1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
|
;==============================================================================
; file: "header.scm"
; Copyright (C) 1994-1998 by Marc Feeley, All Rights Reserved.
(##namespace (""
not boolean? eqv? eq? equal? pair? cons car cdr set-car! set-cdr!
caar cadr cdar cddr caaar caadr cadar caddr cdaar cdadr cddar cdddr
caaaar caaadr caadar caaddr cadaar cadadr caddar cadddr cdaaar cdaadr
cdadar cdaddr cddaar cddadr cdddar cddddr null? list? list length
append reverse list-ref memq memv member assq assv assoc symbol?
symbol->string string->symbol number? complex? real? rational?
integer? exact? inexact? = < > <= >= zero? positive? negative? odd?
even? max min + * - / abs quotient remainder modulo gcd lcm numerator
denominator floor ceiling truncate round rationalize exp log sin cos
tan asin acos atan sqrt expt make-rectangular make-polar real-part
imag-part magnitude angle exact->inexact inexact->exact number->string
string->number char? char=? char<? char>? char<=? char>=? char-ci=?
char-ci<? char-ci>? char-ci<=? char-ci>=? char-alphabetic?
char-numeric? char-whitespace? char-upper-case? char-lower-case?
char->integer integer->char char-upcase char-downcase string?
make-string string string-length string-ref string-set! string=?
string<? string>? string<=? string>=? string-ci=? string-ci<?
string-ci>? string-ci<=? string-ci>=? substring string-append vector?
make-vector vector vector-length vector-ref vector-set! procedure?
apply map for-each call-with-current-continuation call-with-input-file
call-with-output-file input-port? output-port? current-input-port
current-output-port open-input-file open-output-file close-input-port
close-output-port eof-object? read read-char peek-char write display
newline write-char
eval error pp compile-file-to-c compile-file link-incremental link-flat
script-arguments
))
(##declare
(multilisp)
(extended-bindings)
(not safe)
(block)
(fixnum)
(inlining-limit 134)
)
;------------------------------------------------------------------------------
; Type tags
(##define-macro (type-fixnum) 0)
(##define-macro (type-subtyped) 1)
(##define-macro (type-special) 2)
(##define-macro (type-pair) 3)
; Subtype tags
(##define-macro (subtype-vector) 0)
(##define-macro (subtype-pair) 1)
(##define-macro (subtype-ratnum) 2)
(##define-macro (subtype-cpxnum) 3)
(##define-macro (subtype-structure) 4)
(##define-macro (subtype-meroon) 6)
(##define-macro (subtype-symbol) 8)
(##define-macro (subtype-keyword) 9)
(##define-macro (subtype-frame) 10)
(##define-macro (subtype-continuation) 11)
(##define-macro (subtype-promise) 12)
(##define-macro (subtype-procedure) 13)
(##define-macro (subtype-will) 14)
(##define-macro (subtype-string) 16)
(##define-macro (subtype-bignum) 17)
(##define-macro (subtype-u8vector) 25)
(##define-macro (subtype-u16vector) 26)
(##define-macro (subtype-u32vector) 27)
(##define-macro (subtype-f32vector) 28)
(##define-macro (subtype-f64vector) 29) ; for alignment these 3 must be last
(##define-macro (subtype-flonum) 30)
(##define-macro (subtype-pointer) 31)
(##define-macro (subtype-ovector? x) `(##fixnum.< ,x 8))
(##define-macro (subtype-bvector? x) `(##fixnum.< 15 ,x))
; Special objects
(##define-macro (absent-obj)
(##namespace ("c#" absent-object))
`',absent-object)
; Bignum related constants
(##define-macro (max-fixnum32) 536870911)
(##define-macro (min-fixnum32) -536870912)
(##define-macro (radix) 16384) ; must be <=sqrt(max fixnum)+1
(##define-macro (radix-width) 14)
(##define-macro (radix-minus-1) 16383)
(##define-macro (minus-radix) -16384)
(##define-macro (max-fixnum32-div-radix) 32767) ; truncate(max fixnum / radix)
(##define-macro (min-fixnum32-div-radix) -32768) ; truncate(min fixnum / radix)
(##define-macro (max-digits-for-fixnum32) 3) ; bignum if > this many digits
(##define-macro (max-length-for-64bit) 6) ; 1+ceiling(64 / radix-width)
(##define-macro (radix-log-den) 32)
(##define-macro (r.2) 16384)
(##define-macro (r-log-rad.2) 14)
(##define-macro (radix-log-r-num.2) 32)
(##define-macro (r.8) 4096)
(##define-macro (r-log-rad.8) 4)
(##define-macro (radix-log-r-num.8) 38)
(##define-macro (r.10) 10000)
(##define-macro (r-log-rad.10) 4)
(##define-macro (radix-log-r-num.10) 34)
(##define-macro (r.16) 4096)
(##define-macro (r-log-rad.16) 3)
(##define-macro (radix-log-r-num.16) 38)
(##define-macro (max-lines) 65536)
(##define-macro (max-fixnum32-div-max-lines) 8191)
; Flonum related constants
(##define-macro (flonum-m-bits) 52)
(##define-macro (flonum-m-bits-plus-1) 53)
(##define-macro (flonum-e-bits) 11)
(##define-macro (flonum-sign-bit) #x8000000000000000) ; (expt 2 (+ (flonum-e-bits) (flonum-m-bits)))
(##define-macro (flonum-m-min) 4503599627370496.0) ; (expt 2.0 (flonum-m-bits))
(##define-macro (flonum-+m-min) 4503599627370496) ; (expt 2 (flonum-m-bits))
(##define-macro (flonum-+m-max) 9007199254740991) ; (- (* flonum-+m-min 2) 1)
(##define-macro (flonum--m-min) -4503599627370496) ; (- (flonum-+m-min))
(##define-macro (flonum--m-max) -9007199254740991) ; (- (flonum-+m-max))
(##define-macro (flonum-e-bias) 1023) ; (- (expt 2 (- (flonum-e-bits) 1)) 1)
(##define-macro (flonum-e-bias-plus-1) 1024) ; (+ (flonum-e-bias) 1)
(##define-macro (flonum-e-bias-minus-1) 1022) ; (- (flonum-e-bias) 1)
(##define-macro (flonum-e-min) -1074) ; (- (+ (flonum-e-bias) (flonum-m-bits) -1))
(##define-macro (flonum-max-digits) 17)
(##define-macro (inexact-radix) 16384.0) ; (exact->inexact (radix))
; Dispatch for number representation
(##define-macro (number-dispatch num err fix big rat flo cpx)
`(cond ((##fixnum? ,num) ,fix)
((##flonum? ,num) ,flo)
((##subtyped? ,num)
(let ((##s (##subtype ,num)))
(cond ((##fixnum.= ##s (subtype-bignum)) ,big)
((##fixnum.= ##s (subtype-ratnum)) ,rat)
((##fixnum.= ##s (subtype-cpxnum)) ,cpx)
(else ,err))))
(else ,err)))
; System procedure classes
(##define-macro (define-system form . exprs)
(define inlinable-procs '(
##type ##type-cast ##subtype ##subtype-set!
##not ##null? ##unbound? ##eq? ##eof-object?
##fixnum? ##flonum? ##special? ##pair? ##subtyped? ##procedure? ##promise?
##vector? ##symbol? ##keyword? ##ratnum? ##cpxnum?
##string? ##structure? ##bignum?
##char? ;;;; ##closure? ##subprocedure?
##fixnum.max ##fixnum.min
##fixnum.+ ##fixnum.- ##fixnum.*
##fixnum.quotient ##fixnum.remainder ##fixnum.modulo
##fixnum.logior ##fixnum.logxor ##fixnum.logand ##fixnum.lognot
##fixnum.ashr ##fixnum.lshr ##fixnum.shl
##fixnum.zero? ##fixnum.positive? ##fixnum.negative?
##fixnum.odd? ##fixnum.even?
##fixnum.= ##fixnum.< ##fixnum.> ##fixnum.<= ##fixnum.>=
##fixnum.->char ##fixnum.<-char
##flonum.->fixnum ##flonum.<-fixnum
##flonum.max ##flonum.min
##flonum.+ ##flonum.- ##flonum.* ##flonum./
##flonum.abs ##flonum.floor ##flonum.ceiling ##flonum.round
##flonum.exp ##flonum.log
##flonum.sin ##flonum.cos ##flonum.tan
##flonum.asin ##flonum.acos ##flonum.atan
##flonum.sqrt ##flonum.copysign
##flonum.zero? ##flonum.positive? ##flonum.negative?
##flonum.finite? ##flonum.nan?
##flonum.= ##flonum.< ##flonum.> ##flonum.<= ##flonum.>=
##char=? ##char<? ##char>? ##char<=? ##char>=?
##cons ##set-car! ##set-cdr! ##car ##cdr
##caar ##cadr ##cdar ##cddr
##caaar ##caadr ##cadar ##caddr ##cdaar ##cdadr ##cddar ##cdddr
##caaaar ##caaadr ##caadar ##caaddr ##cadaar ##cadadr ##caddar ##cadddr
##cdaaar ##cdaadr ##cdadar ##cdaddr ##cddaar ##cddadr ##cdddar ##cddddr
##list
##make-cell ##cell-ref ##cell-set!
##vector
##vector-length ##vector-ref ##vector-set! ##vector-shrink!
##string
##string-length ##string-ref ##string-set! ##string-shrink!
##u8vector? ##u8vector
##u8vector-length ##u8vector-ref ##u8vector-set! ##u8vector-shrink!
##u16vector? ##u16vector
##u16vector-length ##u16vector-ref ##u16vector-set! ##u16vector-shrink!
##u32vector? ##u32vector
##u32vector-length ##u32vector-ref ##u32vector-set! ##u32vector-shrink!
##f32vector? ##f32vector
##f32vector-length ##f32vector-ref ##f32vector-set! ##f32vector-shrink!
##f64vector? ##f64vector
##f64vector-length ##f64vector-ref ##f64vector-set! ##f64vector-shrink!
##symbol->string ##keyword->string
##closure-code ##closure-ref ##closure-set!
;;; ##subprocedure-id ##subprocedure-parent
;;; ##procedure-info
##make-promise ##force ##void
##will? ##make-will ##will-owner
##global-var-ref
##global-var-set!
))
(define kernel-procs '(
##make-string
##make-vector
##make-u8vector
##make-u16vector
##make-u32vector
##make-f32vector
##make-f64vector
##apply
##call-with-current-continuation
##make-global-var
##closure? ##subprocedure?
##subprocedure-id ##subprocedure-parent
##procedure-info
))
(if (memq (car form) kernel-procs)
`(begin)
(if (and (memq (car form) inlinable-procs)
(list? (cdr form)))
`(define ,form ,form)
`(define ,form ,@exprs))))
;------------------------------------------------------------------------------
; Object representation:
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; Numbers
; There are 5 internal representations for numbers:
;
; fixnum, bignum, ratnum, flonum, cpxnum
;
; Fixnums and bignums form the class of exact-int.
; Fixnums, bignums and ratnums form the class of exact-real.
; Fixnums, bignums, ratnums and flonums form the class of non-cpxnum.
; The representation has some invariants:
;
; The numerator of a ratnum is a non-zero exact-int.
; The denominator of a ratnum is an exact-int greater than 1.
; The numerator and denominator have no common divisors greater than 1.
;
; The real part of a cpxnum is a non-cpxnum.
; The imaginary part of a cpxnum is a non-cpxnum != fixnum 0
; The following table gives the mapping of the Scheme exact numbers to their
; internal representation:
;
; type representation
; exact integer = exact-int (fixnum, bignum)
; exact rational = exact-real (fixnum, bignum, ratnum)
; exact real = exact-real (fixnum, bignum, ratnum)
; exact complex = exact-real or cpxnum with exact-real real and imag parts
; For inexact numbers, the representation is not quite as straightforward.
;
; There are 3 "special" classes of inexact representation:
; flonum-int : flonum with integer value
; cpxnum-real: cpxnum with imag part = flonum 0.0
; cpxnum-int : cpxnum-real with exact-int or flonum-int real part
;
; This gives the following table for Scheme's inexact numbers:
;
; type representation
; inexact integer = flonum-int or cpxnum-int
; inexact rational = flonum or cpxnum-real
; inexact real = flonum or cpxnum-real
; inexact complex = flonum or cpxnum
(##define-macro (exact-int? x) ; x can be any object
`(or (##fixnum? ,x) (##bignum? ,x)))
(##define-macro (exact-real? x) ; x can be any object
`(or (exact-int? ,x) (##ratnum? ,x)))
(##define-macro (flonum-int? x) ; x must be a flonum
`(and (##flonum.finite? ,x) (##flonum.= ,x (##flonum.floor ,x))))
(##define-macro (flonum-rational? x) ; x must be a flonum
`(##flonum.finite? ,x))
(##define-macro (non-cpxnum-int? x) ; x must be in fixnum/bignum/ratnum/flonum
`(if (##flonum? ,x) (flonum-int? ,x) (##not (##ratnum? ,x))))
(##define-macro (non-cpxnum-rational? x) ; x must be in fixnum/bignum/ratnum/flonum
`(or (##not (##flonum? ,x)) (flonum-rational? ,x)))
(##define-macro (cpxnum-int? x) ; x must be a cpxnum
`(and (cpxnum-real? ,x)
(let ((real (cpxnum-real ,x))) (non-cpxnum-int? real))))
(##define-macro (cpxnum-rational? x) ; x must be a cpxnum
`(let ((imag (cpxnum-imag ,x)))
(and (##flonum? imag)
(##flonum.zero? imag)
(let ((real (cpxnum-real ,x)))
(non-cpxnum-rational? real)))))
(##define-macro (cpxnum-real? x) ; x must be a cpxnum
`(let ((imag (cpxnum-imag ,x)))
(and (##flonum? imag)
(##flonum.zero? imag))))
(##define-macro (inexact-+2) 2.0)
(##define-macro (inexact--2) -2.0)
(##define-macro (inexact-+1) 1.0)
(##define-macro (inexact--1) -1.0)
(##define-macro (inexact-+1/2) 0.5)
(##define-macro (inexact-0) 0.0)
(##define-macro (inexact-+pi) 3.141592653589793)
(##define-macro (inexact--pi) -3.141592653589793)
(##define-macro (inexact-+pi/2) 1.5707963267948966)
(##define-macro (inexact--pi/2) -1.5707963267948966)
(##define-macro (inexact-+inf) ''+inf.)
(##define-macro (inexact--inf) ''-inf.)
(##define-macro (inexact-+nan) ''+nan.)
(##define-macro (cpxnum-+2i) +2i)
(##define-macro (cpxnum--i) -i)
(##define-macro (cpxnum-+i) +i)
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; Symbol objects
; A symbol is represented by an object vector of length 3
; slot 0 = symbol name (string or symbol)
; slot 1 = hash code (#f or non-negative fixnum)
; slot 2 = pointer to corresponding global variable (0 if none exists)
(##define-macro (symbol-name s) `(##vector-ref ,s 0))
(##define-macro (symbol-name-set! s x) `(##vector-set! ,s 0 ,x))
(##define-macro (symbol-hash s) `(##vector-ref ,s 1))
(##define-macro (symbol-hash-set! s x) `(##vector-set! ,s 1 ,x))
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; Keyword objects
; A keyword is represented by an object vector of length 2
; slot 0 = symbol name (string or symbol) not including trailing ':'
; slot 1 = hash code (#f or non-negative fixnum)
(##define-macro (keyword-name k) `(##vector-ref ,k 0))
(##define-macro (keyword-name-set! k x) `(##vector-set! ,k 0 ,x))
(##define-macro (keyword-hash k) `(##vector-ref ,k 1))
(##define-macro (keyword-hash-set! k x) `(##vector-set! ,k 1 ,x))
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; Bignum objects
; A bignum is represented by a word vector
; slot 0 = sign
; slot 1 = least significant digit
; slot 2... = other digits
(##define-macro (bignum-make n)
`(##subtype-set! (##make-u16vector ,n 0) (subtype-bignum)))
(##define-macro (bignum-length x) `(##u16vector-length ,x))
(##define-macro (bignum-shrink! x n) `(##u16vector-shrink! ,x ,n))
(##define-macro (bignum-digit-ref x i) `(##u16vector-ref ,x ,i))
(##define-macro (bignum-digit-set! x i y) `(##u16vector-set! ,x ,i ,y))
(##define-macro (bignum-sign x) `(##u16vector-ref ,x 0))
(##define-macro (bignum-sign* x) `(##fixnum.- 1 (##u16vector-ref ,x 0)))
(##define-macro (bignum-sign-set! x n) `(##u16vector-set! ,x 0 ,n))
(##define-macro (bignum-set-negative! x) `(##u16vector-set! ,x 0 0))
(##define-macro (bignum-negative? x) `(##eq? (##u16vector-ref ,x 0) 0))
(##define-macro (bignum-set-positive! x) `(##u16vector-set! ,x 0 1))
(##define-macro (bignum-positive? x) `(##eq? (##u16vector-ref ,x 0) 1))
(##define-macro (bignum-zero? x) `(##eq? (##u16vector-length ,x) 1))
(##define-macro (bignum-odd? x) `(##fixnum.odd? (##u16vector-ref ,x 1)))
(##define-macro (bignum-even? x) `(##fixnum.even? (##u16vector-ref ,x 1)))
(##define-macro (bignum-constants) ; create these constants at compile time!
(##namespace ("c#" make-u16vect u16vect-set!))
(let ((v (make-vector 33 #f)))
(let loop ((i 0) (n -16))
(if (< n 17)
(begin
(if (= n 0)
(let ((b (make-u16vect 1)))
(u16vect-set! b 0 1)
(vector-set! v i b))
(let ((b (make-u16vect 2)))
(u16vect-set! b 0 (if (< n 0) 0 1))
(u16vect-set! b 1 (if (< n 0) (- n) n))
(vector-set! v i b)))
(loop (+ i 1) (+ n 1)))))
`',v))
(##define-macro (10^-constants) ; create these constants at compile time!
(define n 326)
(let ((v (make-vector n #f)))
(let loop ((i 0) (x 1))
(if (< i n)
(begin
(vector-set! v i x)
(loop (+ i 1) (* x 10)))))
`',v))
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; Ratnum objects
; A ratnum is represented by an object vector of length 2
; slot 0 = numerator
; slot 1 = denominator
(##define-macro (ratnum-make num den)
`(##subtype-set! (##vector ,num ,den) (subtype-ratnum)))
(##define-macro (ratnum-numerator x) `(##vector-ref ,x 0))
(##define-macro (ratnum-denominator x) `(##vector-ref ,x 1))
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; Cpxnum objects
; A cpxnum is represented by an object vector of length 2
; slot 0 = real
; slot 1 = imag
(##define-macro (cpxnum-make r i)
`(##subtype-set! (##vector ,r ,i) (subtype-cpxnum)))
(##define-macro (cpxnum-real x) `(##vector-ref ,x 0))
(##define-macro (cpxnum-imag x) `(##vector-ref ,x 1))
;------------------------------------------------------------------------------
(##define-macro (if-forces forces noforces)
(if (memq 'force ##compilation-options)
forces
noforces))
(##define-macro (force-vars vars expr)
(if (memq 'force ##compilation-options)
`(let ,(map (lambda (x) `(,x (##force ,x))) vars) ,expr)
expr))
(##define-macro (if-checks checks nochecks)
(if (memq 'check ##compilation-options)
checks
nochecks))
(##define-macro (no-force vars expr)
expr)
(##define-macro (no-check var form expr)
expr)
(##define-macro (trap-list-lengths form)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
(if (list? form)
`(##trap-list-lengths ',(car form) ,@(cdr form))
`(##trap-list-lengths* ',(car form) ,@(flat (cdr form)))))
(##define-macro (trap-list form)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
(if (list? form)
`(##trap-list ',(car form) ,@(cdr form))
`(##trap-list* ',(car form) ,@(flat (cdr form)))))
(##define-macro (trap-open-file form)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
(if (list? form)
`(##trap-open-file ',(car form) ,@(cdr form))
`(##trap-open-file* ',(car form) ,@(flat (cdr form)))))
(##define-macro (trap-open-pipe form)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
(if (list? form)
`(##trap-open-pipe ',(car form) ,@(cdr form))
`(##trap-open-pipe* ',(car form) ,@(flat (cdr form)))))
(##define-macro (trap-load form msg)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
(if (list? form)
`(##trap-load ,msg ',(car form) ,@(cdr form))
`(##trap-load* ,msg ',(car form) ,@(flat (cdr form)))))
(##define-macro (trap-no-transcript form)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
(if (list? form)
`(##trap-no-transcript ',(car form) ,@(cdr form))
`(##trap-no-transcript* ',(car form) ,@(flat (cdr form)))))
(##define-macro (check-pair var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##pair? ,var)
,expr
,(if (list? form)
`(##trap-check-pair ',(car form) ,@(cdr form))
`(##trap-check-pair* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro (check-list-end var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##null? ,var)
,expr
,(if (list? form)
`(##trap-list ',(car form) ,@(cdr form))
`(##trap-list* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro (check-will var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##will? ,var)
,expr
,(if (list? form)
`(##trap-check-will ',(car form) ,@(cdr form))
`(##trap-check-will* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro (check-char var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##char? ,var)
,expr
,(if (list? form)
`(##trap-check-char ',(car form) ,@(cdr form))
`(##trap-check-char* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro (check-symbol var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##symbol? ,var)
,expr
,(if (list? form)
`(##trap-check-symbol ',(car form) ,@(cdr form))
`(##trap-check-symbol* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro (check-keyword var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##keyword? ,var)
,expr
,(if (list? form)
`(##trap-check-keyword ',(car form) ,@(cdr form))
`(##trap-check-keyword* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro (check-string var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##string? ,var)
,expr
,(if (list? form)
`(##trap-check-string ',(car form) ,@(cdr form))
`(##trap-check-string* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro (check-vector var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##vector? ,var)
,expr
,(if (list? form)
`(##trap-check-vector ',(car form) ,@(cdr form))
`(##trap-check-vector* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro (check-u8vector var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##u8vector? ,var)
,expr
,(if (list? form)
`(##trap-check-u8vector ',(car form) ,@(cdr form))
`(##trap-check-u8vector* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro (check-u16vector var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##u16vector? ,var)
,expr
,(if (list? form)
`(##trap-check-u16vector ',(car form) ,@(cdr form))
`(##trap-check-u16vector* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro (check-u32vector var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##u32vector? ,var)
,expr
,(if (list? form)
`(##trap-check-u32vector ',(car form) ,@(cdr form))
`(##trap-check-u32vector* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro (check-f32vector var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##f32vector? ,var)
,expr
,(if (list? form)
`(##trap-check-f32vector ',(car form) ,@(cdr form))
`(##trap-check-f32vector* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro (check-f64vector var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##f64vector? ,var)
,expr
,(if (list? form)
`(##trap-check-f64vector ',(car form) ,@(cdr form))
`(##trap-check-f64vector* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro (check-procedure var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##procedure? ,var)
,expr
,(if (list? form)
`(##trap-check-procedure ',(car form) ,@(cdr form))
`(##trap-check-procedure* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro (check-input-port var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (and (##port? ,var) (##input-port? ,var))
,expr
,(if (list? form)
`(##trap-check-input-port ',(car form) ,@(cdr form))
`(##trap-check-input-port* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro (check-output-port var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (and (##port? ,var) (##output-port? ,var))
,expr
,(if (list? form)
`(##trap-check-output-port ',(car form) ,@(cdr form))
`(##trap-check-output-port* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro (check-open-port var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##open-port? ,var)
,expr
,(if (list? form)
`(##trap-check-open-port ',(car form) ,@(cdr form))
`(##trap-check-open-port* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro (check-readtable var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##readtable? ,var)
,expr
,(if (list? form)
`(##trap-check-readtable ',(car form) ,@(cdr form))
`(##trap-check-readtable* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro (check-exact-int-non-neg var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##fixnum? ,var)
(if (##not (##fixnum.< ,var 0))
,expr
,(if (list? form)
`(##trap-check-range ',(car form) ,@(cdr form))
`(##trap-check-range* ',(car form) ,@(flat (cdr form)))))
(if (##bignum? ,var)
,(if (list? form)
`(##trap-check-range ',(car form) ,@(cdr form))
`(##trap-check-range* ',(car form) ,@(flat (cdr form))))
,(if (list? form)
`(##trap-check-exact-int ',(car form) ,@(cdr form))
`(##trap-check-exact-int* ',(car form) ,@(flat (cdr form))))))
,expr))
(##define-macro (check-exact-int-range var lo hi form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##fixnum? ,var)
(if (and (##not (##fixnum.< ,var ,lo))
(##fixnum.< ,var ,hi))
,expr
,(if (list? form)
`(##trap-check-range ',(car form) ,@(cdr form))
`(##trap-check-range* ',(car form) ,@(flat (cdr form)))))
(if (##bignum? ,var)
,(if (list? form)
`(##trap-check-range ',(car form) ,@(cdr form))
`(##trap-check-range* ',(car form) ,@(flat (cdr form))))
,(if (list? form)
`(##trap-check-exact-int ',(car form) ,@(cdr form))
`(##trap-check-exact-int* ',(car form) ,@(flat (cdr form))))))
,expr))
(##define-macro (check-exact-int-range-incl var lo hi form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##fixnum? ,var)
(if (and (##not (##fixnum.< ,var ,lo))
(##not (##fixnum.< ,hi ,var)))
,expr
,(if (list? form)
`(##trap-check-range ',(car form) ,@(cdr form))
`(##trap-check-range* ',(car form) ,@(flat (cdr form)))))
(if (##bignum? ,var)
,(if (list? form)
`(##trap-check-range ',(car form) ,@(cdr form))
`(##trap-check-range* ',(car form) ,@(flat (cdr form))))
,(if (list? form)
`(##trap-check-exact-int ',(car form) ,@(cdr form))
`(##trap-check-exact-int* ',(car form) ,@(flat (cdr form))))))
,expr))
(##define-macro (check-exact-int8 var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##fixnum? ,var)
(if (and (##not (##fixnum.< ,var -128))
(##not (##fixnum.< 255 ,var)))
,expr
,(if (list? form)
`(##trap-check-range ',(car form) ,@(cdr form))
`(##trap-check-range* ',(car form) ,@(flat (cdr form)))))
(if (##bignum? ,var)
,(if (list? form)
`(##trap-check-range ',(car form) ,@(cdr form))
`(##trap-check-range* ',(car form) ,@(flat (cdr form))))
,(if (list? form)
`(##trap-check-exact-int ',(car form) ,@(cdr form))
`(##trap-check-exact-int* ',(car form) ,@(flat (cdr form))))))
,expr))
(##define-macro (check-exact-int16 var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##fixnum? ,var)
(if (and (##not (##fixnum.< ,var -32768))
(##not (##fixnum.< 65535 ,var)))
,expr
,(if (list? form)
`(##trap-check-range ',(car form) ,@(cdr form))
`(##trap-check-range* ',(car form) ,@(flat (cdr form)))))
(if (##bignum? ,var)
,(if (list? form)
`(##trap-check-range ',(car form) ,@(cdr form))
`(##trap-check-range* ',(car form) ,@(flat (cdr form))))
,(if (list? form)
`(##trap-check-exact-int ',(car form) ,@(cdr form))
`(##trap-check-exact-int* ',(car form) ,@(flat (cdr form))))))
,expr))
(##define-macro (check-exact-int32 var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (or (##fixnum? ,var) (##bignum? ,var))
(if (and (##not (##< ,var -2147483648))
(##not (##< 4294967295 ,var)))
,expr
,(if (list? form)
`(##trap-check-range ',(car form) ,@(cdr form))
`(##trap-check-range* ',(car form) ,@(flat (cdr form)))))
(if (##bignum? ,var)
,(if (list? form)
`(##trap-check-range ',(car form) ,@(cdr form))
`(##trap-check-range* ',(car form) ,@(flat (cdr form))))
,(if (list? form)
`(##trap-check-exact-int ',(car form) ,@(cdr form))
`(##trap-check-exact-int* ',(car form) ,@(flat (cdr form))))))
,expr))
(##define-macro (check-inexact-real var form expr)
(define (flat x) (if (pair? x) (cons (car x) (flat (cdr x))) (list x)))
`(if-checks
(if (##flonum? ,var)
,expr
,(if (list? form)
`(##trap-check-inexact-real ',(car form) ,@(cdr form))
`(##trap-check-inexact-real* ',(car form) ,@(flat (cdr form)))))
,expr))
(##define-macro
(define-fold bool? form zero one two forcing pre-check . post-checks)
(let* ((name-fn (car form))
(name-param1 (cadr form))
(name-param2 (caddr form))
(name-others 'others)
(name-result 'result)
(name-folded-result 'folded-result)
(param-name-map
(list (cons name-param1 'param1) (cons name-param2 'param2)))
(two-wrap
(if (pair? (cadr two)) (car two) #f))
(two-call
(if (pair? (cadr two)) (cadr two) two)))
(define (param-name sym)
(cdr (assq sym param-name-map)))
(define (rewrite expr)
(let ((x (assq expr param-name-map)))
(if x
(cdr x)
(if (pair? expr)
(cons (car expr)
(map rewrite (cdr expr)))
expr))))
(define (parameter-list)
(if (null? zero)
; 1 or more arguments
(list (param-name name-param1)
'#!optional
(list (param-name name-param2) '(absent-obj))
'#!rest
name-others)
; 0 or more arguments
(list '#!optional
(list (param-name name-param1) '(absent-obj))
(list (param-name name-param2) '(absent-obj))
'#!rest
name-others)))
(define (add-post-checks wrap expr cont)
(define (add-wrap x)
(if wrap
(list wrap x)
x))
(define (inside lst)
(if (null? lst)
(if cont
(cont (add-wrap name-result))
(add-wrap name-result))
(let ((check (car lst)))
(list 'if
(list (car check) name-result)
(list (cadr check)
(list 'quote name-fn)
(param-name name-param1)
(param-name name-param2)
name-others)
(inside (cdr lst))))))
(if (or cont (not (null? post-checks)))
(list 'let
(list (list name-result expr))
(inside post-checks))
(add-wrap expr)))
(define (add-forcing names expr)
(list forcing
names
expr))
(define (add-pre-check name expr)
(list pre-check
name
(cons name-fn
(cons (param-name name-param1)
(cons (param-name name-param2)
name-others)))
expr))
(define (exactly-1-arg)
(add-forcing
(list (param-name name-param1))
(add-pre-check
(param-name name-param1)
(if (pair? one)
(add-post-checks
#f
(rewrite one)
#f)
(rewrite one)))))
(define (exactly-2-args)
(add-post-checks
two-wrap
(rewrite two-call)
#f))
(define (at-least-2-args)
(list 'let
'loop
(append (if bool?
(list (list name-folded-result #t))
'())
(list (list name-param1 (param-name name-param1))
(list name-param2 (param-name name-param2))
(list 'lst name-others)))
(add-post-checks
two-wrap
two-call
(lambda (result)
(list 'if
'(##null? lst)
(if bool?
(list 'and
result
name-folded-result)
result)
(list 'let
'((next (##car lst)))
(add-forcing
'(next)
(add-pre-check
'next
(if bool?
(list 'loop
(list 'and
result
name-folded-result)
name-param2
'next
'(##cdr lst))
(list 'loop
result
'next
'(##cdr lst)))))))))))
(define (body)
(cons 'cond
(cons (list (list '##not
(list '##eq?
(param-name name-param2)
'(absent-obj)))
(add-forcing
(list (param-name name-param1)
(param-name name-param2))
(add-pre-check
(param-name name-param1)
(add-pre-check
(param-name name-param2)
; (list 'if
; (list '##null? name-others)
; (exactly-2-args)
(at-least-2-args)))))
;)
(append (if (null? zero)
'()
(list (list (list '##eq?
(param-name name-param1)
'(absent-obj))
zero)))
(list (list 'else
(exactly-1-arg)))))))
(list 'define
name-fn
(list 'lambda
(parameter-list)
(body)))))
(##define-macro
(define-nary form zero one two forcing pre-check . post-checks)
`(define-fold #f ,form ,zero ,one ,two ,forcing ,pre-check ,@post-checks))
(##define-macro
(define-nary-bool form zero one two forcing pre-check . post-checks)
`(define-fold #t ,form ,zero ,one ,two ,forcing ,pre-check ,@post-checks))
;------------------------------------------------------------------------------
; Macros for "_eval.scm" and "_repl.scm".
(##define-macro (make-global-var id) `(##make-global-var ,id))
(##define-macro (global-var-ref gv) `(##global-var-ref ,gv))
(##define-macro (global-var-set! gv val) `(##global-var-set! ,gv ,val))
(##define-macro (global-var->identifier gv) `(##global-var->identifier ,gv))
(##define-macro (quasi-list->vector x) `(##quasi-list->vector ,x))
(##define-macro (quasi-append x y) `(##quasi-append ,x ,y))
(##define-macro (quasi-cons x y) `(##quasi-cons ,x ,y))
(##define-macro (true? x) x)
(##define-macro (unbound? x) `(##unbound? ,x))
(##define-macro (self-var) '##self-var)
(##define-macro (selector-var) '##selector-var)
(##define-macro (do-loop-var) '##do-loop-var)
(##define-macro (rt-error-unbound-global-var code rte)
`(##signal '##signal.global-unbound ,code ,rte))
(##define-macro (rt-error-non-procedure-send code rte)
`(##signal '##signal.non-procedure-send ,code ,rte))
(##define-macro (rt-error-non-procedure-oper code rte)
`(##signal '##signal.non-procedure-operator ,code ,rte))
(##define-macro (rt-error-wrong-nb-args proc args)
`(##signal '##signal.wrong-nb-arg ,proc ,args))
(##define-macro (rt-error-unknown-keyword-arg proc args)
`(##signal '##signal.unknown-keyword-arg ,proc ,args))
(##define-macro (rt-error-keyword-expected proc args)
`(##signal '##signal.keyword-expected ,proc ,args))
(##define-macro (ct-error-global-env-overflow var)
`(##signal '##signal.global-env-overflow ,var))
(##define-macro (ct-error-syntax src msg . args)
`(##signal '##signal.syntax-error ,src ,msg ,@args))
; Macro to create a node of executable code.
(##define-macro (mk-code code-prc cte src stepper subcodes . lst)
`(let (($code (##vector #f ,code-prc ,cte ,src ,stepper ,@subcodes ,@lst)))
,@(let loop ((l subcodes) (i 5) (r '()))
(if (pair? l)
(loop (cdr l)
(+ i 1)
(cons `(##vector-set! (##vector-ref $code ,i) 0 $code) r))
(reverse r)))
$code))
(##define-macro (code-link c) `(##vector-ref ,c 0))
(##define-macro (code-cprc c) `(##vector-ref ,c 1))
(##define-macro (code-cte c) `(##vector-ref ,c 2))
(##define-macro (code-locat c) `(##vector-ref ,c 3))
(##define-macro (code-locat-set! c l) `(##vector-set! ,c 3 ,l))
(##define-macro (code-stepper c) `(##vector-ref ,c 4))
(##define-macro (code-length c) `(##fixnum.- (##vector-length ,c) 5))
(##define-macro (code-ref c n) `(##vector-ref ,c (##fixnum.+ ,n 5)))
(##define-macro (code-set! c n x) `(##vector-set! ,c (##fixnum.+ ,n 5) ,x))
(##define-macro (^ n) `(##vector-ref $code ,(+ n 5)))
(##define-macro (is-child-code? child parent)
`(let ((child ,child)
(parent ,parent))
(and (##vector? child)
(##fixnum.< 3 (##vector-length child))
(##eq? (code-link child) parent))))
(##define-macro (code-run c)
`(let (($$code ,c))
((##vector-ref $$code 1) $$code rte)))
; Macro to create the "code procedure" associated with a code node.
(##define-macro (mk-cprc . body)
`(let ()
(##declare (not inline) (not interrupts-enabled) (environment-map))
(lambda ($code rte)
(let (($$continue
(lambda ($code rte)
(##declare (inline))
,@body)))
(##declare (interrupts-enabled))
($$continue $code rte)))))
(##define-macro (mk-gen params . def)
`(let ()
(##declare (not inline))
(lambda (cte tail? src ,@params) ,@def)))
(##define-macro (gen proc src . args)
`(,proc cte tail? ,src ,@args))
(##define-macro (call-step! vars . body) `(step! #t 1 ,vars ,@body))
(##define-macro (future-step! vars . body) `(step! #f 2 ,vars ,@body))
(##define-macro (delay-step! vars . body) `(step! #f 2 ,vars ,@body))
(##define-macro (lambda-step! vars . body) `(step! #f 3 ,vars ,@body))
(##define-macro (define-step! vars . body) `(step! #f 4 ,vars ,@body))
(##define-macro (set!-step! vars . body) `(step! #f 5 ,vars ,@body))
(##define-macro (reference-step! vars . body) `(step! #f 6 ,vars ,@body))
(##define-macro (constant-step! vars . body) `(step! #f 7 ,vars ,@body))
(##define-macro (make-no-stepper)
''#(#(#f #f #f #f #f #f #f) #f #f #f #f #f #f #f))
(##define-macro (make-step-handlers)
'(##vector ##step-handler
##step-handler
##step-handler
##step-handler
##step-handler
##step-handler
##step-handler))
(##define-macro (make-main-stepper)
'(##vector (##vector-copy ##step-handlers)
#f
#f
#f
#f
#f
#f
#f))
(##define-macro (step! leapable? handler-index vars . body)
`(let* (($$execute-body
(lambda ($code rte ,@vars) ,@body))
($$handler
(##vector-ref (code-stepper $code) ,handler-index)))
(if $$handler
($$handler ,leapable?
$code
rte
(lambda ($code rte ,@vars)
($$execute-body $code rte ,@vars))
,@vars)
($$execute-body $code rte ,@vars))))
;------------------------------------------------------------------------------
; Macros to manipulate the runtime environment
(##define-macro (mk-rte rte . lst)
`(##vector ,rte ,@lst))
(##define-macro (mk-rte* rte ns)
`(let (($rte (##make-vector (##fixnum.+ ,ns 1) (##void))))
(##vector-set! $rte 0 ,rte)
$rte))
(##define-macro (rte-up rte) `(##vector-ref ,rte 0))
(##define-macro (rte-ref rte i) `(##vector-ref ,rte ,i))
(##define-macro (rte-set! rte i val) `(##vector-set! ,rte ,i ,val))
;==============================================================================
|