array([0.0, numpy.pi / 2.0, 0.0]),
1.5,
4.0,
)
curved_kick = impulse_deltav_plummer_curvedstream(
numpy.array([[3.4, 0.0, 0.0]]),
numpy.array([[4.0, 0.0, 0.0]]),
3.0,
numpy.array([0.0, numpy.pi / 2.0, 0.0]),
numpy.array([0.0, 0.0, 0.0]),
numpy.array([3.4, 0.0, 0.0]),
1.5,
4.0,
)
# Should be equal
assert numpy.all(numpy.fabs(kick - curved_kick) < 10.0**tol), (
"curved Plummer kick does not agree with straight kick for straight track"
)
# Same for a bunch of positions
v = numpy.zeros((100, 3))
v[:, 0] = 3.4
xpos = numpy.random.normal(size=100)
kick = impulse_deltav_plummer(
v, xpos, 3.0, numpy.array([0.0, numpy.pi / 2.0, 0.0]), 1.5, 4.0
)
xpos = numpy.array([xpos, numpy.zeros(100), numpy.zeros(100)]).T
curved_kick = impulse_deltav_plummer_curvedstream(
v,
xpos,
3.0,
numpy.array([0.0, numpy.pi / 2.0, 0.0]),
numpy.array([0.0, 0.0, 0.0]),
numpy.array([3.4, 0.0, 0.0]),
1.5,
4.0,
)
# Should be equal
assert numpy.all(numpy.fabs(kick - curved_kick) < 10.0**tol), (
"curved Plummer kick does not agree with straight kick for straight track"
)
return None
# Test general impulse vs. Plummer
def test_impulse_deltav_general():
from galpy.df import impulse_deltav_general, impulse_deltav_plummer
from galpy.potential import PlummerPotential
tol = -10.0
kick = impulse_deltav_plummer(
numpy.array([[3.4, 0.0, 0.0]]),
numpy.array([4.0]),
3.0,
numpy.array([0.0, numpy.pi / 2.0, 0.0]),
1.5,
4.0,
)
pp = PlummerPotential(amp=1.5, b=4.0)
general_kick = impulse_deltav_general(
numpy.array([[3.4, 0.0, 0.0]]),
numpy.array([4.0]),
3.0,
numpy.array([0.0, numpy.pi / 2.0, 0.0]),
pp,
)
assert numpy.all(numpy.fabs(kick - general_kick) < 10.0**tol), (
"general kick calculation does not agree with Plummer calculation for a Plummer potential"
)
# Same for a bunch of positions
v = numpy.zeros((100, 3))
v[:, 0] = 3.4
xpos = numpy.random.normal(size=100)
kick = impulse_deltav_plummer(
v, xpos, 3.0, numpy.array([0.0, numpy.pi / 2.0, 0.0]), numpy.pi, numpy.exp(1.0)
)
pp = PlummerPotential(amp=numpy.pi, b=numpy.exp(1.0))
general_kick = impulse_deltav_general(
v, xpos, 3.0, numpy.array([0.0, numpy.pi / 2.0, 0.0]), pp
)
assert numpy.all(numpy.fabs(kick - general_kick) < 10.0**tol), (
"general kick calculation does not agree with Plummer calculation for a Plummer potential"
)
return None
# Test general impulse vs. Plummer for curved stream
def test_impulse_deltav_general_curved():
from galpy.df import (
impulse_deltav_general_curvedstream,
impulse_deltav_plummer_curvedstream,
)
from galpy.potential import PlummerPotential
tol = -10.0
kick = impulse_deltav_plummer_curvedstream(
numpy.array([[3.4, 0.0, 0.0]]),
numpy.array([[4.0, 0.0, 0.0]]),
3.0,
numpy.array([0.0, numpy.pi / 2.0, 0.0]),
numpy.array([0.0, 0.0, 0.0]),
numpy.array([3.4, 0.0, 0.0]),
1.5,
4.0,
)
pp = PlummerPotential(amp=1.5, b=4.0)
general_kick = impulse_deltav_general_curvedstream(
numpy.array([[3.4, 0.0, 0.0]]),
numpy.array([[4.0, 0.0, 0.0]]),
3.0,
numpy.array([0.0, numpy.pi / 2.0, 0.0]),
numpy.array([0.0, 0.0, 0.0]),
numpy.array([3.4, 0.0, 0.0]),
pp,
)
assert numpy.all(numpy.fabs(kick - general_kick) < 10.0**tol), (
"general kick calculation does not agree with Plummer calculation for a Plummer potential, for curved stream"
)
# Same for a bunch of positions
v = numpy.zeros((100, 3))
v[:, 0] = 3.4
xpos = numpy.random.normal(size=100)
xpos = numpy.array([xpos, numpy.zeros(100), numpy.zeros(100)]).T
kick = impulse_deltav_plummer_curvedstream(
v,
xpos,
3.0,
numpy.array([0.0, numpy.pi / 2.0, 0.0]),
numpy.array([0.0, 0.0, 0.0]),
numpy.array([3.4, 0.0, 0.0]),
numpy.pi,
numpy.exp(1.0),
)
pp = PlummerPotential(amp=numpy.pi, b=numpy.exp(1.0))
general_kick = impulse_deltav_general_curvedstream(
v,
xpos,
3.0,
numpy.array([0.0, numpy.pi / 2.0, 0.0]),
numpy.array([0.0, 0.0, 0.0]),
numpy.array([3.4, 0.0, 0.0]),
pp,
)
assert numpy.all(numpy.fabs(kick - general_kick) < 10.0**tol), (
"general kick calculation does not agree with Plummer calculation for a Plummer potential, for curved stream"
)
return None
# Test general impulse vs. Hernquist
def test_impulse_deltav_general_hernquist():
from galpy.df import impulse_deltav_general, impulse_deltav_hernquist
from galpy.potential import HernquistPotential
GM = 1.5
tol = -10.0
kick = impulse_deltav_hernquist(
numpy.array([3.4, 0.0, 0.0]),
numpy.array([4.0]),
3.0,
numpy.array([0.0, numpy.pi / 2.0, 0.0]),
GM,
4.0,
)
# Note factor of 2 in definition of GM and amp
pp = HernquistPotential(amp=2.0 * GM, a=4.0)
general_kick = impulse_deltav_general(
numpy.array([3.4, 0.0, 0.0]),
numpy.array([4.0]),
3.0,
numpy.array([0.0, numpy.pi / 2.0, 0.0]),
pp,
)
assert numpy.all(numpy.fabs(kick - general_kick) < 10.0**tol), (
"general kick calculation does not agree with Hernquist calculation for a Hernquist potential"
)
# Same for a bunch of positions
GM = numpy.pi
v = numpy.zeros((100, 3))
v[:, 0] = 3.4
xpos = numpy.random.normal(size=100)
kick = impulse_deltav_hernquist(
v, xpos, 3.0, numpy.array([0.0, numpy.pi / 2.0, 0.0]), GM, numpy.exp(1.0)
)
pp = HernquistPotential(amp=2.0 * GM, a=numpy.exp(1.0))
general_kick = impulse_deltav_general(
v, xpos, 3.0, numpy.array([0.0, numpy.pi / 2.0, 0.0]), pp
)
assert numpy.all(numpy.fabs(kick - general_kick) < 10.0**tol), (
"general kick calculation does not agree with Hernquist calculation for a Hernquist potential"
)
return None
# Test general impulse vs. Hernquist for curved stream
def test_impulse_deltav_general_curved_hernquist():
from galpy.df import (
impulse_deltav_general_curvedstream,
impulse_deltav_hernquist_curvedstream,
)
from galpy.potential import HernquistPotential
GM = 1.5
tol = -10.0
kick = impulse_deltav_hernquist_curvedstream(
numpy.array([3.4, 0.0, 0.0]),
numpy.array([4.0, 0.0, 0.0]),
3.0,
numpy.array([0.0, numpy.pi / 2.0, 0.0]),
numpy.array([0.0, 0.0, 0.0]),
numpy.array([3.4, 0.0, 0.0]),
GM,
4.0,
)
# Note factor of 2 in definition of GM and amp
pp = HernquistPotential(amp=2.0 * GM, a=4.0)
general_kick = impulse_deltav_general_curvedstream(
numpy.array([3.4, 0.0, 0.0]),
numpy.array([4.0, 0.0, 0.0]),
3.0,
numpy.array([0.0, numpy.pi / 2.0, 0.0]),
numpy.array([0.0, 0.0, 0.0]),
numpy.array([3.4, 0.0, 0.0]),
pp,
)
assert numpy.all(numpy.fabs(kick - general_kick) < 10.0**tol), (
"general kick calculation does not agree with Hernquist calculation for a Hernquist potential, for curved stream"
)
# Same for a bunch of positions
GM = numpy.pi
v = numpy.zeros((100, 3))
v[:, 0] = 3.4
xpos = numpy.random.normal(size=100)
xpos = numpy.array([xpos, numpy.zeros(100), numpy.zeros(100)]).T
kick = impulse_deltav_hernquist_curvedstream(
v,
xpos,
3.0,
numpy.array([0.0, numpy.pi / 2.0, 0.0]),
numpy.array([0.0, 0.0, 0.0]),
numpy.array([3.4, 0.0, 0.0]),
GM,
numpy.exp(1.0),
)
pp = HernquistPotential(amp=2.0 * GM, a=numpy.exp(1.0))
general_kick = impulse_deltav_general_curvedstream(
v,
xpos,
3.0,
numpy.array([0.0, numpy.pi / 2.0, 0.0]),
numpy.array([0.0, 0.0, 0.0]),
numpy.array([3.4, 0.0, 0.0]),
pp,
)
assert numpy.all(numpy.fabs(kick - general_kick) < 10.0**tol), (
"general kick calculation does not agree with Hernquist calculation for a Hernquist potential, for curved stream"
)
return None
def test_hernquistX_negative():
from galpy.df.streamgapdf import HernquistX
with pytest.raises(ValueError) as excinfo:
HernquistX(-1.0)
return None
def test_hernquistX_unity():
from galpy.df.streamgapdf import HernquistX
assert HernquistX(1.0) == 1.0, (
"Hernquist X function not returning 1 with argument 1"
)
return None
# Test general impulse vs. full orbit integration for zero force
def test_impulse_deltav_general_orbit_zeroforce():
from galpy.df import (
impulse_deltav_general_orbitintegration,
impulse_deltav_plummer_curvedstream,
)
from galpy.potential import PlummerPotential
tol = -6.0
rcurv = 10.0
vp = 220.0
x0 = numpy.array([rcurv, 0.0, 0.0])
v0 = numpy.array([0.0, vp, 0.0])
w = numpy.array([1.0, numpy.pi / 2.0, 0.0])
plummer_kick = impulse_deltav_plummer_curvedstream(v0, x0, 3.0, w, x0, v0, 1.5, 4.0)
pp = PlummerPotential(amp=1.5, b=4.0)
vang = vp / rcurv
angrange = numpy.pi
maxt = 5.0 * angrange / vang
galpot = constantPotential()
orbit_kick = impulse_deltav_general_orbitintegration(
v0, x0, 3.0, w, x0, v0, pp, maxt, galpot
)
assert numpy.all(numpy.fabs(orbit_kick - plummer_kick) < 10.0**tol), (
"general kick with acceleration calculation does not agree with Plummer calculation for a Plummer potential, for straight"
)
# Same for a bunch of positions
tol = -5.0
pp = PlummerPotential(amp=numpy.pi, b=numpy.exp(1.0))
theta = numpy.linspace(-numpy.pi / 4.0, numpy.pi / 4.0, 100)
xc, yc = rcurv * numpy.cos(theta), rcurv * numpy.sin(theta)
Xc = numpy.zeros((100, 3))
Xc[:, 0] = xc
Xc[:, 1] = yc
vx, vy = -vp * numpy.sin(theta), vp * numpy.cos(theta)
V = numpy.zeros((100, 3))
V[:, 0] = vx
V[:, 1] = vy
plummer_kick = impulse_deltav_plummer_curvedstream(
V, Xc, 3.0, w, x0, v0, numpy.pi, numpy.exp(1.0)
)
orbit_kick = impulse_deltav_general_orbitintegration(
V, Xc, 3.0, w, x0, v0, pp, maxt, galpot
)
assert numpy.all(numpy.fabs(orbit_kick - plummer_kick) < 10.0**tol), (
"general kick calculation does not agree with Plummer calculation for a Plummer potential, for curved stream"
)
return None
# Test general impulse vs. full stream and halo integration for zero force
def test_impulse_deltav_general_fullintegration_zeroforce():
from galpy.df import (
impulse_deltav_general_fullplummerintegration,
impulse_deltav_plummer_curvedstream,
)
tol = -3.0
rcurv = 10.0
vp = 220.0
GM = 1.5
rs = 4.0
x0 = numpy.array([rcurv, 0.0, 0.0])
v0 = numpy.array([0.0, vp, 0.0])
w = numpy.array([1.0, numpy.pi / 4.0 * vp, 0.0])
plummer_kick = impulse_deltav_plummer_curvedstream(v0, x0, 3.0, w, x0, v0, GM, rs)
galpot = constantPotential()
orbit_kick = impulse_deltav_general_fullplummerintegration(
v0, x0, 3.0, w, x0, v0, galpot, GM, rs, tmaxfac=100.0, N=1000
)
nzeroIndx = numpy.fabs(plummer_kick) > 10.0**tol
assert numpy.all(
numpy.fabs((orbit_kick - plummer_kick) / plummer_kick)[nzeroIndx] < 10.0**tol
), (
"general kick with acceleration calculation does not agree with Plummer calculation for a Plummer potential, for straight"
)
assert numpy.all(
numpy.fabs(orbit_kick - plummer_kick)[True ^ nzeroIndx] < 10.0**tol
), (
"general kick with acceleration calculation does not agree with Plummer calculation for a Plummer potential, for straight"
)
# Same for a bunch of positions
tol = -2.5
GM = numpy.pi
rs = numpy.exp(1.0)
theta = numpy.linspace(-numpy.pi / 4.0, numpy.pi / 4.0, 10)
xc, yc = rcurv * numpy.cos(theta), rcurv * numpy.sin(theta)
Xc = numpy.zeros((10, 3))
Xc[:, 0] = xc
Xc[:, 1] = yc
vx, vy = -vp * numpy.sin(theta), vp * numpy.cos(theta)
V = numpy.zeros((10, 3))
V[:, 0] = vx
V[:, 1] = vy
plummer_kick = impulse_deltav_plummer_curvedstream(V, Xc, 3.0, w, x0, v0, GM, rs)
orbit_kick = impulse_deltav_general_fullplummerintegration(
V, Xc, 3.0, w, x0, v0, galpot, GM, rs, tmaxfac=100.0
)
nzeroIndx = numpy.fabs(plummer_kick) > 10.0**tol
assert numpy.all(
numpy.fabs((orbit_kick - plummer_kick) / plummer_kick)[nzeroIndx] < 10.0**tol
), (
"full stream+halo integration calculation does not agree with Plummer calculation for a Plummer potential, for curved stream"
)
assert numpy.all(
numpy.fabs(orbit_kick - plummer_kick)[True ^ nzeroIndx] < 10.0**tol
), (
"full stream+halo integration calculation does not agree with Plummer calculation for a Plummer potential, for curved stream"
)
return None
# Test general impulse vs. full stream and halo integration for fast encounter
def test_impulse_deltav_general_fullintegration_fastencounter():
from galpy.df import (
impulse_deltav_general_fullplummerintegration,
impulse_deltav_general_orbitintegration,
)
from galpy.potential import LogarithmicHaloPotential, PlummerPotential
tol = -2.0
GM = 1.5
rs = 4.0
x0 = numpy.array([1.5, 0.0, 0.0])
v0 = numpy.array([0.0, 1.0, 0.0]) # circular orbit
w = numpy.array([0.0, 0.0, 100.0]) # very fast compared to v=1
lp = LogarithmicHaloPotential(normalize=1.0)
pp = PlummerPotential(amp=GM, b=rs)
orbit_kick = impulse_deltav_general_orbitintegration(
v0, x0, 3.0, w, x0, v0, pp, 5.0 * numpy.pi, lp
)
full_kick = impulse_deltav_general_fullplummerintegration(
v0, x0, 3.0, w, x0, v0, lp, GM, rs, tmaxfac=10.0, N=1000
)
# Kick should be in the X direction
assert numpy.fabs((orbit_kick - full_kick) / full_kick)[0, 0] < 10.0**tol, (
"Acceleration kick does not agree with full-orbit-integration kick for fast encounter"
)
assert numpy.all(numpy.fabs(orbit_kick - full_kick)[0, 1:] < 10.0**tol), (
"Acceleration kick does not agree with full-orbit-integration kick for fast encounter"
)
return None
# Test straight, stream impulse vs. Plummer, similar setup as Fig. 1 in
# stream paper
def test_impulse_deltav_plummerstream():
from galpy.df import impulse_deltav_plummer, impulse_deltav_plummerstream
from galpy.util import conversion
V0, R0 = 220.0, 8.0
GM = 10.0**-2.0 / conversion.mass_in_1010msol(V0, R0)
rs = 0.625 / R0
b = rs
stream_phi = numpy.linspace(-numpy.pi / 2.0, numpy.pi / 2.0, 201)
stream_r = 10.0 / R0
stream_v = 220.0 / V0
x_gc = stream_r * stream_phi
v_gc = numpy.tile([0.000001, stream_v, 0.000001], (201, 1))
w = numpy.array([0.0, 132.0, 176]) / V0
wmag = numpy.sqrt(numpy.sum(w**2.0))
tol = -5.0
# Plummer sphere kick
kick = impulse_deltav_plummer(v_gc[101], x_gc[101], -b, w, GM, rs)
# Kick from stream with length 0.01 r_s (should be ~Plummer sphere)
dt = 0.01 * rs * R0 / wmag / V0 * conversion.freq_in_kmskpc(V0, R0)
stream_kick = impulse_deltav_plummerstream(
v_gc[101], x_gc[101], -b, w, lambda t: GM / dt, rs, -dt / 2.0, dt / 2.0
)
assert numpy.all(numpy.fabs((kick - stream_kick) / kick) < 10.0**tol), (
"Short stream impulse kick calculation does not agree with Plummer calculation by %g"
% (numpy.amax(numpy.fabs((kick - stream_kick) / kick)))
)
# Same for a bunch of positions
kick = impulse_deltav_plummer(v_gc, x_gc, -b, w, GM, rs)
# Kick from stream with length 0.01 r_s (should be ~Plummer sphere)
dt = 0.01 * rs * R0 / wmag / V0 * conversion.freq_in_kmskpc(V0, R0)
stream_kick = impulse_deltav_plummerstream(
v_gc, x_gc, -b, w, lambda t: GM / dt, rs, -dt / 2.0, dt / 2.0
)
assert numpy.all(
(numpy.fabs((kick - stream_kick) / kick) < 10.0**tol)
* (numpy.fabs(kick) >= 10**-4.0)
+ (numpy.fabs(kick - stream_kick) < 10**tol) * (numpy.fabs(kick) < 10**-4.0)
), (
f"Short stream impulse kick calculation does not agree with Plummer calculation by rel: {numpy.amax(numpy.fabs((kick - stream_kick) / kick)[numpy.fabs(kick) >= 10**-4.0]):g}, abs: {numpy.amax(numpy.fabs(kick - stream_kick)[numpy.fabs(kick) < 10**-3.0]):g}"
)
def test_impulse_deltav_plummerstream_tmaxerror():
from galpy.df import impulse_deltav_plummer, impulse_deltav_plummerstream
from galpy.util import conversion
V0, R0 = 220.0, 8.0
GM = 10.0**-2.0 / conversion.mass_in_1010msol(V0, R0)
rs = 0.625 / R0
b = rs
stream_phi = numpy.linspace(-numpy.pi / 2.0, numpy.pi / 2.0, 201)
stream_r = 10.0 / R0
stream_v = 220.0 / V0
x_gc = stream_r * stream_phi
v_gc = numpy.tile([0.000001, stream_v, 0.000001], (201, 1))
w = numpy.array([0.0, 132.0, 176]) / V0
wmag = numpy.sqrt(numpy.sum(w**2.0))
tol = -5.0
# Same for infinite integration limits
kick = impulse_deltav_plummer(v_gc[101], x_gc[101], -b, w, GM, rs)
# Kick from stream with length 0.01 r_s (should be ~Plummer sphere)
dt = 0.01 * rs * R0 / wmag / V0 * conversion.freq_in_kmskpc(V0, R0)
with pytest.raises(ValueError) as excinfo:
stream_kick = impulse_deltav_plummerstream(
v_gc[101], x_gc[101], -b, w, lambda t: GM / dt, rs
)
return None
# Test the Plummer curved calculation for a perpendicular stream impact:
# short impact should be the same as a Plummer-sphere impact
def test_impulse_deltav_plummerstream_curved_subhalo_perpendicular():
from galpy.df import (
impulse_deltav_plummer_curvedstream,
impulse_deltav_plummerstream_curvedstream,
)
from galpy.potential import LogarithmicHaloPotential
from galpy.util import conversion
R0, V0 = 8.0, 220.0
lp = LogarithmicHaloPotential(normalize=1.0, q=0.9)
tol = -5.0
GM = 10.0**-2.0 / conversion.mass_in_1010msol(V0, R0)
rs = 0.625 / R0
dt = 0.01 * rs / (numpy.pi / 4.0)
kick = impulse_deltav_plummer_curvedstream(
numpy.array([0.5, 0.1, 0.2]),
numpy.array([1.2, 0.0, 0.0]),
rs,
numpy.array([0.1, numpy.pi / 4.0, 0.1]),
numpy.array([1.2, 0.0, 0.0]),
numpy.array([0.5, 0.1, 0.2]),
GM,
rs,
)
stream_kick = impulse_deltav_plummerstream_curvedstream(
numpy.array([[0.5, 0.1, 0.2]]),
numpy.array([[1.2, 0.0, 0.0]]),
numpy.array([0.0]),
rs,
numpy.array([0.1, numpy.pi / 4.0, 0.1]),
numpy.array([1.2, 0.0, 0.0]),
numpy.array([0.5, 0.1, 0.2]),
lambda t: GM / dt,
rs,
lp,
-dt / 2.0,
dt / 2.0,
)
# Should be equal
assert numpy.all(numpy.fabs((kick - stream_kick) / kick) < 10.0**tol), (
"Curved, short Plummer-stream kick does not agree with curved Plummer-sphere kick by %g"
% (numpy.amax(numpy.fabs((kick - stream_kick) / kick)))
)
# Also test with other array shape input for x and v
kick = impulse_deltav_plummer_curvedstream(
numpy.array([[0.5, 0.1, 0.2]]),
numpy.array([[1.2, 0.0, 0.0]]),
rs,
numpy.array([0.1, numpy.pi / 4.0, 0.1]),
numpy.array([1.2, 0.0, 0.0]),
numpy.array([0.5, 0.1, 0.2]),
GM,
rs,
)
stream_kick = impulse_deltav_plummerstream_curvedstream(
numpy.array([0.5, 0.1, 0.2]),
numpy.array([1.2, 0.0, 0.0]),
numpy.array([0.0]),
rs,
numpy.array([0.1, numpy.pi / 4.0, 0.1]),
numpy.array([1.2, 0.0, 0.0]),
numpy.array([0.5, 0.1, 0.2]),
lambda t: GM / dt,
rs,
lp,
-dt / 2.0,
dt / 2.0,
)
assert numpy.all(numpy.fabs((kick - stream_kick) / kick) < 10.0**tol), (
"Curved, short Plummer-stream kick does not agree with curved Plummer-sphere kick by %g"
% (numpy.amax(numpy.fabs((kick - stream_kick) / kick)))
)
return None
from galpy.potential import Potential
class constantPotential(Potential):
def __init__(self):
Potential.__init__(self, amp=1.0)
self.hasC = False
return None
def _Rforce(self, R, z, phi=0.0, t=0.0):
return 0.0
def _zforce(self, R, z, phi=0.0, t=0.0):
return 0.0
|